1
|
Rider R, Lantz C, Fan L, Russell DH. Structure and Stabilities of Solution and Gas Phase Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3028-3036. [PMID: 39569632 PMCID: PMC11622221 DOI: 10.1021/jasms.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Collision-induced unfolding (CIU) has provided new levels of understanding of the stabilities and structure(s) for gas phase protein and protein complex ions formed by electrospray ionization (ESI). Variable-temperature (vT-ESI) data provide complementary information about temperature-induced folding/unfolding (TIU) reactions of solution phase ions. Results obtained by using CIU and TIU provide complementary information about stabilities of gas phase versus solution phase ions. Such comparisons may provide the most direct experimental approach to answer a long-standing question from Fred McLafferty: "For how long, under what conditions, and to what extent, can solution structure be retained without solvent?" Answers to this question require greater understanding of the (i) structure(s), stabilities, and dynamics of proteins/protein complexes in solution prior to ESI; (ii) effects of water removal by droplet fission and "freeze-drying" by evaporation of water from the nanodroplet; and (iii) potential reactions and structural changes that may occur as the ions traverse the heated capillary, the final stage in the transition to solvent-free gas phase ions. Here, we employ vT-ESI coupled with ion mobility-mass spectrometry (IM-MS) as a means to provide more detailed answers to the above-mentioned questions. Apo- and metalated-metallothionein-2A (MT), a cysteine-rich metal binding protein, and various proteoforms of transthyretin (TTR), a homotetrameric (56 kDa) retinol and thyroxine transporter protein complex were studied to examine distinct features of CIU and TIU across two different types of protein complexes. The results in this work shed light on the capabilities of CIU, TIU, and average charge state (Zavg) for probing the rugged energy landscape of native proteins and highlights the effects of water and cofactors (metal ions) on the structure and stabilities of proteins and protein complexes.
Collapse
Affiliation(s)
- Robert
L. Rider
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - Carter Lantz
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| |
Collapse
|
2
|
Lloyd Williams OH, Cox CS, Zhang MY, Lessio M, Rusli O, Donald WA, Jekimovs L, Marshall DL, Pfrunder MC, Poad BLJ, Brotin T, Rijs NJ. Cation induced changes to the structure of cryptophane cages. Dalton Trans 2024; 53:18473-18483. [PMID: 39352246 DOI: 10.1039/d4dt01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Here the monocation complexes of seven anti-cryptophanes are examined with high-resolution ion-mobility mass spectrometry. The relative size of the [cation + cryptophane]+ complexes were compared based on their measured mobilities and derived collisional cross sections. A paradoxical trend of structural contraction was observed for complexes of increasing cation size. Density functional theory confirmed encapsulation occurs for cation = Na+, K+, Rb+, Cs+ and NH4+. However, cation = Li+ preferred oxygen coordination at a linker over encapsulation within the cavity, leading to a slightly larger gas phase structure overall. Protonated cryptophanes yielded much larger collision cross sections via imploded cryptophane structures. Thus, competing physical effects led to the observed non-periodic size trend of the complexes. Trends in complexation from isothermal titration calorimetry and other condensed phase techniques were borne out by the gas phase studies. Further, predicted cavity sizes compared with the gas phase experimental findings reveal more about the encapsulation mechanisms themselves.
Collapse
Affiliation(s)
| | - Claudia S Cox
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Meng Yuan Zhang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Martina Lessio
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | | | - Lachlan Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001 Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, 4001 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001 Australia
| | - Thierry Brotin
- ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Al-Jabiry A, Palmer M, Langridge J, Bellamy-Carter J, Robinson D, Oldham NJ. Combined Chemical Modification and Collision Induced Unfolding Using Native Ion Mobility-Mass Spectrometry Provides Insights into Protein Gas-Phase Structure. Chemistry 2021; 27:13783-13792. [PMID: 34289194 DOI: 10.1002/chem.202101857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Native mass spectrometry is now an important tool in structural biology. Thus, the nature of higher protein structure in the vacuum of the mass spectrometer is an area of significant interest. One of the major goals in the study of gas-phase protein structure is to elucidate the stabilising role of interactions at the level of individual amino acid residues. A strategy combining protein chemical modification together with collision induced unfolding (CIU) was developed and employed to probe the structure of compact protein ions produced by native electrospray ionisation. Tractable chemical modification was used to alter the properties of amino acid residues, and ion mobility-mass spectrometry (IM-MS) utilised to monitor the extent of unfolding as a function of modification. From these data the importance of specific intramolecular interactions for the stability of compact gas-phase protein structure can be inferred. Using this approach, and aided by molecular dynamics simulations, an important stabilising interaction between K6 and H68 in the protein ubiquitin was identified, as was a contact between the N-terminus and E22 in a ubiquitin binding protein UBA2.
