1
|
Feng S, Wang YC, Ke Y, Liang W, Zhao Y. Effect of charge-transfer states on the vibrationally resolved absorption spectra and exciton dynamics in ZnPc aggregates: Simulations from a non-Makovian stochastic Schrödinger equation. J Chem Phys 2020; 153:034116. [DOI: 10.1063/5.0013935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yu-Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yaling Ke
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
2
|
Han L, Ullah A, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism. J Chem Phys 2020; 152:204105. [DOI: 10.1063/1.5142164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
3
|
Tong Z, Huai Z, Mei Y, Mo Y. Reproducing the low-temperature excitation energy transfer dynamics of phycoerythrin 545 light-harvesting complex with a structure-based model Hamiltonian. J Chem Phys 2020; 152:135101. [DOI: 10.1063/1.5135999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhengqing Tong
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Zhe Huai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
4
|
Zheng J, Peng J, Xie Y, Long Y, Ning X, Lan Z. Study of the exciton dynamics in perylene bisimide (PBI) aggregates with symmetrical quasiclassical dynamics based on the Meyer–Miller mapping Hamiltonian. Phys Chem Chem Phys 2020; 22:18192-18204. [DOI: 10.1039/d0cp00648c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The exciton dynamics in one-dimensional stacked PBI (Perylene Bisimide) aggregates was studied with SQC-MM dynamics (Symmetrical Quasiclassical Dynamics based on the Meyer–Miller mapping Hamiltonian).
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Jiawei Peng
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yu Xie
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yunze Long
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Zhenggang Lan
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| |
Collapse
|
5
|
Rather SR, Scholes GD. From Fundamental Theories to Quantum Coherences in Electron Transfer. J Am Chem Soc 2019; 141:708-722. [PMID: 30412671 DOI: 10.1021/jacs.8b09059] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoinduced electron transfer (ET) is a cornerstone of energy transduction from light to chemistry. The past decade has seen tremendous advances in the possible role of quantum coherent effects in the light-initiated energy and ET processes in chemical, biological, and materials systems. The prevalence of such coherence effects holds a promise to increase the efficiency and robustness of transport even in the face of energetic or structural disorder. A primary motive of this Perspective is to work out how to think about "coherence" in ET reactions. We will discuss how the interplay of basic parameters governing ET reactions-like electronic coupling, interactions with the environment, and intramolecular high-frequency quantum vibrations-impact coherences. This includes revisiting the insights from the seminal work on the theory of ET and time-resolved measurements on coherent dynamics to explore the role of coherences in ET reactions. We conclude by suggesting that in addition to optical spectroscopies, validating the functional role of coherences would require simultaneous mapping of correlated electron motion and atomically resolved nuclear structure.
Collapse
Affiliation(s)
- Shahnawaz R. Rather
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Gregory D Scholes
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
6
|
Wang Y, Ke Y, Zhao Y. The hierarchical and perturbative forms of stochastic Schrödinger equations and their applications to carrier dynamics in organic materials. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yu‐Chen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Yaling Ke
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Yi Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| |
Collapse
|
7
|
Zang H, Zhao Y, Liang W. Quantum Interference in Singlet Fission: J- and H-Aggregate Behavior. J Phys Chem Lett 2017; 8:5105-5112. [PMID: 28960999 DOI: 10.1021/acs.jpclett.7b01996] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The quantum interference in singlet fission (SF) among the multiple pathways from singlet excited states to correlated triplet pair states is comprehensively investigated. The analytical analysis reveals that this interference is strongly affected by the exciton-exciton coupling and is closely related to the property of J- and H-type of aggregates. Different from the interference in the spectra of aggregates, which depends only on the sign of exciton-exciton coupling, the interference in SF is additionally related to the signs of couplings between singlet excited states and triplet pair states. The interference dynamics is further demonstrated numerically by a time-dependent wavepacket diffusion method with electron-phonon interactions incorporated. Finally, we take a pentacene dimer as a concrete example to show how to adjust the constructive and destructive interferences in SF dynamics in terms of J-/H-aggregate behaviors. The results presented here may provide guiding principles for designing efficient SF materials through directly tuning quantum interference via morphology engineering.
