1
|
Wrzosek B, Zajdel K, Jeleń P, Bukowska J. Mellitic Acid-Supported Synthesis of Anisotropic Nanoparticles Used as SERS Substrate. ACS OMEGA 2024; 9:34905-34917. [PMID: 39157076 PMCID: PMC11325498 DOI: 10.1021/acsomega.4c04592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
A method for the synthesis of a new SERS substrate-anisotropic silver nanoparticles using mellitic acid as a new capping agent is presented. The synthesis is free of toxic substances and does not require special temperature or lighting conditions. Moreover, it is fast, easy, and inexpensive. Depending on the concentration of silver ions and nanoparticle seeds, four different colloids were obtained, representing the evolution of nanoparticle growth along different paths from the first common stage. One of the synthesized colloids consists mainly of triangular nanoplates, while the other consists of polyhedral NPs. The analysis of the synthesis process together with the observation of TEM images and UV-vis extinction spectra enabled the proposal of the mechanism of interaction of mellitic acid molecules as the capping agent. The ability of mellitic acid molecules to form a hydrogen bond network, together with a ratio of silver ions to the mellitic acid concentration, turned out to be crucial for determining the shape of the NPs. All obtained colloids strongly enhance the Raman spectra of analyte molecules, thus proving their applicability as efficient new SERS substrates. For the one that enhanced the spectra the most, the detection limit was set at 10-9 M. Using it as a SERS substrate enables the identification of a trace amount of a designer drug, i.e., 4-chloromethcathinone (4-CMC, clephedrone). For the first time, SERS spectra of this substance, illegal in many countries, are presented.
Collapse
Affiliation(s)
- Beata Wrzosek
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Karolina Zajdel
- NOMATEN
Centre of Excellence, National Centre for
Nuclear Research, 7 Andrzeja Sołtana Street, 05-400 Otwock, Poland
- Electron
Microscopy Research Unit, Polish Academy of Sciences, Mossakowski Medical Research Institute, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Paulina Jeleń
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Jolanta Bukowska
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Lu SM, Wang HW, Chen M, Xie BK, Long YT. Unlocking Single Particle Anisotropy in Real-Time for Photoelectrochemistry Processes at the Nanoscale. Angew Chem Int Ed Engl 2024; 63:e202404170. [PMID: 38781086 DOI: 10.1002/anie.202404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| |
Collapse
|
3
|
Shoup DN, Fan S, Zapata-Herrera M, Schorr HC, Aizpurua J, Schultz ZD. Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging. Anal Chem 2024; 96:11422-11429. [PMID: 38958534 DOI: 10.1021/acs.analchem.4c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Strongly confined electric fields resulting from nanogaps within nanoparticle aggregates give rise to significant enhancement of surface-enhanced Raman scattering (SERS). Nanometer differences in gap sizes lead to drastically different confined field strengths; so much attention has been focused on the development and understanding of nanostructures with controlled gap sizes. In this work, we report a novel petal gap-enhanced Raman tag (GERT) consisting of a bipyramid core and a nitrothiophenol (NTP) spacer to support the growth of hundreds of small petals and compare its SERS emission and localization to a traditional bipyramid aggregate. To do this, we use super resolution spectral SERS imaging that simultaneously captures the SERS images and spectra while varying the incident laser polarization. Intensity fluctuations inherent of SERS enabled super resolution algorithms to be applied, which revealed subdiffraction limited differences in the localization with respect to polarization direction for both particles. Interestingly, however, only the traditional bipyramid aggregates experienced a strong polarization dependence in their SERS intensity and in the plasmon-induced conversion of NTP to dimercaptoazobenzene (DMAB), which was localized with nanometer precision to regions of intense electromagnetic fields. The lack of polarization dependence (validated through electromagnetic simulations) and surface reactions from the bipyramid-GERTs suggests that the emissions arising from the bipyramid-GERTs are less influenced by confined fields.
Collapse
Affiliation(s)
- Deben N Shoup
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mario Zapata-Herrera
- Center for Materials Physics in San Sebastián (CSIC-UPV/EHU), Donostia-San Sebastián 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián 20018, Spain
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Javier Aizpurua
- Donostia International Physics Center, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Electricity and Electronics, University of the Basque Country UPV/EHU, ESP, 48940 Leioa, Spain
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Park W, Lee S, Oh MJ, Zhao Q, Kim J, Lee S, Haddadnezhad M, Jung I, Park S. Step-by-Step Nanoscale Top-Down Blocking and Etching Lead to Nanohexapods with Cartesian Geometry. ACS NANO 2024; 18:7402-7410. [PMID: 38411049 DOI: 10.1021/acsnano.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we designed a stepwise synthetic method for Au@Pt hexapods where six elongated Au pods are arranged in a pairwise perpendicular fashion, sharing a common point (the central origin in a Cartesian-coordinate-like hexapod shape), featured with tip-selectively decorated Pt square nanoplates. Au@Pt hexapods were successfully synthesized by applying three distinctive chemical reactions in a stepwise manner. The Pt adatoms formed discontinuous thin nanoplates that selectively covered six concave facets of a Au truncated octahedron and served as etching masks in the succeeding etching process, which prevented underlying Au atoms from being oxidized. The subsequent isotropic etching proceeded radially, starting from the bare Au surface, carving the central nanocrystal in a concave manner. By controlling the etching conditions, Au@Pt hexapods were successfully fabricated, wherein the core Au domain is connected to six protruding arms, which hold Pt nanoplates at the ends. Due to their morphology, Au@Pt hexapods feature distinctive optical properties in the near-infrared region, as a proof of concept, allowing for surface-enhanced Raman spectroscopy (SERS)-based monitoring of in situ CO electrooxidation. We further extended our synthetic library by tailoring the size of the Pt nanoplates and neck widths of Au branches, demonstrating the validity of selective blocking and etching-based colloidal synthesis.
Collapse
Affiliation(s)
- Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | | | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Prasad R, Selvaraj K. Effective Distribution of Gold Nanorods in Ordered Thick Mesoporous Silica: A Choice of Noninvasive Theranostics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47615-47627. [PMID: 37782885 DOI: 10.1021/acsami.3c06108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Porous silica coated gold nanorod core-shell structures demonstrate a multifunctional role in bioimaging, drug delivery, and cancer therapeutics applications. Here, we address a new approach for effective distribution of gold nanorods (GNRs) in a mesoporous silica (MS) shell, viz., one nanorod in one silica particle (GMS). We have studied that silica coating presents major advantages for the better biocompatibility and stability of GNRs. In this study, two different thicknesses of silica shell over GNRs have been discussed as per the application's need; GNRs in thin silica (11 nm) are fit for phototherapy and bioimaging, whereas thick and porous silica (51 nm) coated gold nanorods are suitable for triggered drug delivery and theranostics. However, effective distribution of GNRs in ordered architecture of thick mesoporous silica (MS, more than 50 nm thickness) with high surface area (more than 1000 m2/g) is not well understood so far. Here, we present methodical investigations for uniform and highly ordered mesoporous silica coating over GNRs with tunable thickness (6 to 51 nm). Judicious identification and optimization of different reaction parameters like concentrations of silica precursor (TEOS, 1.85-43.9 mM), template (CTAB, 0.9-5.7 mM), effect of temperature, pH (8.6-10.8), stirring speed (100-400 rpm), and, most importantly, the mode of addition of TEOS with GNRs have been discussed. Studies with thick, porous silica coated GNRs simplify the highest ever reported surface area (1100 m2/g) and cargo capacity (57%) with better product yield (g/batch). First and foremost, we report a highly scalable (more than 500 mL) and rapid direct deposition of an ordered MS shell around GNRs. These engineered core-shell nanoparticles demonstrate X-ray contrast property, synergistic photothermal-chemotherapeutics, and imaging of tumor cell (96% cell death) due to released fluorescent anticancer drug molecules and photothermal effect (52 °C) of embedded GNRs. A deeper insight into their influence on the architectural features and superior theranostics performances has been illustrated in detail. Hence, these findings indicate the potential impact of individual GMS for image guided combination therapeutics of cancer.