Collapse
Affiliation(s)
- Asia Al-Jabiry
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Martin Palmer
- Waters Corporation, Stamford Avenue Altrincham Road, Wilmslow, Cheshire, SK9 4AX, UK
| | - James Langridge
- Waters Corporation, Stamford Avenue Altrincham Road, Wilmslow, Cheshire, SK9 4AX, UK
| | | | - David Robinson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
5
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
6
|
Hebert MJ, Russell DH. Tracking the Structural Evolution of 4-Aminobenzoic Acid in the Transition from Solution to the Gas Phase. J Phys Chem B 2020; 124:2081-2087. [DOI: 10.1021/acs.jpcb.9b10576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael J. Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Hebert MJ, Russell DH. Hydration of Guanidinium Ions: An Experimental Search for Like-Charged Ion Pairs. J Phys Chem Lett 2019; 10:1349-1354. [PMID: 30840463 DOI: 10.1021/acs.jpclett.9b00268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Guanidinium ions (GdmH+) are reported to form stable complexes (GdmH+/GdmH+) in aqueous solution despite strong repulsive interactions between the like-charged centers. These complexes are thought to play important roles in protein folding, membrane penetration, and formation of protein dimers. Although GdmH+ ions are weakly hydrated, semiempirical calculations provide evidence that these like-charged complexes are stabilized by water molecules, which serve important structural and energetic roles. Specifically, water molecules bridge between the GdmH+ ions of GdmH+/GdmH+ complexes as well as complexes involving the guanidinium side chains of arginine. Potential biological significances of like-charged complexes have been largely confirmed by ab initio molecular dynamics simulations and indirect experimental evidence. We report cryo-ion mobility-mass spectrometry results for the GdmH+/GdmH+ ion pair confined in a nanodroplet- the first direct experimental observation of this like-charged complex. A second like-charged complex, described as a water-mediated complex involving GdmH+ and H3O+, was also observed.
Collapse
Affiliation(s)
- Michael J Hebert
- Department of Chemistry Texas A&M University College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry Texas A&M University College Station , Texas 77843 , United States
| |
Collapse
|
8
|
Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:399-404. [PMID: 30421840 DOI: 10.1002/rcm.8347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques. METHODS The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100-500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time-of-flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. RESULTS Changes in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas-phase modifiers (i.e., N2 doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas-modifier mass and size and changes in the relative abundances and number of IMS bands are observed. CONCLUSIONS We attribute the observed changes in the mobility profiles in the presence of gas-phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | | | | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
9
|
Consta S, In Oh M, Kwan V, Malevanets A. Strengths and Weaknesses of Molecular Simulations of Electrosprayed Droplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2287-2296. [PMID: 30259408 DOI: 10.1007/s13361-018-2039-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The origin and the magnitude of the charge in a macroion are critical questions in mass spectrometry analysis coupled to electrospray and other ionization techniques that transfer analytes from the bulk solution into the gaseous phase via droplets. In many circumstances, it is the later stages of the existence of a macroion in the containing solvent drop before the detection that determines the final charge state. Experimental characterization of small (with linear dimensions of several nanometers) and short-lived droplets is quite challenging. Molecular simulations in principle may provide insight exactly in this challenging for experiments regime. We discuss the strengths and weaknesses of the molecular modeling of electrosprayed droplets using molecular dynamics. We illustrate the limitations of the molecular modeling in the analysis of large macroions and specifically proteins away from their native states. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Anatoly Malevanets
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
10
|
Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Clowers BH, Russell DH. Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry. Anal Chem 2018; 90:10472-10478. [PMID: 30091588 PMCID: PMC6464636 DOI: 10.1021/acs.analchem.8b02463] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new instrument configuration for native ion mobility-mass spectrometry (IM-MS) is described. Macromolecule ions are generated by using a static ESI source coupled to an RF ion funnel, and these ions are then mobility and mass analyzed using a periodic focusing drift tube IM analyzer and an Orbitrap mass spectrometer. The instrument design retains the capabilities for first-principles determination of rotationally averaged ion-neutral collision cross sections and high-resolution measurements in both mobility and mass analysis modes for intact protein complexes. Operation in the IM mode utilizes FT-IMS modes (originally described by Knorr ( Knorr , F. J. Anal. Chem . 1985 , 57 ( 2 ), 402 - 406 )), which provides a means to overcome the inherent duty cycle mismatch for drift tube (DT)-IM and Orbitrap mass analysis. The performance of the native ESI-FT-DT-IM-Orbitrap MS instrument was evaluated using the protein complexes Gln K (MW 44 kDa) and streptavidin (MW 53 kDa) bound to small molecules (ADP and biotin, respectively) and transthyretin (MW 56 kDa) bound to thyroxine and zinc.
