1
|
Wang H, Zheng S, Wu H, Xiong X, Xiong Q, Wang H, Wang Y, Zhang B, Lu X, Han G, Wang G, Zhou X. Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu 5 FeS 4-x Se x with High-Density Twin Boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104592. [PMID: 34741422 DOI: 10.1002/smll.202104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Bornite (Cu5 FeS4 ) is an Earth-abundant, nontoxic thermoelectric material. Herein, twin engineering and Se alloying are combined in order to further improve its thermoelectric performance. Cu5 FeS4-x Sex (0 ≤ x ≤ 0.4) icosahedral nanoparticles, containing high-density twin boundaries, have been synthesized by a colloidal method. Spark plasma sintering retains twin boundaries in the pellets sintered from Cu5 FeS4-x Sex colloidal powders. Thermoelectric property measurement demonstrates that alloying Se increases the carrier concentration, leading to much-improved power factor in Se-substituted Cu5 FeS4 , for example, 0.84 mW m-1 K-2 at 726 K for Cu5 FeS3.6 Se0.4 ; low lattice thermal conductivity is also achieved, due to intrinsic structural complexity, distorted crystal structure, and existing twin boundaries and point defects. As a result, a maximum zT of 0.75 is attained for Cu5 FeS3.6 Se0.4 at 726 K, which is about 23% higher than that of Cu5 FeS4 and compares favorably to that of reported Cu5 FeS4 -based materials. In addition, the Cu5 FeS4-x Sex samples containing twin boundaries also obtain improved hardness compared to the ones fabricated by melting-annealing or ball milling. This work demonstrates an effective twin engineering-composition tuning strategy toward enhanced thermoelectric and mechanical properties of Cu5 FeS4 -based materials.
Collapse
Affiliation(s)
- Huan Wang
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Sikang Zheng
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Hong Wu
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Xin Xiong
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Qihong Xiong
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Hengyang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Wang
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Bin Zhang
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, P. R. China
| | - Xu Lu
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
| | - Guang Han
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Guoyu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100044, P. R. China
| | - Xiaoyuan Zhou
- College of Physics, Chongqing University, Chongqing, 401331, P. R. China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Hu C, Medlin DL, Dingreville R. Disconnection-Mediated Transition in Segregation Structures at Twin Boundaries. J Phys Chem Lett 2021; 12:6875-6882. [PMID: 34279946 DOI: 10.1021/acs.jpclett.1c02189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Twin boundaries play an important role in the thermodynamics, stability, and mechanical properties of nanocrystalline metals. Understanding their structure and chemistry at the atomic scale is key to guide strategies for fabricating nanocrystalline materials with improved properties. We report an unusual segregation phenomenon at gold-doped platinum twin boundaries, which is arbitrated by the presence of disconnections, a type of interfacial line defect. By using atomistic simulations, we show that disconnections containing a stacking fault can induce an unexpected transition in the interfacial-segregation structure at the atomic scale, from a bilayer, alternating-segregation structure to a trilayer, segregation-only structure. This behavior is found for faulted disconnections of varying step heights and dislocation characters. Supported by a structural analysis and the classical Langmuir-McLean segregation model, we reveal that this phenomenon is driven by a structurally induced drop of the local pressure across the faulted disconnection accompanied by an increase in the segregation volume.
Collapse
Affiliation(s)
- Chongze Hu
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Douglas L Medlin
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Rémi Dingreville
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
3
|
Song Y, Li Y, Li H, Ke F, Xiang J, Zhou C, Li P, Zhu M, Jin R. Atomically resolved Au 52Cu 72(SR) 55 nanoalloy reveals Marks decahedron truncation and Penrose tiling surface. Nat Commun 2020; 11:478. [PMID: 31980671 PMCID: PMC6981204 DOI: 10.1038/s41467-020-14400-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gold-copper alloys have rich forms. Here we report an atomically resolved [Au52Cu72(p-MBT)55]+Cl- nanoalloy (p-MBT = SPh-p-CH3). This nanoalloy exhibits unusual structural patterns. First, two Cu atoms are located in the inner 7-atom decahedral kernel (M7, M = Au/Cu). The M7 kernel is then enclosed by a second shell of homogold (Au47), giving rise to a two-shelled M54 (i.e. Au52Cu2) full decahedron. A comparison of the non-truncated M54 decahedron with the truncated homogold Au49 kernel in similar-sized gold nanoparticles provides for the first time an explanation for Marks decahedron truncation. Second, a Cu70(SR)55 exterior cage resembling a 3D Penrose tiling protects the M54 decahedral kernel. Compared to the discrete staple motifs in gold:thiolate nanoparticles, the Cu-thiolate surface of Au52Cu72 forms an extended cage. The Cu-SR Penrose tiling retains the M54 kernel's high symmetry (D5h). Third, interparticle interactions in the assembly are closely related to the symmetry of the particle, and a "quadruple-gear-like" interlocking pattern is observed.
Collapse
Affiliation(s)
- Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China
| | - Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China
| | - Ji Xiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China
| | - Peng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, Anhui, People's Republic of China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, 230601, Hefei, Anhui, People's Republic of China.