Collapse
Affiliation(s)
- Rajendra Prasad
- Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR National Chemical Laboratory, Pune 411008, India
- Interventional Theranostics & Multimode Imaging Lab, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kaliaperumal Selvaraj
- Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDG) Campus, Postal Staff College area, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Kim J, Shim H, Kim YS, Kim MH. Colorimetric sensing of Cu(II) ions in water on the basis of selective chemical etching of EDA-capped Ag nanoplates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122750. [PMID: 37104909 DOI: 10.1016/j.saa.2023.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
Cu(II) ions are one of the essential mineral elements in the human body, but can pose a substantial health risk to people exposed to high concentrations of Cu(II) ions over a long period. Therefore, the ability to detect Cu(II) ions in drinking water is important. In this study, a novel colorimetric sensing probe for the easy and onsite detection of Cu(II) ions in drinking water was developed. The probe was constructed through selective chemical etching of triangular Ag nanoplates with tunable localized surface plasmon resonance (LSPR) properties. Ethylenediamine (EDA) was used as an organic capping agent to improve the chemical stability of triangular Ag nanoplates. Selective chemical etching of the EDA-capped Ag nanoplates in the presence of Cu(II) ions as a result of the formation of a coordination complex between the EDA and Cu(II) ions caused remarkable changes in the nanoplates' LSPR characteristics. On the basis of this phenomenon, a novel colorimetric sensing probe capable of detecting Cu(II) ions in drinking water at concentrations above the safety limit was developed. Our findings were also extended to develop a portable and paper-based sensing probe with good long-term stability to overcome the shortcomings of liquid-phase colorimetric sensors without requiring a spectrometer. The proposed colorimetric sensing probes provide accurate results even with a real sample and offer numerous advantages over conventional sensing platforms, including clearly distinguishable color changes that can be observed by the naked eye; thus, the proposed probes can be used for the selective, reliable, and low-cost point-of-care detection of Cu(II) ions in water.
Collapse
Affiliation(s)
- Jeongeun Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hyeobo Shim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Young-Seok Kim
- Display Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seoungnam-si, Kyounggi-do 13509, Republic of Korea.
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Lyu P, Espinoza R, Nguyen SC. Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15685-15698. [PMID: 37609384 PMCID: PMC10440817 DOI: 10.1021/acs.jpcc.3c04436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Indexed: 08/24/2023]
Abstract
Photocatalysis induced by localized surface plasmon resonance of metallic nanoparticles has been studied for more than a decade, but photocatalysis originating from direct interband excitations is still under-explored. The spectral overlap and the coupling of these two optical regimes also complicate the determination of hot carriers' energy states and eventually hinder the accurate assignment of their catalytic role in studied reactions. In this Featured Article, after reviewing previous studies, we suggest classifying the photoexcitation via intra- and interband transitions where the physical states of hot carriers are well-defined. Intraband transitions are featured by creating hot electrons above the Fermi level and suitable for reductive catalytic pathways, whereas interband transitions are featured by generating hot d-band holes below the Fermi level and better for oxidative catalytic pathways. Since the contribution of intra- and interband transitions are different in the spectral regions of localized surface plasmon resonance and direct interband excitations, the wavelength dependence of the photocatalytic activities is very helpful in assigning which transitions and carriers contribute to the observed catalysis.
Collapse
Affiliation(s)
- Pin Lyu
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C. Nguyen
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
8
|
Acter S, Moreau M, Ivkov R, Viswanathan A, Ngwa W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1656. [PMID: 37242072 PMCID: PMC10223368 DOI: 10.3390/nano13101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.
Collapse
Affiliation(s)
- Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Bazán-Díaz L, Pérez A, Bogireddy NKR, Velázquez-Salazar JJ, Betancourt I, José-Yacamán M, Herrera-Becerra R, Mendoza-Cruz R. PDDA induced step-pyramidal growth of nickel-platinum (Ni-Pt) nanoparticles for enhanced 4-nitrophenol reduction. Chem Commun (Camb) 2023. [PMID: 37157896 DOI: 10.1039/d3cc00791j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Herein, we report the synthesis of novel platinum-based nanoparticles with step-pyramidal growth induced by poly(diallyldimethylammonium chloride) (PDDA). The complex stepped pyramidal shape became the central point for outstanding catalytic reduction of 4-nitrophenol, overcoming the activity of bare Pt nanoparticles. These results are valuable for the catalytic degradation of reactive molecules.
Collapse
Affiliation(s)
- Lourdes Bazán-Díaz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | - Ariadna Pérez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | - Naveen Kumar Reddy Bogireddy
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - J Jesús Velázquez-Salazar
- Applied Physics and Materials Science Department and Center for Material Interfaces Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Israel Betancourt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | - Miguel José-Yacamán
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
- Applied Physics and Materials Science Department and Center for Material Interfaces Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Raúl Herrera-Becerra
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Rubén Mendoza-Cruz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| |
Collapse
|
10
|
Sanchis-Gual R, Coronado-Puchau M, Mallah T, Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
12
|
Wang J, Fang W, Liu H. Gold Triangular Nanoprisms: Anisotropic Plasmonic Materials with Unique Structures and Properties. Chempluschem 2023; 88:e202200464. [PMID: 36781389 DOI: 10.1002/cplu.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
As a novel type of anisotropic inorganic nanomaterials, gold triangular nanoprisms (AuTNPs) have been widely studied for their well-defined structures and excellent plasmonic properties. This review starts with synthetic methodology, combing through the early thermal solution method to the mature seed-mediated method and seedless method. The possible mechanisms proposed by predecessors and the problems needed to be solved are also arranged. Along with this, the important morphological evolution process of AuTNPs during synthesis and post-synthesis stages are revealed, which is of great significance for further understanding the structure of AuTNPs and developing new synthesis strategies. Finally, the applications of AuTNPs, especially associated with plasmonic properties, are listed and summarized where surface-enhanced Raman scattering (SERS), catalysis, phototherapy and biosensor are included, so that researchers can quickly comprehend the current situation, and provide a basis for further development and exploration of AuTNPs.