Collapse
Affiliation(s)
- Hang Zang
- Department of Chemical Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, China
| |
Collapse
|
8
|
Ke Y, Zhao Y. Hierarchy of stochastic Schrödinger equation towards the calculation of absorption and circular dichroism spectra. J Chem Phys 2017; 146:174105. [DOI: 10.1063/1.4982230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Plehn T, May V. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach. J Chem Phys 2017; 146:034107. [PMID: 28109221 DOI: 10.1063/1.4973886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.
Collapse
Affiliation(s)
- Thomas Plehn
- Institute of Physics, Humboldt-University at Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| | - Volkhard May
- Institute of Physics, Humboldt-University at Berlin, Newtonstraße 15, D-12489 Berlin, Germany
| |
Collapse
|
10
|
Lüer L, Rajendran SK, Stoll T, Ganzer L, Rehault J, Coles DM, Lidzey D, Virgili T, Cerullo G. Lévy Defects in Matrix-Immobilized J Aggregates: Tracing Intra-and Intersegmental Exciton Relaxation. J Phys Chem Lett 2017; 8:547-552. [PMID: 28045534 DOI: 10.1021/acs.jpclett.6b02704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One-dimensional J aggregates present narrow and intense absorption and emission spectra that are interesting for photonics applications. Matrix immobilization of the aggregates, as required for most device architectures, has recently been shown to induce a non-Gaussian (Lévy type) defect distribution with heavy tails, expected to influence exciton relaxation. Here we perform two-dimensional electronic spectroscopy (2DES) in one-dimensional J aggregates of the cyanine dye TDBC, immobilized in a gel matrix, and we quantitatively model 2DES maps by nonlinear optimization coupled to quantum mechanical calculations of the transient excitonic response. We find that immobilization causes strong non-Gaussian off-diagonal disorder, leading to a segmentation of the chains. Intersegmental exciton transfer is found to proceed on the picosecond time scale, causing a long-lasting excitation memory. These findings can be used to inform the design of optoelectronic devices based on J aggregates as they allow for control of exciton properties by disorder management.
Collapse
Affiliation(s)
- Larry Lüer
- IMDEA Nanociencia , C/Faraday 9, 28049 Cantoblanco, Madrid, Spain
| | - Sai Kiran Rajendran
- Dipartimento di Fisica, IFN-CNR , Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- School of Physics and Astronomy, University of St. Andrews , St. Andrews, Fife KY16 9SS, United Kingdom
| | - Tatjana Stoll
- Dipartimento di Fisica, IFN-CNR , Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Lucia Ganzer
- Dipartimento di Fisica, IFN-CNR , Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Julien Rehault
- Dipartimento di Fisica, IFN-CNR , Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Paul Scherrer Institut , 5232 Villigen PSI, Switzerland
| | - David M Coles
- Department of Physics and Astronomy, University of Sheffield , Sheffield S3 7RH, United Kingdom
| | - David Lidzey
- Department of Physics and Astronomy, University of Sheffield , Sheffield S3 7RH, United Kingdom
| | - Tersilla Virgili
- Dipartimento di Fisica, IFN-CNR , Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, IFN-CNR , Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
11
|
Brédas JL, Sargent EH, Scholes GD. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. NATURE MATERIALS 2016; 16:35-44. [PMID: 27994245 DOI: 10.1038/nmat4767] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/05/2016] [Indexed: 05/20/2023]
Abstract
The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder - structural and energetic - and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.
Collapse
Affiliation(s)
- Jean-Luc Brédas
- Division of Physical Science and Engineering, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
12
|
Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations. Sci Rep 2016; 6:24777. [PMID: 27103586 PMCID: PMC4840453 DOI: 10.1038/srep24777] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/04/2016] [Indexed: 11/09/2022] Open
Abstract
Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.
Collapse
|
13
|
Si W, Wu CQ. Decoherence and energy relaxation in the quantum-classical dynamics for charge transport in organic semiconducting crystals: An instantaneous decoherence correction approach. J Chem Phys 2015; 143:024103. [DOI: 10.1063/1.4926534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Si
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Chang-Qin Wu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
| |
Collapse
|