Collapse
Affiliation(s)
- Michael L. Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Consta S, Oh MI, Sharawy M, Malevanets A. Macroion–Solvent Interactions in Charged Droplets. J Phys Chem A 2018; 122:5239-5250. [DOI: 10.1021/acs.jpca.8b01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mahmoud Sharawy
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Anatoly Malevanets
- Department of Electrical and Computer Engineering, The University of University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
12
|
Oh MI, Consta S. What factors determine the stability of a weak protein-protein interaction in a charged aqueous droplet? Phys Chem Chem Phys 2018; 19:31965-31981. [PMID: 29177351 DOI: 10.1039/c7cp05043g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining the interface of a weak transient protein complex transferred from bulk solution to the gaseous state via evaporating droplets is a critical question in the detection of the complex association (dissociation) constant by using electrospray ionization mass spectrometry (ESI-MS). Here we explore the factors that may affect the stability of a protein-protein interaction (PPI) using atomistic molecular dynamics (MD) modelling of a complex of ubiquitin (Ub) and the ubiquitin-associated domain (UbA) (RCSB PDB code ) and a non-covalent complex of diubiquitin (RCSB PDB code ) in aqueous droplets. A general method is presented to determine the protonation states of the complexes we investigate in particular, and that of a protein in general, under various pH conditions that an evaporating droplet acquires due to its change in size. We find that the combination of high temperature and high charge states of the protein complexes may destabilize the interface by creating new interfaces instead of a direct rupture of the initial stable interface. We provide evidence that highly charged protein complexes are found in droplets that form conical extrusions of the solvent on the surface due to charge-induced instability. This distinct droplet morphology leads to a higher solvent evaporation rate that assists in transferring the complex in the gaseous state without dissociation. The conical solvent protrusions expose on the droplet surface certain amino acids that otherwise would be solvated in a droplet with the protein complex of low charge states. The new vapor-protein interface does not have a direct effect on the stability of the PPI. A common way in experiments to stabilize the protein complexes in droplets is to reduce the protonation state of the proteins. Here we find that weakly bound protein complexes even at high protonation states can be stabilized by the presence of a small number of counterions, without affecting the protonation state of the protein. Our findings may provide guiding principles in ESI-MS experiments to stabilize weak transient PPIs.
Collapse
Affiliation(s)
- Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | |
Collapse
|
13
|
Majuta SN, Maleki H, Kiani Karanji A, Attanyake K, Loch E, Valentine SJ. Magnifying ion mobility spectrometry-mass spectrometry measurements for biomolecular structure studies. Curr Opin Chem Biol 2018; 42:101-110. [PMID: 29241076 PMCID: PMC6500794 DOI: 10.1016/j.cbpa.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) provides information about the structures of gas-phase ions in the form of a collision cross section (CCS) with a neutral buffer gas. Indicating relative ion size, a CCS value alone is of limited utility. Although such information can be used to propose different conformer types, finer details of structure are not captured. The increased accessibility of IMS-MS measurements with commercial instrumentation in recent years has ballooned its usage in combination with separate measurements to provide enhanced data from which greater structural inferences can be drawn. This short review presents recent outstanding developments in scientific research that employs complementary measurements that when combined with IMS-MS data are used to characterize the structures of a wide range of compounds.