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
4
|
Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu 5FeS 4 Nano-Icosahedrons: An in Situ Heating TEM Study. NANOMATERIALS 2019; 10:nano10010004. [PMID: 31861289 PMCID: PMC7022726 DOI: 10.3390/nano10010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 11/21/2022]
Abstract
Thermal stability of core-shell structured nanoparticles is of vital importance to their practical applications at elevated temperature. Understanding the evolution of chemical distribution and the crystal structure of core-shell nanostructures with temperature variation at the nanoscale will open the route for practical applications and property enhancement of nanoparticles through proper design of new nanomaterials. In this study, core-shell non-stoichiometric Cu5FeS4 icosahedral nanoparticles were investigated by in situ heating transmission electron microscopy. Compared to the high structural and compositional stability at room temperature, the interdiffusion of Cu and Fe atoms became significant, ending up with disappearance of chemical difference in the core and shell over 300 °C. In contrast, different crystal structures of the core and shell were preserved even after heating at 350 °C, indicating the high structural stability. The inconsistency between chemical composition and crystal structure should be ascribed to the interaction between the intrinsic strain existing in the icosahedrons and various structures of this material system. In other words, the geometrically intrinsic strain of the nano-icosahedrons is helpful to modulate/maintain the core-shell structure. These findings open new opportunities for revealing the thermal stability of core-shell nanostructures for various applications and are helpful for the controllable design of new core-shell nanostructures.
Collapse
|
5
|
Liang C, Yu Y. Understanding the formation of multiply twinned structure in decahedral intermetallic nanoparticles. IUCRJ 2019; 6:447-453. [PMID: 31098025 PMCID: PMC6503919 DOI: 10.1107/s2052252519002562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
The structure of monometallic decahedral multiply twinned nanoparticles (MTPs) has been extensively studied, whereas less is known about intermetallic MTPs, especially the mechanism of formation of multiply twinned structures, which remains to be understood. Here, by using aberration-corrected scanning transmission electron microscopy, a detailed structural study of AuCu decahedral intermetallic MTPs is presented. Surface segregation has been revealed on the atomic level and the multiply twinned structure was studied systematically. Significantly different from Au and Cu, the intermetallic AuCu MTP adopts a solid-angle deficiency of -13.35°, which represents an overlap instead of a gap (+7.35° gap for Au and Cu). By analysing and summarizing the differences and similarities among AuCu and other existing monometallic/intermetallic MTPs, the formation mechanism has been investigated from both energetic and geometric perspectives. Finally, a general framework for decahedral MTPs has been proposed and unknown MTPs could be predicted on this basis.
Collapse
Affiliation(s)
- Chao Liang
- School of Physical Science and Technology, Shanghaitech University, Shanghai 201210, People’s Republic of China
| | - Yi Yu
- School of Physical Science and Technology, Shanghaitech University, Shanghai 201210, People’s Republic of China
| |
Collapse
|
6
|
Deng L, Liu X, Zhang X, Wang L, Li W, Song M, Tang J, Deng H, Xiao S, Hu W. Intrinsic strain-induced segregation in multiply twinned Cu–Pt icosahedra. Phys Chem Chem Phys 2019; 21:4802-4809. [DOI: 10.1039/c8cp06327c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an atomistic simulation study on the compositional arrangements throughout Cu–Pt icosahedra, with a specific focus on the effects of inherent strain on general segregation trends.
Collapse
Affiliation(s)
- Lei Deng
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Xunlin Liu
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Xingming Zhang
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Liang Wang
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Wei Li
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Mingke Song
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Jianfeng Tang
- College of Science, Hunan Agricultural University
- Changsha 410128
- China
| | - Huiqiu Deng
- College of Materials Science and Engineering, Hunan University
- Changsha 410082
- China
| | - Shifang Xiao
- School of Physics and Electronics, Hunan University
- Changsha 410082
- China
| | - Wangyu Hu
- College of Materials Science and Engineering, Hunan University
- Changsha 410082
- China
| |
Collapse
|
7
|
Costa-Amaral R, Da Silva JLF. The adsorption of alcohols on strained Pt3Ni(111) substrates: a density functional investigation within the D3 van der Waals correction. Phys Chem Chem Phys 2018; 20:24210-24221. [DOI: 10.1039/c8cp02874e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this theoretical study, we address the effect of strain and alloying on the adsorption of methanol, ethanol and glycerol on Pt3Ni(111) surfaces.
Collapse
|
8
|
Marks LD, Peng L. Nanoparticle shape, thermodynamics and kinetics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:053001. [PMID: 26792459 DOI: 10.1088/0953-8984/28/5/053001] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70,000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century-some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review.
Collapse
Affiliation(s)
- L D Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
9
|
Peng L, Ringe E, Van Duyne RP, Marks LD. Segregation in bimetallic nanoparticles. Phys Chem Chem Phys 2015; 17:27940-51. [DOI: 10.1039/c5cp01492a] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical models and experimental results for segregation in bimetallic nanoparticles are discussed and compared in this perspective.
Collapse
Affiliation(s)
- Lingxuan Peng
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
| | - Emilie Ringe
- Department of Materials Science & NanoEngineering
- Rice University
- Houston
- USA
| | | | - Laurence D. Marks
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
| |
Collapse
|