Collapse
Affiliation(s)
- Jiangming Wang
- School of Chemical Science and Engineering Shanghai Research Institute for Intelligent Autonomous Systems Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, P. R. China
| | - Weina Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Huajie Liu
- School of Chemical Science and Engineering Shanghai Research Institute for Intelligent Autonomous Systems Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
13
|
Use of field-flow fractionation and single particle inductively coupled plasma mass spectrometry for the study of silver nanoparticle shape transformation. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Pavithra CLP, Dey SR. Advances on multi‐dimensional high‐entropy alloy nanoarchitectures: Unconventional strategies and prospects. NANO SELECT 2022. [DOI: 10.1002/nano.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chokkakula L. P. Pavithra
- Combinatorial Materials Laboratory Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Suhash Ranjan Dey
- Combinatorial Materials Laboratory Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
15
|
Wang Z, Delille F, Bartier S, Pons T, Lequeux N, Louis B, Kim J, Gacoin T. Zwitterionic Polymers toward the Development of Orientation-Sensitive Bioprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10512-10519. [PMID: 35979644 DOI: 10.1021/acs.langmuir.2c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamics with an orientational degree of freedom are fundamental in biological events. Probes with polarized luminescence enable a determination of the orientation. Lanthanide-doped nanocrystals can provide more precise analysis than quantum dots due to the nonphotoblinking/bleaching nature and the multiple line-shaped emission. However, the intrinsic polarization property of the original nanocrystals often deteriorates in complex physiological environments because the colloidal stability easily breaks and the probes aggregate in the media with abundant salts and macromolecules. Engineering the surface chemistry of the probes is thus essential to be compatible with biosystems, which has remained a challenging task that should be exclusively addressed for each specific probe. Here, we demonstrate a facile and efficient surface functionalization of lanthanide-doped nanorods by zwitterionic block copolymers. Due to the steric interaction and the intrinsic zwitterionic nature of the polymers, high colloidal stability of the zwitterionic nanorod suspension is achieved over wide ranges of pH and concentration of salts, even giving rise to the lyotropic liquid crystalline behavior of the nanorods in physiological media. The shear-aligned ability is shown to be unaltered by the coated polymers, and thus, the strongly polarized emission of Eu3+ is preserved. Besides, biological experiments reveal good biocompatibility of the zwitterionic nanorods with negligible nonspecific binding. This study is a stepping stone for the use of the nanorods as orientation probes in biofluids and validates the strategy of coupling zwitterions to lanthanide-doped nanocrystals for various bioapplications.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Fanny Delille
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Sophie Bartier
- Université Paris Est Créteil, IMRB, INSERM, CNRS, 94010 Créteil, France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Materiaux, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Bruno Louis
- Université Paris Est Créteil, IMRB, INSERM, CNRS, 94010 Créteil, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
16
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Meyer SM, Murphy CJ. Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors. NANOSCALE 2022; 14:5214-5226. [PMID: 35315863 DOI: 10.1039/d1nr07918b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanorods are well-known surface-enhanced Raman scattering substrates. Under longitudinal plasmonic excitation, the ends of the nanorods experience larger local electric fields compared to the sides of the rods, suggesting that Raman-active molecules would be best detected if the molecules could preferentially bind to the ends of the nanorods. Coating the tips of gold nanorods with anionic mesoporous silica caps enabled surface-enhanced Raman scattering (SERS) detection of the cationic dye methylene blue at lower concentrations than observed for the corresponding silica coating of the entire rod. By analyzing the intensity ratio of two Raman active modes of methylene blue and the surface plasmon resonance peak shift of the gold nanorod composites, it can be inferred that at a low concentration of methylene blue, molecules adsorb to the tips of the tip coated silica gold nanorods. Functionalization of the anionic silica endcaps with cationic groups eliminates the SERS enhancement for the cationic methylene blue, demonstrating the electrostatic nature of the adsorption process in this case. These results show that anisotropic silica coatings can concentrate analytes at the tips of gold nanorods for improvements in chemical sensing and diagnostics.
Collapse
Affiliation(s)
- Sean M Meyer
- Department of Chemistry, 600. S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Catherine J Murphy
- Department of Chemistry, 600. S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
18
|
Mitomo H, Takeuchi C, Sugiyama R, Tamada K, Ijiro K. Thermo-responsive Silver Nanocube Assembled Films. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Chie Takeuchi
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ryo Sugiyama
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, 060-0810, Japan
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
19
|
Zech T, Schmutzler T, Noll DM, Appavou MS, Unruh T. Effect of Bromide on the Surfactant Stabilization Layer Density of Gold Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2227-2237. [PMID: 35113578 DOI: 10.1021/acs.langmuir.1c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Some studies have speculated that the concentration of bromide ions plays a crucial role in the surfactant density surrounding gold nanorods (AuNR). Small-angle X-ray and neutron scattering (SAXS and SANS) experiments were conducted to analyze any influence the bromide ions might have on the stabilization layer and the aggregation behavior of the ligand CTAB molecules in general. The AuNR were immersed in solutions containing a fixed CTA+ concentration of 2 mM and varying bromide ion concentrations from 0 to 22 mM. A patchy AuNR stabilization shell at low bromide ion concentrations was found, contrary to previously published SANS studies on the AuNR stabilization shell. However, with increasing bromide ion concentration, the density of the stabilization shell increases asymptotically toward a closed/collapsed bilayer configuration. AuNR grown under similar conditions show higher anisotropy with larger bromide ion concentrations. Both results indicate that anisotropic growth strongly depends on a sufficiently dense stabilization layer established by high bromide ion concentrations.
Collapse
Affiliation(s)
- Tobias Zech
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Tilo Schmutzler
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Dennis M Noll
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich, JCNS at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Tobias Unruh
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
20
|
Rincón-Iglesias M, Rodrigo I, B Berganza L, Serea ESA, Plazaola F, Lanceros-Méndez S, Lizundia E, Reguera J. Core-Shell Fe 3O 4@Au Nanorod-Loaded Gels for Tunable and Anisotropic Magneto- and Photothermia. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7130-7140. [PMID: 35089004 DOI: 10.1021/acsami.1c20990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hyperthermia therapeutic treatments require improved multifunctional materials with tunable synergetic properties. Here, we report on the synthesis of Fe3O4@Au core-shell nanorods and their subsequent incorporation into an agarose hydrogel to obtain anisotropic magnetic and optical properties for magneto- and photothermal anisotropic transductions. Highly monodisperse ferrimagnetic Fe3O4 nanorods with tunable size were synthesized using a solvothermal method by varying the amount of hexadecylamine capping ligands. A gold shell was coated onto Fe3O4 nanorods by the intermediate formation of core-satellite structures and a subsequent controlled growth process, leading to an optical response variation from the visible to the near-infrared (NIR) region. The nanorods were oriented within an agarose hydrogel to fabricate free-standing anisotropic materials, providing a proof-of-concept for the applicability of these materials for anisotropic magneto- and photothermia applications. The strong gelling behavior upon cooling and shear-thinning behavior of agarose enable the fabrication of magnetically active continuous hydrogel filaments upon injection. These developed multifunctional nanohybrid materials represent a base for advanced sensing, biomedical, or actuator applications with an anisotropic response.
Collapse
Affiliation(s)
- Mikel Rincón-Iglesias
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Irati Rodrigo
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Elektrizitatea eta Elektronika Saila, Facultad de Ciencia y Tecnologia, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa 48940, Spain
- Dr. Irati Rodrigo's current address: Department of Bioengineering, University of California Berkeley, Berkeley, California 94720-762, United States
| | - Leixuri B Berganza
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Esraa Samy Abu Serea
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Fernando Plazaola
- Elektrizitatea eta Elektronika Saila, Facultad de Ciencia y Tecnologia, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa 48940, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque Basque Foundation for Science Bilbao 48009, Spain
| | - Erlantz Lizundia
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| |
Collapse
|
21
|
Medeghini F, Pettine J, Meyer SM, Murphy CJ, Nesbitt DJ. Regulating and Directionally Controlling Electron Emission from Gold Nanorods with Silica Coatings. NANO LETTERS 2022; 22:644-651. [PMID: 34989588 DOI: 10.1021/acs.nanolett.1c03569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dielectric coatings offer a versatile means of manipulating hot carrier emission from nanoplasmonic systems for emerging nanocatalysis and photocathode applications, with uniform coatings acting as regulators and nonuniform coatings providing directional photocurrent control. However, the mechanisms for electron emission through dense and mesoporous silica (SiO2) coatings require further examination. Here, we present a systematic investigation of photoemission from single gold nanorods as a function of dense versus mesoporous silica coating thicknesses. Studies with dense coatings on gold nanostructures clarify the short (∼1 nm) attenuation length responsible for severely reduced transmission through the silica conduction band. By contrast, mesoporous silica is much more transmissive, and a simple geometric model quantitatively recapitulates the electron escape probability through nanoscopic porous channels. Finally, photoelectron velocity map imaging (VMI) studies of nanorods with coating defects verify that photoemission occurs preferentially through the thinner regions, illustrating new opportunities for designing photocurrent distributions on the nanoscale.