Collapse
Affiliation(s)
- Sandra N Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Kushani Attanyake
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Elinore Loch
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States.
| |
Collapse
|
14
|
Daly S, MacAleese L, Dugourd P, Chirot F. Combining Structural Probes in the Gas Phase - Ion Mobility-Resolved Action-FRET. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:133-139. [PMID: 29038996 DOI: 10.1007/s13361-017-1824-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In the context of native mass spectrometry, the development of gas-phase structural probes sensitive to the different levels of structuration of biomolecular assemblies is necessary to push forward conformational studies. In this paper, we provide the first example of the combination of ion mobility (IM) and Förster resonance energy transfer (FRET) measurements within the same experimental setup. The possibility to obtain mass- and mobility-resolved FRET measurements is demonstrated on a model peptide and applied to monitor the collision-induced unfolding of ubiquitin. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Steven Daly
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière UMR 5306, F-69100, Villeurbanne, France
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600, Pessac, France
| | - Luke MacAleese
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière UMR 5306, F-69100, Villeurbanne, France
| | - Philippe Dugourd
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière UMR 5306, F-69100, Villeurbanne, France
| | - Fabien Chirot
- Univ Lyon, Université Claude Bernard Lyon 1, Ens de Lyon, CNRS, Institut des Sciences Analytiques UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
15
|
Wagner ND, Clemmer DE, Russell DH. ESI-IM-MS and Collision-Induced Unfolding That Provide Insight into the Linkage-Dependent Interfacial Interactions of Covalently Linked Diubiquitin. Anal Chem 2017; 89:10094-10103. [DOI: 10.1021/acs.analchem.7b02932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole D. Wagner
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
16
|
Consta S, Sharawy M, Oh MI, Malevanets A. Advances in Modeling the Stability of Noncovalent Complexes in Charged Droplets with Applications in Electrospray Ionization-MS Experiments. Anal Chem 2017; 89:8192-8202. [DOI: 10.1021/acs.analchem.7b01941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Styliani Consta
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Mahmoud Sharawy
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Myong In Oh
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Anatoly Malevanets
- Department
of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
17
|
Elliott AG, Harper CC, Lin HW, Susa AC, Xia Z, Williams ER. Simultaneous Measurements of Mass and Collisional Cross-Section of Single Ions with Charge Detection Mass Spectrometry. Anal Chem 2017. [PMID: 28621517 DOI: 10.1021/acs.analchem.7b01675] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The masses and mobilities of single multiply charged ions of cytochrome c, ubiquitin, myoglobin, and bovine serum albumin formed by electrospray ionization are measured using charge detection mass spectrometry (CDMS). Single ions are trapped and repeatedly measured as they oscillate inside an electrostatic ion trap with cone electrodes for up to the maximum trapping time set at 500 ms. The histograms of the many single ion oscillation frequencies have resolved peaks that correspond to the different charge states of each protein. The m/z of each ion is determined from the initial oscillation frequency histogram, and the evolution of the ion energy with time is obtained from the changing frequency. A short-time Fourier transform of the time-domain data indicates that the increase in ion frequency occurs gradually with time with occasional sudden jumps in frequency. The frequency jumps are similar for each protein and may be caused by collision-induced changes in the ion trajectory. The rate of the gradual frequency shift increases with protein mass and charge state. This gradual frequency change is due to ion energy loss from collisions with the background gas. The total energy lost by an ion is determined from the latter frequency shifts normalized to a 500 ms lifetime, and these values increase nearly linearly with measured collisional cross-sections for these protein ions. These results show that the mass and collisional cross-section of single multiply charged ions can be obtained from these CDMS measurements by using proteins with known collisional cross-sections for calibration.