Collapse
Affiliation(s)
- Fabio Medeghini
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
| | - Jacob Pettine
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - Sean M Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Nesbitt
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Yamashita Y, Tashiro S, Ishii Y, Uchihashi T, Matsushita N, Kubota R, Shionoya M. Shape-selective one-step synthesis of branched gold nanoparticles on the crystal surface of redox-active Pd II-macrocycles. Dalton Trans 2022; 51:1318-1324. [PMID: 34985075 DOI: 10.1039/d1dt03973c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of branched gold nanoparticles (AuNPs) with shape- and size-specific optical properties requires effective control of the particle formation mechanism using appropriate reducing agents and protective agents that prevent particle aggregation in solution. In this context, the heterogeneous synthesis of AuNPs using solid surfaces of graphene oxides and metal-organic frameworks has attracted much attention. These materials are characterized by their ability to immobilize and stabilize the particles grown on the surface without the need for additional protective agents. However, the shape- and size-selective synthesis of AuNPs using solid surfaces remains challenging. Herein, we report the shape-selective one-step synthesis of monodisperse branched AuNPs using a metal-macrocycle framework (MMF), a porous molecular crystal of PdII3-tris(phenylenediamine) macrocycle. Konpeito-Shaped branched AuNPs with uniform size were obtained on the surface of MMF by mixing HAuCl4·4H2O, L-ascorbic acid and MMF microcrystals. Spectroscopic and microscopic observations confirmed that MMF promoted the reduction of gold by its reductive activity as well as acted as a solid support to electrostatically immobilize the pseudo-seed particles for further growth on the crystal surface. In addition, the MMF also served as a substrate for in situ high-speed AFM imaging due to the effective immobilization of AuNPs on the surface, allowing direct visualization of the particle growth. Since the chemical structural features of MMF allow the growth of branched AuNPs via pseudo-seeding, this approach would provide new synthetic methods for obtaining a variety of gold nanostructures.
Collapse
Affiliation(s)
- Yutaro Yamashita
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yoshiki Ishii
- Department of Physics, Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Nobuyuki Matsushita
- Department of Chemistry, College of Science and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryou Kubota
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
23
|
|
24
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Wang Z, Kim J, Magermans L, Corbella F, Florea I, Larquet E, Kim J, Gacoin T. Monazite LaPO 4:Eu 3+ nanorods as strongly polarized nano-emitters. NANOSCALE 2021; 13:16968-16976. [PMID: 34609394 DOI: 10.1039/d1nr04639j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Orientation analyses of macromolecules or artificial particles are vital for both fundamental research and practical bio-applications. An accurate approach is monitoring the polarization spectroscopy of lanthanide-doped nanocrystalline materials. However, nanomaterials are often far from ideal for the colloidal and polarization luminescence properties. In the present study, we synthesize well-dispersed LaPO4:Eu3+ nanomaterials in an anisotropic rod shape. Microwave heating with excess addition of phosphate precursor invokes a rapid phase transition of rhabdophane into monazite. The colloidal stability of the nanorod suspension is outstanding, demonstrated by showing liquid crystalline behaviors. The monazite nanorods are also superior in luminescence efficiency with limited defects. The emission spectrum of Eu3+ consists of well-defined lines with prominent polarization dependencies for both the forced electric dipole transitions and the magnetic dipole transitions. All the results demonstrate that the synthesized monazite nanorods can serve as an accurate probe in orientation analyses and potential applications, such as in microfluidics and biological detections.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Jeongmo Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Lilian Magermans
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Francesca Corbella
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Ileana Florea
- Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| |
Collapse
|
26
|
Roger K, El Amri N. Controlling nanoparticle formation from the onset of nucleation through a multi-step continuous flow approach. J Colloid Interface Sci 2021; 608:1750-1757. [PMID: 34749139 DOI: 10.1016/j.jcis.2021.10.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022]
Abstract
HYPOTHESIS Metallic nanoparticles of various shapes and sizes can be synthesised through a diversity of bottom-up pathways, such as precipitation induced by chemical reduction. Varying composition, by adjusting concentrations or adding/replacing species, is the predominant strategy to tune nanoparticles structures. However, controlling time down to the onset of precipitation, nucleation, should also provide a powerful means to control nanostructuration. EXPERIMENTS We perform sequential reagent additions with a time resolution down to the millisecond. We use a millifluidic continuous flow setup consisting of tangential mixers in series, which allows flow rates up to dozens of litres per hour. We systematically vary both addition order and delay for each reagent involved in the synthesis of silver nanoplates. The resulting dispersions are compared using UV-visible spectroscopy, transmission electron microscopy and small-angle X-ray scattering. FINDINGS We show that synthesis pathways differing only in the order of sub-second additions lead to drastically different synthetic outcomes. Silver nanoparticles of different shapes and sizes, displaying an array of plasmonic colours, are synthesised at the same final composition by tuning the composition pathways along time. Our results unlock a previously inaccessible portion of the space of parameters, which will lead to an enhanced structural diversity, control and understanding of nanoparticles syntheses.
Collapse
Affiliation(s)
- Kevin Roger
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31432, France.
| | - Nouha El Amri
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse 31432, France.
| |
Collapse
|
27
|
Bolaños K, Celis F, Garrido C, Campos M, Guzmán F, Kogan MJ, Araya E. Adsorption of bovine serum albumin on gold nanoprisms: interaction and effect of NIR irradiation on protein corona. J Mater Chem B 2021; 8:8644-8657. [PMID: 32842142 DOI: 10.1039/d0tb01246g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of their photothermal properties, gold nanoparticles (AuNPs) have gained attention regarding their use in drug delivery and therapeutic applications. In this sense, it is interesting to consider their interactions with biologically available proteins, such as serum albumin, as well as the effects of irradiation and photothermal conversion on the protein structure that can lead to a loss of function or generate an immune response. Gold nanoprisms (AuNPrs) have gained interest due to their low toxicity, ease of synthesis, and excellent stability, promoting their use in bioapplications such as surface-enhanced Raman spectroscopy (SERS), drug delivery, and photothermal therapy. The interaction between AuNPrs, with plasmon bands centred in the near-infrared region (NIR), and bovine serum albumin (BSA) has not been explored yet. UV-Vis spectroscopy, dynamic light scattering (DLS) and fluorescence spectroscopy were used to study the interaction between AuNPrs and BSA in addition to estimation of the adsorption rate and kinetic and thermodynamic parameters (K, ΔH°, ΔG°, ΔS°, and Ea) using adsorption isotherms and Langmuir and Freundlich models. The results suggest spontaneous cooperative binding in multilayer adsorption, achieved by the chemisorption of BSA on the AuNPr surface through the S-Au interaction, as confirmed by Raman spectroscopy. On the other hand, the photothermal conversion efficiency (PE) of the coated nanoparticles after NIR irradiation was assessed, resulting in a slight decrease in the PE of BSA coated on AuNPrs in comparison with that of noncapped nanoparticles. The effect of the irradiation on the protein conformation of capped nanoparticles was also assessed; circular dichroism showed BSA unfolding upon interaction with AuNPrs, with a decrease in the α-helix and β-sheet contents, as well as an increase in random coil conformations. Changes in the Raman spectrum suggest a modification of the disposition of the protein residues exposed to the gold surface after NIR irradiation; but at the secondary structure level, no relevant changes were observed. This provides possibilities for the use of NPs-BSA for bioapplications based on the photothermal effect promoted by laser irradiation, since the biological identity of the protein is preserved after NIR irradiation.