Collapse
Affiliation(s)
- Andrew G Elliott
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Haw-Wei Lin
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Anna C Susa
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Zijie Xia
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
18
|
Grasso G, Axelsen PH. Effects of covalent modification by 4-hydroxy-2-nonenal on the noncovalent oligomerization of ubiquitin. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:36-42. [PMID: 27862610 PMCID: PMC5360464 DOI: 10.1002/jms.3897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
When lipid membranes containing ω-6 polyunsaturated fatty acyl chains are subjected to oxidative stress, one of the reaction products is 4-hydroxy-2-nonenal (HNE)-a chemically reactive short chain alkenal that can covalently modify proteins. The ubiquitin proteasome system is involved in the clearing of proteins modified by oxidation products such as HNE, but the chemical structure, stability and function of ubiquitin may be impaired by HNE modification. To evaluate this possibility, the susceptibility of ubiquitin to modification by HNE has been characterized over a range of concentrations where ubiquitin forms non-covalent oligomers. Results indicate that HNE modifies ubiquitin at only two of the many possible sites, and that HNE modification at these two sites alters the ubiquitin oligomerization equilibrium. These results suggest that any role ubiquitin may have in clearing proteins damaged by oxidative stress may itself be impaired by oxidative lipid degradation products. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giuseppe Grasso
- University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Wagner ND, Russell DH. Defining Noncovalent Ubiquitin Homodimer Interfacial Interactions through Comparisons with Covalently Linked Diubiquitin. J Am Chem Soc 2016; 138:16588-16591. [PMID: 27977175 DOI: 10.1021/jacs.6b09829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covalently linked diubiquitin (diUbq) is known to adopt specific interfacial interactions owing to steric hindrance induced by the covalent tether. K48-linked diUbq preferentially forms hydrophobic interfacial interactions between the two I44 faces under physiological conditions, whereas K63-linked diUbq preferentially forms electrostatic interfacial interactions. Here, we show using collision-induced unfolding ion mobility-mass spectrometry that the recently reported noncovalent dimer of ubiquitin exhibits structural preferences and interfacial interactions that are most similar to that of K48-linked diUbq.
Collapse
Affiliation(s)
- Nicole D Wagner
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
20
|
McMahon WP, Subramanian A, Minardi CS, Dalvi R, Jorabchi K. Pulsed Nano-ESI Atmospheric-Pressure Ion Mobility Mass Spectrometry with Enhanced Ion Sampling. Anal Chem 2016; 88:11767-11773. [PMID: 27782389 DOI: 10.1021/acs.analchem.6b03395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) has gained considerable attention for detection of clusters and weakly bound species created by electrospray ionization (ESI). Atmospheric-pressure (AP) IM-MS offers an advantage in these studies compared to its low-pressure counterpart, owing to soft introduction of ions into the mobility cell with minimal ion activation. Here, we report new approaches to improve the sensitivity and soft ion introduction in AP-IM-MS. For the former, we demonstrate enhanced aerodynamic sampling of ions from the mobility cell into the MS using pulsed-field sampling. In this approach, ions are driven toward the MS, and the field is shut down once the ions reach the vicinity of the MS inlet orifice. The pulsed-field operation provides arrival times without the need for an exit ion gate in the mobility cell and leads to improvements in sensitivity of up to 1 order of magnitude. For soft ion generation, we report a pulsed nano-ESI source to introduce a packet of ions into the room-temperature mobility cell without induced desolvation. Further, we demonstrate the application of the pulsed nano-ESI AP-IM-MS with enhanced ion sampling for detection of solvent clusters of amines and peptide aggregates.