Collapse
Affiliation(s)
- Karen Bolaños
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile and Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile. and Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Carlos Garrido
- Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Av. José Pedro Alessandri 774, Ñuñoa, Santiago, Chile
| | - Marcelo Campos
- Department of Chemistry, Faculty of Sciences, University of Chile, P. O. Box 653, Santiago, Chile
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontifcia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile. and Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile
| | - Eyleen Araya
- Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile and Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile.
| |
Collapse
|
28
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
29
|
Das A, Yadav N, Manchala S, Bungla M, Ganguli AK. Mechanistic Investigations of Growth of Anisotropic Nanostructures in Reverse Micelles. ACS OMEGA 2021; 6:1007-1029. [PMID: 33490761 PMCID: PMC7818115 DOI: 10.1021/acsomega.0c04033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Tailoring the characteristics of anisotropic nanostructures like size, morphology, aspect ratio, and size dispersity is of extreme importance due to the unique and tunable properties including catalytic, optical, photocatalytic, magnetic, photochemical, electrochemical, photoelectrochemical, and several other physical properties. The reverse microemulsion (RM) method offers a useful soft-template and low-temperature procedure that, by variation of experimental conditions and nature of reagents, has proved to be extremely versatile in synthesis of nanostructures with tailored properties. Although many reports of synthesis of nanostructures by the RM method exist in the literature, most of the research studies carried out still follow the "hit and trial" method where the synthesis conditions, reagents, and other factors are varied and the resulting characteristics of the obtained nanostructures are justified on the basis of existing physical chemistry principles. Mechanistic investigations are scarce to generate a set of empirical rules that would aid in preplanning the RM-based synthesis of nanostructures with desired characteristics as well as make the process viable on an industrial scale. A consolidation of such research data available in the literature is essential for providing future directions in the field. In this perspective, we analyze the literature reports that have investigated the mechanistic aspects of growth of anisotropic nanostructures using the RM method and distil the essence of the present understanding at the nanoscale timescale using techniques like FCS and ultrafast spectroscopy in addition to routine techniques like DLS, fluorescence, TEM, etc.
Collapse
Affiliation(s)
- Anirban Das
- Department
of Chemistry, Biochemistry and Forensic Sciences, Amity School of
Applied Sciences, Amity University Haryana, Gurugram, Haryana 122413, India
| | - Nitin Yadav
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Saikumar Manchala
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Manisha Bungla
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Ashok K. Ganguli
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
30
|
Zhu T, Sun Y, Li C, Xia Y, Wang G, Lu W, Shao M, Man B, Yang C. Film wrap nanoparticle system with the graphene nano-spacer for SERS detection. OPTICS EXPRESS 2021; 29:1360-1370. [PMID: 33726353 DOI: 10.1364/oe.410603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Film wrap nanoparticle system (FWPS) is proposed and fabricated to perform SERS effect, where the Ag nanoparticle was completely wrapped by Au film and the double-layered graphene was selected as the sub-nano spacer. In this system, the designed nanostructure can be fully rather than partly used to generate hotspots and absorb probe molecules, compared to the nanoparticle to nanoparticle system (PTPS) or nanoparticle to film system (PTFS). The optimal fabricating condition and performance of this system were studied by the COMSOL Multiphysics. The simulation results show that the strongly large-scale localized electromagnetic field appears in the whole space between the Ag nanoparticle and Au film. The experimental results show that the FWPS presents excellent sensitivity (crystal violet (CV): 10-11 M), uniformity, stability and high enhancement factor (EF: 2.23×108). Malachite green (MG; 10-10 M) on the surface of fish and DNA strands with different base sequence (A, T, C) were successfully detected. These advanced results indicate that FWPS is highly promising to be applied for the detection of environmental pollution and biomolecules.
Collapse
|
31
|
Rapid and Green Preparation of Multi-Branched Gold Nanoparticles Using Surfactant-Free, Combined Ultrasound-Assisted Method. Processes (Basel) 2021. [DOI: 10.3390/pr9010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The conventional seed-mediated preparation of multi-branched gold nanoparticles uses either cetyltrimethylammonium bromide or sodium dodecyl sulfate. However, both surfactants are toxic to cells so they have to be removed before the multi-branched gold nanoparticles can be used in biomedical applications. This study describes a green and facile method for the preparation of multi-branched gold nanoparticles using hydroquinone as a reducing agent and chitosan as a stabilizer, through ultrasound irradiation to improve the multi-branched shape and stability. The influence of pH, mass concentration of chitosan, hydroquinone concentration, as well as sonication conditions such as amplitude and time of US on the growth of multi-branched gold nanoparticles, were also investigated. The spectra showed a broad band from 500 to over 1100 nm, an indication of the effects of both aggregation and contribution of multi-branches to the surface plasmon resonance signal. Transmission electron microscopy measurements of GNS under optimum conditions showed an average core diameter of 64.85 ± 6.79 nm and 76.11 ± 14.23 nm of the branches of multi-branched particles. Fourier Transfer Infrared Spectroscopy was employed to characterize the interaction between colloidal gold nanoparticles and chitosan, and the results showed the presence of the latter on the surface of the GNS. The cytotoxicity of chitosan capped GNS was tested on normal rat fibroblast NIH/3T3 and normal human fibroblast BJ-5ta using MTT assay concentrations from 50–125 µg/mL, with no adverse effect on cell viability.
Collapse
|
32
|
Das RP, Gandhi VV, Singh BG, Kunwar A. A pH-controlled one-pot synthesis of gold nanostars by using a zwitterionic protein hydrolysate (gelatin): an enhanced radiosensitization of cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj01903a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One-pot green synthesis of gold nanoparticles of desired shapes is developed by using FDA approved and economic GRAS materials. The gold nanoparticles exhibit radio-sensitization in A549 cells with star shaped nanoparticles showing maximum efficacy.
Collapse
Affiliation(s)
- Ram Pada Das
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Homi Bhabha National Institute
| | - Vishwa V. Gandhi
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Homi Bhabha National Institute
| | - Beena G. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Homi Bhabha National Institute
| | - Amit Kunwar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
33
|
Das N, Kumar A, Rayavarapu RG. The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:924-938. [PMID: 34497740 PMCID: PMC8381852 DOI: 10.3762/bjnano.12.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/27/2021] [Indexed: 05/14/2023]
Abstract
Plasmonic metal nanoparticles are widely used for many applications due to their unique optical and chemical properties. Over the past decade, anisotropic metal nanoparticles have been explored for imaging, sensing, and diagnostic applications. The variations and flexibility of tuning the size and shape of the metal nanoparticles at the nanoscale made them promising candidates for biomedical applications such as therapeutics, diagnostics, and drug delivery. However, safety and risk assessment of the nanomaterials for clinical purposes are yet to be made owing to their cytotoxicity. The toxicity concern is primarily due to the conventional synthesis route that involves surfactants as a structure-directing agent and as a capping agent for nanoparticles. Wet chemical methods employ toxic auxiliary chemicals. However, the approach yields monodispersed nanoparticles, an essential criterion for their intended application and a limitation of the green synthesis of nanoparticles using plant extracts. Several biocompatible counterparts such as polymers, lipids, and chitosan-based nanoparticles have been successfully used in the synthesis of safe nanomaterials, but there were issues regarding reproducibility and yield. Enzymatic degradation was one of the factors responsible for limiting the efficacy. Hence, it is necessary to develop a safer and nontoxic route towards synthesizing biocompatible nanomaterials while retaining morphology, high yield, and monodispersity. In this regard, deep eutectic solvents (DESs) and carrageenan as capping agent for nanoparticles can ensure the safety. Carrageenan has the potential to act as antibacterial and antiviral agent, and adds enhanced stability to the nanoparticles. This leads to a multidimensional approach for utilizing safe nanomaterials for advanced biomedical and clinical applications.
Collapse
Affiliation(s)
- Nabojit Das
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Kumar
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Li F, Wang K, Tan Z, Guo C, Liu Y, Tan H, Zhang L, Zhu J. Solvent Quality-Mediated Regioselective Modification of Gold Nanorods with Thiol-Terminated Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15162-15168. [PMID: 33256408 DOI: 10.1021/acs.langmuir.0c02905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modification of nanorods (NRs) with functional polymer ligands is of great significance to enhance their surface chemistry and prompt their applications in many fields (e.g., photothermal therapy, bioimaging, and catalysis). However, the regioselective modification of AuNRs still remains a great challenge. Herein, we introduce a facile yet versatile strategy to achieve the regioselective modification of AuNRs through a solvent quality-mediated strategy. By employing a poor solvent of the original ligand cetyltrimethylammonium bromide (CTAB) as the medium in the modification, polymer ligands would selectively graft onto the two ends of AuNRs, while polymer ligands would graft onto the entire surface when employing a good solvent. This strategy demonstrates good reproducibility and is applicable to both hydrophilic and hydrophobic polymer ligand modifications. Moreover, by combing our strategy with the preoccupation route, the two ends and sidewall of AuNRs modified by two different polymers form an "ABA"-type building block, which can further self-assemble into well-ordered superstructures. Our finding provides a new opportunity for multifunctionalization of NRs.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ke Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhengping Tan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Chen Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuanyuan Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haiying Tan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
35
|
Wei Z, Xi Z, Vlasov S, Ayala J, Xia X. Nanocrystals of platinum-group metals as peroxidase mimics for in vitro diagnostics. Chem Commun (Camb) 2020; 56:14962-14975. [PMID: 33188672 DOI: 10.1039/d0cc06575g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxidase mimics of nanoscale materials as alternatives to natural peroxidases have found widespread uses in biomedicine. Among various types of peroxidase mimics, platinum-group metal (PGM) nanocrystals have drawn considerable attention in recent years due to their superior properties. Particularly, PGM nanocrystals display high catalytic efficiencies, allow for facile surface modifications, and possess excellent stabilities. This feature article summarizes our recent work on development of PGM nanocrystals as peroxidase mimics and exploration of their applications in in vitro diagnostics. We begin with a brief introduction to controlled synthesis of PGM nanocrystals in solution phase. We then elaborate on a variety of physicochemical parameters that can be carefully tuned to optimize the peroxidase-like properties of PGM nanocrystals. Then, we highlight the applications of PGM nanocrystals in different in vitro diagnostic platforms. We conclude this article with personal perspectives on future research directions in this emerging field, where challenges and opportunities are remarked.
Collapse
Affiliation(s)
- Zhiyuan Wei
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA.
| | | | | | | | | |
Collapse
|
36
|
Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 2020; 5:21-45. [PMID: 37118104 DOI: 10.1038/s41570-020-00232-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Shape and size play powerful roles in determining the properties of a material; controlling these aspects with precision is therefore an important, fundamental goal of the chemical sciences. In particular, the introduction of shape anisotropy at the nanoscale has emerged as a potent way to access new properties and functionality, enabling the exploration of complex nanomaterials across a range of applications. Recent advances in DNA and protein nanotechnology, inorganic crystallization techniques, and precision polymer self-assembly are now enabling unprecedented control over the synthesis of anisotropic nanoparticles with a variety of shapes, encompassing one-dimensional rods, dumbbells and wires, two-dimensional and three-dimensional platelets, rings, polyhedra, stars, and more. This has, in turn, enabled much progress to be made in our understanding of how anisotropy and particle dimensions can be tuned to produce materials with unique and optimized properties. In this Review, we bring these recent developments together to critically appraise the different methods for the bottom-up synthesis of anisotropic nanoparticles enabling exquisite control over morphology and dimensions. We highlight the unique properties of these materials in arenas as diverse as electron transport and biological processing, illustrating how they can be leveraged to produce devices and materials with otherwise inaccessible functionality. By making size and shape our focus, we aim to identify potential synergies between different disciplines and produce a road map for future research in this crucial area.
Collapse
|
37
|
Wang Y, Counihan MJ, Lin JW, Rodríguez-López J, Yang H, Lu Y. Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals. J Am Chem Soc 2020; 142:10.1021/jacs.0c08604. [PMID: 33207870 PMCID: PMC9203591 DOI: 10.1021/jacs.0c08604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The predictive synthesis of metal nanocrystals with desired structures relies on the precise control of the crystal formation process. Using a capping ligand is an effective method to affect the reduction of metal ions and the formation of nanocrystals. However, predictively synthesizing nanostructures has been difficult to achieve using conventional capping ligands. DNA, as a class of the promising biomolecular capping ligands, has been used to generate sequence-specific morphologies in various metal nanocrystals. However, mechanistic insight into the DNA-mediated nanocrystal formation remains elusive due to the lack of quantitative experimental evidence. Herein, we quantitatively analyzed the precise control of DNA over Ag+ reduction and the structures of resulting Au-Ag core-shell nanocrystals. We derived the equilibrium binding constants between DNA and Ag+, the kinetic rate constants of sequence-specific Ag+ reduction pathways, and the percentage of active surface sites remaining on the nanocrystals after DNA passivation. These three synergistic factors influence the nucleation and growth process both thermodynamically and kinetically, which contributed to the morphological evolution of Au-Ag nanocrystals synthesized with different DNA sequences. This study demonstrates the potential of using functional DNA sequences as a versatile and tunable capping ligand system for the predictable synthesis of metal nanostructures.
Collapse
|
38
|
Gazil O, Gancheva T, Bilodeau-Calame M, Favis BD, Virgilio N. Controlling the distribution of nanoparticles in hydrogels via interfacial synthesis. NANOSCALE ADVANCES 2020; 2:5263-5270. [PMID: 36132018 PMCID: PMC9419463 DOI: 10.1039/d0na00488j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/26/2020] [Indexed: 06/15/2023]
Abstract
In this article, a dual-solvent method is presented which allows for precise control over the distribution of nanoparticles (NPs) in hydrogels. The technique is based on the interfacial reaction between a reducing agent (herein THPC) initially solubilized in the hydrogel phase, and an organometallic precursor (herein Au(PPh3)Cl) solubilized in the surrounding organic liquid phase. When the organic phase is completely immiscible with water, the interfacial reaction yields a fragile monolayer film of NPs at the hydrogel surface. Then, the addition of a co-solvent (miscible with both aqueous and organic phases) allows precise tuning over the distribution of NPs, from a fine and well-anchored layer at the interface, to the whole gel volume. As a result, it is possible to independently control the size and concentration of NPs, and their distribution. The impact of such control is demonstrated with the reduction of p-nitrophenol to p-aminophenol catalyzed by gold nanoparticles (AuNPs). When AuNPs are mostly localized at the gel surface, the apparent reaction rate is more than 10× superior compared to AuNPs distributed in the whole gel - at comparable particle content and size. This approach is straightforward, decisive and compatible with broad arrays of NPs and hydrogel chemistries, and solvent combinations.