Collapse
Affiliation(s)
- William P McMahon
- Department of Chemistry, Georgetown University , Washington DC 20057, United States
| | - Arjuna Subramanian
- Department of Chemistry, Georgetown University , Washington DC 20057, United States
| | - Carina S Minardi
- Department of Chemistry, Georgetown University , Washington DC 20057, United States
| | - Rohan Dalvi
- Department of Chemistry, Georgetown University , Washington DC 20057, United States
| | - Kaveh Jorabchi
- Department of Chemistry, Georgetown University , Washington DC 20057, United States
| |
Collapse
|
21
|
Gillig KJ. Gas-phase protein conformation/multimer ion formation by electrospray ion mobility-mass spectrometry: bovine insulin and ubiquitin. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150368. [PMID: 27644980 PMCID: PMC5031634 DOI: 10.1098/rsta.2015.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility-mass spectrometry (IMMS) is a very attractive method for studies in structural biology because of the ability of rapid isolation by nearly simultaneous m/z characterization and size separation, leading to an emergence of IMMS as a complimentary biochemical tool. Earlier, we developed a method based on varying the protein concentration in solution prior to electrospray ionization (ESI) with subsequent m/z selection and dissociation of protein multimers by IMMS of cytochrome c. The focus of this work will be to correctly distinguish truly different ion conformations formed by ESI versus homomultimeric complexes with the same m/z for well-studied proteins bovine ubiquitin and insulin. These proteins were chosen due to their large difference in solution phase structures: insulin tightly bound by disulfide linkages, and ubiquitin-a protein that may adopt a range of states from compact to extended. Our preliminary results, as with cytochrome c reveal false negatives for protein oligomer formation and false positives for protein conformational states. In addition, these results will be couched in terms of the need for quantification of IMMS analysis of proteins given the total area under IMMS peaks can also distinguish conformation versus aggregation as higher order oligomers have more mass per ion.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Kent J Gillig
- Genomics Research Center, Academia Sinica, 128 Academia Road, Nangang Section 2, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
22
|
Servage KA, Silveira JA, Fort KL, Russell DH. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase. Acc Chem Res 2016; 49:1421-8. [PMID: 27334393 DOI: 10.1021/acs.accounts.6b00177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the guanidinium ion. Studies on the neuropeptide substance P illustrate the ability of cryo-IM-MS to elucidate information about heterogeneous ion populations. Results show that a kinetically trapped conformer is stabilized by a combination of hydration and specific intramolecular interactions, but upon dehydration, this conformer rearranges to form a thermodynamically favored gas-phase ion conformation. Finally, recent studies on hydration of the protein ubiquitin reveal water-mediated dimerization, thereby illustrating the extension of this approach to studies of large biomolecules. Collectively, these studies illustrate a new dimension to studies of biomolecules, resulting from the ability to monitor snapshots of the structural evolution of ions during the transition from solution to gas phase and provide unparalleled insights into the intricate interplay between competing effects that dictate conformational preferences.
Collapse
Affiliation(s)
- Kelly A. Servage
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua A. Silveira
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Kyle L. Fort
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
23
|
Popa V, Trecroce DA, McAllister RG, Konermann L. Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons. J Phys Chem B 2016; 120:5114-24. [DOI: 10.1021/acs.jpcb.6b03035] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vlad Popa
- Department
of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle A. Trecroce
- Department
of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lars Konermann
- Department
of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department
of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
24
|
Wagner ND, Kim D, Russell DH. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation. Anal Chem 2016; 88:5934-40. [PMID: 27137645 DOI: 10.1021/acs.analchem.6b00871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrospray ionization (ESI) of ubiquitin from acidified (0.1%) aqueous solution produces abundant ubiquitin-chloride adduct ions, [M + nH + xCl]((n - x)+), that upon mild heating react via elimination of neutral HCl. Ion mobility collision cross section (CCS) measurements show that ubiquitin ions retaining chloride adducts exhibit CCS values similar to those of the "native-state" of the protein. Coupled with results from recent molecular dynamics (MD) simulations for the evolution of a salt-containing electrospray droplet, this study provides a more complete picture for how the presence of salts affects the evolution of protein conformers in the final stages of dehydration of the ESI process and within the instrument.
Collapse
Affiliation(s)
- Nicole D Wagner
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Doyong Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
25
|
Göth M, Lermyte F, Schmitt XJ, Warnke S, von Helden G, Sobott F, Pagel K. Gas-phase microsolvation of ubiquitin: investigation of crown ether complexation sites using ion mobility-mass spectrometry. Analyst 2016; 141:5502-10. [DOI: 10.1039/c6an01377e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence of side chain to backbone interactions on the gas-phase structure of ubiquitin and ubiquitin lysine-to-arginine mutants was analysed.
Collapse
Affiliation(s)
- Melanie Göth
- Department of Biology
- Chemistry
- Pharmacy
- Freie Universität Berlin
- 14195 Berlin
| | - Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry
- Chemistry Department
- University of Antwerp
- 2020 Antwerp
- Belgium
| | - Xiao Jakob Schmitt
- Department of Molecular Physics
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Stephan Warnke
- Department of Molecular Physics
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Gert von Helden
- Department of Molecular Physics
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry
- Chemistry Department
- University of Antwerp
- 2020 Antwerp
- Belgium
| | - Kevin Pagel
- Department of Biology
- Chemistry
- Pharmacy
- Freie Universität Berlin
- 14195 Berlin
| |
Collapse
|