Collapse
Affiliation(s)
- Olivier Gazil
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Teodora Gancheva
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Michel Bilodeau-Calame
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Basil D Favis
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| |
Collapse
|
39
|
Tandon L, Thakur P, Khullar P, Bakshi MS. Longitudinal surface plasmon resonance of gold nanoparticles as an indicator for interparticle fusions controlled by tetronics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
He Z, Wang G, Liang X, Takarada T, Maeda M. DNA Base Pair Stacking Assembly of Anisotropic Nanoparticles for Biosensing and Ordered Assembly. ANAL SCI 2020; 37:415-423. [PMID: 33071270 DOI: 10.2116/analsci.20scr02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anisotropic gold nanoparticles have attracted great interest due to their unique physicochemical properties derived from the shape anisotropy. Manipulation of their interfacial interactions, and thereby the assembling behaviors are often requisite in their applications ranging from optical sensing and diagnosis to self-assembly. Recently, the control of interfacial force based on base pair stacking of DNA terminals have offered a new avenue to surface engineering of nanostructures. In this review, we focus on the DNA base stacking-induced assembly of anisotropic gold nanoparticles, such as nanorods and nanotriangles. The fundamental aspects of anisotropic gold nanoparticles are provided, including the mechanism of the anisotropic growth, the properties arising from the anisotropic shape, and the construction of DNA-grafted anisotropic gold nanoparticles. Then, the advanced applications of their functional assemblies in biosensing and ordered assembly are summarized, followed by a comparison with gold nanospheres. Finally, conclusions and the direction of outlooks are given including future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China.,Bioengineering Laboratory, RIKEN Cluster for Pioneering Research.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| | - Tohru Takarada
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|
41
|
Kim SH, Woo HC, Kim MH. Solid-phase colorimetric sensing probe for bromide based on a tough hydrogel embedded with silver nanoprisms. Anal Chim Acta 2020; 1131:80-89. [PMID: 32928482 DOI: 10.1016/j.aca.2020.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Sharp-tipped anisotropic silver (Ag) nanostructures are attracting increasing attention because of their unusual optical properties. However, the sharp tips make such nanostructures thermodynamically unstable; thus, they have been considered unsuitable for use in colorimetric sensing because of their tendency to aggregate or transform in a solution state. In the present study, a colorimetric sensing platform for detecting bromide (Br-) in an aqueous medium was developed. The platform is based on the localized surface plasmon resonance (LSPR) properties of Ag nanoprisms with sharp tips. The key to using such Ag nanocrystals with extreme anisotropic structures is to adopt a solid-phase sensing platform. A Ag-nanoprism-embedded tough hydrogel with interpenetrating polymer networks was synthesized via aqueous-phase polymerization and crosslinking processes. The Ag nanoprisms immobilized inside the hydrogel were stable and did not exhibit aggregation or degradation over time; specifically, when the hydrogel was dried, the nanoprisms retained their inherent LSPR properties for an extended period. By taking advantage of the rapid and spontaneous morphological transformation of Ag nanoprisms inside the hybrid hydrogel exposed to Br- and the corresponding changes in their LSPR properties, we designed a plasmonic sensing platform for the sensitive and selective detection of Br- in an aqueous medium. The proposed colorimetric sensing platform was found to exhibit a wide sensing range and high selectivity, with a low limit of detection (LOD) of 10 μM, and offers substantial advantages over previously developed systems; specifically, it is portable, eco-friendly, safe to use and handle, stable for extended periods, and enables naked-eye detection. We believe that the as-proposed sensing platform can be used as a point-of-care analytical tool for detecting Br- in a broad range of samples.
Collapse
Affiliation(s)
- Sang Heon Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
42
|
Shan B, Wang H, Li L, Zhou G, Wen Y, Chen M, Li M. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for in vivo photothermal tumor ablation in the second near-infrared biowindow. Am J Cancer Res 2020; 10:11656-11672. [PMID: 33052239 PMCID: PMC7546011 DOI: 10.7150/thno.51287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
NIR-II plasmonic materials offer multiple functionalities for in vivo biomedical applications, such as photothermal tumor ablation, surface-enhanced Raman scattering biosensing, photoacoustic imaging, and drug carriers. However, integration of noble metals and plasmonic semiconductors is greatly challenging because of the large lattice-mismatch. This study reports the regioselective overgrowth of Cu2-xSe on gold nanorods (GNRs) for preparation of dual-plasmonic GNR@Cu2-xSe hybrid heterostructures with tunable NIR-II plasmon resonance absorption for in vivo photothermal tumor ablation. Methods: The regioselective deposition of amorphous Se and its subsequent conversion into Cu2-xSe on the GNRs are performed by altering capping agents to produce the GNR@Cu2-xSe heterostructures of various morphologies. Their photothermal performances for NIR-II photothermal tumor ablation are evaluated both in vitro and in vivo. Results: We find that the lateral one- and two-side deposition, conformal core-shell coating and island growth of Cu2-xSe on the GNRs can be achieved using different capping agents. The Cu2-xSe domain size in these hybrids can be effectively adjusted by the SeO2 concentration, thereby tuning the NIR-II plasmon bands. A photothermal conversion efficiency up to 58-85% and superior photostability of these dual-plasmonic hybrids can be achieved under the NIR-II laser. Results also show that the photothermal conversion efficiency is dependent on the proportion of optical absorption converted into heat; however, the temperature rise is tightly related to the concentration of their constituents. The excellent NIR-II photothermal effect is further verified in the following in vitro and in vivo experiments. Conclusions: This study achieves one-side or two-side deposition, conformal core-shell coating, and island deposition of Cu2-xSe on GNRs for GNR@Cu2-xSe heterostructures with NIR-II plasmonic absorption, and further demonstrates their excellent NIR-II photothermal tumor ablation in vivo. This study provides a promising strategy for the rational design of NIR-II dual-plasmonic heterostructures and highlights their therapeutic in vivo potential.
Collapse
|
43
|
Hayes TR, Lang EN, Shi A, Claridge SA. Large-Scale Noncovalent Functionalization of 2D Materials through Thermally Controlled Rotary Langmuir-Schaefer Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10577-10586. [PMID: 32852207 DOI: 10.1021/acs.langmuir.0c01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As two-dimensional (2D) materials are more broadly utilized as components of hybrid materials, controlling their surface chemistry over large areas through noncovalent functionalization becomes increasingly important. Here, we demonstrate a thermally controlled rotary transfer stage that allows areas of a 2D material to be continuously cycled into contact with a Langmuir film. This approach enables functionalization of large areas of the 2D material and simultaneously improves long-range ordering, achieving ordered domain areas up to nearly 10 000 μm2. To highlight the layer-by-layer processing capability of the rotary transfer stage, large-area noncovalently adsorbed monolayer films from an initial rotary cycle were used as templates to assemble ultranarrow gold nanowires from solution. The process we demonstrate would be readily extensible to roll-to-roll processing, addressing a longstanding challenge in scaling Langmuir-Schaefer transfer for practical applications.
Collapse
Affiliation(s)
- Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Kim S, Hwang J, Lee J, Lee J. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. SCIENCE ADVANCES 2020; 6:eabb3814. [PMID: 32851176 PMCID: PMC7423385 DOI: 10.1126/sciadv.abb3814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/01/2020] [Indexed: 05/02/2023]
Abstract
Anisotropic mesoporous inorganic materials have attracted great interest due to their unique and intriguing properties, yet their controllable synthesis still remains a great challenge. Here, we develop a simple synthesis approach toward mesoporous inorganic bowls and two-dimensional (2D) nanosheets by combining block copolymer (BCP)-directed self-assembly with asymmetric phase migration in ternary-phase blends. The homogeneous blend solution spontaneously self-assembles to anisotropically stacked hybrids as the solvent evaporates. Two minor phases-BCP/inorganic precursor and homopolystyrene (hPS)-form closely stacked, Janus domains that are dispersed/confined in the major homopoly(methyl methacrylate) (hPMMA) matrix. hPS phases are partially covered by BCP-rich phases, where ordered mesostructures develop. With increasing the relative amount of hPS, the anisotropic shape evolves from bowls to 2D nanosheets. Benefiting from the unique bowl-like morphology, the resulting transition metal oxides show promise as high-performance anodes in potassium-ion batteries.
Collapse
Affiliation(s)
- Seongseop Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jongkook Hwang
- Department of Chemical Engineering, Ajou University, Worldcupro 206, Suwon 16499, Republic of Korea
| | - Jisung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Corresponding author.
| |
Collapse
|
45
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
46
|
Swain S, M B B, Kandathil V, Bhol P, Samal AK, Patil SA. Controlled Synthesis of Palladium Nanocubes as an Efficient Nanocatalyst for Suzuki-Miyaura Cross-Coupling and Reduction of p-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5208-5218. [PMID: 32320250 DOI: 10.1021/acs.langmuir.0c00526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic nanocatalysts have attracted considerable attention in comparison to bulk/nanocatalysts for their enhanced activity and reactivity. The demand toward anisotropic palladium (Pd) nanostructures has increased rapidly in the field of catalysis. Pd is a well-known active catalyst for several carbon-carbon (C-C) cross-coupling reactions; among them, the Suzuki-Miyaura cross-coupling reaction is one of the most versatile and dominant methods for constructing the extraordinarily useful unsymmetrical biaryls and also for hydrogenation of organic contaminants like p-nitrophenol (p-NP). This paper provides a brief explanation about the controlled synthesis, characterization, and catalytic activity of well-defined palladium nanocubes (Pd NCs) prepared by a seed-mediated method. The synthesized monodispersed Pd NCs were characterized by spectroscopic and microscopic tools such as UV-visible, XRD, FESEM, HRTEM, and EDS analyses. Pd NCs proved as an efficient catalyst for Suzuki-Miyaura cross-coupling reactions and p-NP reduction. The catalyst shows enhanced activity, greater stability, and higher selectivity with remarkable recyclability up to 92% for five consecutive cycles. The catalytic performance of the synthesized Pd NCs was also studied in the reduction of the organic contaminant p-NP, which showed an excellent performance screening of 99% conversion in 6 min.
Collapse
Affiliation(s)
- Swarnalata Swain
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Bhavya M B
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Vishal Kandathil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Prangya Bhol
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| |
Collapse
|
47
|
da Silva JA, Netz PA, Meneghetti MR. Growth Mechanism of Gold Nanorods: the Effect of Tip-Surface Curvature As Revealed by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:257-263. [PMID: 31841340 DOI: 10.1021/acs.langmuir.9b03235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An understanding of the anisotropic growth mechanism of gold nanorods (AuNRs) during colloidal synthesis is critical for controlling the nanocrystal size and shape and thus has implications in tuning the properties for applications in a wide range of research and technology fields. In order to investigate the role of the cetyltrimethylammonium bromide (CTAB) coating in the anisotropic growth mechanism of AuNRs, we used molecular dynamics (MD) simulations and built a computational model that considered explicitly the effect of the curvature of the gold surface on CTAB adsorption and therefore differentiated between the CTAB arrangements on flat and curved surfaces, representing the lateral and tip facets of growing AuNRs, respectively. We verified that on a curved surface, a lower CTAB coverage density and larger intermicellar channels are generated compared to those on a flat surface. Using umbrella sampling simulations, we measured the free energy profile and verified that the environment around a curved surface corresponds to an easier migration from the solution to the gold surface for the [AuBr2]- species than does a flat surface. Long unbiased molecular dynamics simulations also corroborated the umbrella sampling results. Therefore, the [AuBr2]- diffusion through the environment of the tips is much more favorable than that in the case of lateral facets. This shows that the surface curvature is an essential component of the anisotropic growth mechanism.
Collapse
Affiliation(s)
- José A da Silva
- Grupo de Catálise e Reatividade Química - GCaR, Instituto de Química e Biotecnologia , Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, CEP 57072-970 , Maceió , Alagoas Brazil
| | - Paulo A Netz
- Institute of Chemistry - Federal University of the Rio Grande do Sul , Av. Bento Gonçalves, 9500 CEP , 91501-970 , Porto Alegre , Rio Grande do Sul Brazil
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química - GCaR, Instituto de Química e Biotecnologia , Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, CEP 57072-970 , Maceió , Alagoas Brazil
| |
Collapse
|
48
|
Yoo S, Kim J, Choi S, Park D, Park S. Two-dimensional nanoframes with dual rims. Nat Commun 2019; 10:5789. [PMID: 31857593 PMCID: PMC6923375 DOI: 10.1038/s41467-019-13738-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
The synthesis of highly complex two-dimensional (2D) metal nanoframes remains a great challenge. Synthetic strategies for preparing 2D metal nanoframes are few, and rational and systematic synthetic pathways to more complicated architectures have not yet been reported. Herein, we demonstrate a stepwise synthetic strategy for complex 2D metal nanoframes with a high degree of intricacy; the strategy leads to a variety of shapes, including rings, triangles, hexagons, and tripods with tailorable single or double frames in a single entity. These nanoframes of high homogeneity could be obtained through selective combination of four different chemical toolkits consisting of selective etching and deposition on certain facets, and concentric and/or eccentric regrowth by controlling the mismatches of lattice constants of metals. The resulting nanoframes were highly homogeneous in size and shape and had van der Waals interactions that maximized rim-to-rim contact, allowing them to uniquely self-assemble into large-area superstructures. The synthesis of anisotropic nanoparticles with structural diversity and complexity in a rational and systematic fashion is rare. Here, the authors demonstrate a rational and stepwise synthetic strategy for nanoplates with a high degree of intricacy, leading to a gallery of shapes such as rings, triangles, hexagons, and tripods, with tailorable single or double frames.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Sungwoo Choi
- Department of Applied Optics and Physics, Hallym University, Chuncheon, 24252, South Korea
| | - Doojae Park
- Department of Applied Optics and Physics, Hallym University, Chuncheon, 24252, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
49
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
50
|
Hua Z, Jones JR, Thomas M, Arno MC, Souslov A, Wilks TR, O'Reilly RK. Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nat Commun 2019; 10:5406. [PMID: 31776334 PMCID: PMC6881314 DOI: 10.1038/s41467-019-13263-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
Understanding and controlling self-assembly processes at multiple length scales is vital if we are to design and create advanced materials. In particular, our ability to organise matter on the nanoscale has advanced considerably, but still lags far behind our skill in manipulating individual molecules. New tools allowing controlled nanoscale assembly are sorely needed, as well as the physical understanding of how they work. Here, we report such a method for the production of highly anisotropic nanoparticles with controlled dimensions based on a morphological transformation process (MORPH, for short) driven by the formation of supramolecular bonds. We present a minimal physical model for MORPH that suggests a general mechanism which is potentially applicable to a large number of polymer/nanoparticle systems. We envision MORPH becoming a valuable tool for controlling nanoscale self-assembly, and for the production of functional nanostructures for diverse applications.
Collapse
Affiliation(s)
- Zan Hua
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joseph R Jones
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marjolaine Thomas
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anton Souslov
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|