1
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
2
|
Golub M, Gätcke J, Subramanian S, Kölsch A, Darwish T, Howard JK, Feoktystov A, Matsarskaia O, Martel A, Porcar L, Zouni A, Pieper J. "Invisible" Detergents Enable a Reliable Determination of Solution Structures of Native Photosystems by Small-Angle Neutron Scattering. J Phys Chem B 2022; 126:2824-2833. [PMID: 35384657 DOI: 10.1021/acs.jpcb.2c01591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosystems I (PSI) and II (PSII) are pigment-protein complexes capable of performing the light-induced charge separation necessary to convert solar energy into a biochemically storable form, an essential step in photosynthesis. Small-angle neutron scattering (SANS) is unique in providing structural information on PSI and PSII in solution under nearly physiological conditions without the need for crystallization or temperature decrease. We show that the reliability of the solution structure critically depends on proper contrast matching of the detergent belt surrounding the protein. Especially, specifically deuterated ("invisible") detergents are shown to be properly matched out in SANS experiments by a direct, quantitative comparison with conventional matching strategies. In contrast, protonated detergents necessarily exhibit incomplete matching so that related SANS results systematically overestimate the size of the membrane protein under study. While the solution structures obtained are close to corresponding high-resolution structures, we show that temperature and solution state lead to individual structural differences compared with high-resolution structures. We attribute these differences to the presence of a manifold of conformational substates accessible by protein dynamics under physiological conditions.
Collapse
Affiliation(s)
- M Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | - J Gätcke
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - S Subramanian
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - A Kölsch
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - T Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - J K Howard
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - A Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748 Garching, Germany
| | - O Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - A Martel
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - L Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - A Zouni
- Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - J Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| |
Collapse
|
3
|
Predicting solution scattering patterns with explicit-solvent molecular simulations. Methods Enzymol 2022; 677:433-456. [DOI: 10.1016/bs.mie.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Bernetti M, Hall KB, Bussi G. Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles. Nucleic Acids Res 2021; 49:e84. [PMID: 34107023 PMCID: PMC8373061 DOI: 10.1093/nar/gkab459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) experiments are increasingly used to probe RNA structure. A number of forward models that relate measured SAXS intensities and structural features, and that are suitable to model either explicit-solvent effects or solute dynamics, have been proposed in the past years. Here, we introduce an approach that integrates atomistic molecular dynamics simulations and SAXS experiments to reconstruct RNA structural ensembles while simultaneously accounting for both RNA conformational dynamics and explicit-solvent effects. Our protocol exploits SAXS pure-solute forward models and enhanced sampling methods to sample an heterogenous ensemble of structures, with no information towards the experiments provided on-the-fly. The generated structural ensemble is then reweighted through the maximum entropy principle so as to match reference SAXS experimental data at multiple ionic conditions. Importantly, accurate explicit-solvent forward models are used at this reweighting stage. We apply this framework to the GTPase-associated center, a relevant RNA molecule involved in protein translation, in order to elucidate its ion-dependent conformational ensembles. We show that (a) both solvent and dynamics are crucial to reproduce experimental SAXS data and (b) the resulting dynamical ensembles contain an ion-dependent fraction of extended structures.
Collapse
Affiliation(s)
- Mattia Bernetti
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
5
|
Kursula P. Small-angle X-ray scattering for the proteomics community: current overview and future potential. Expert Rev Proteomics 2021; 18:415-422. [PMID: 34210208 DOI: 10.1080/14789450.2021.1951242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Proteins are biological nanoparticles. For structural proteomics and hybrid structural biology, complementary methods are required that allow both high throughput and accurate automated data analysis. Small-angle X-ray scattering (SAXS) is a method for observing the size and shape of particles, such as proteins and complexes, in solution. SAXS data can be used to model both the structure, oligomeric state, conformational changes, and flexibility of biomolecular samples.Areas covered: The key principles of SAXS, its sample requirements, and its current and future applications for structural proteomics are briefly reviewed. Recent technical developments in SAXS experiments are discussed, and future potential of the method in structural proteomics is evaluated.Expert opinion: SAXS is a method suitable for several aspects of integrative structural proteomics, with current technical developments allowing for higher throughput and time-resolved studies, as well as the analysis of complex samples, such as membrane proteins. Increasing automation and streamlined data analysis are expected to equip SAXS for structure-based screening workflows. Originally, structural genomics had a heavy focus on folded, crystallizable proteins and complexes - SAXS is a method allowing an expansion of this focus to flexible and disordered systems.
Collapse
Affiliation(s)
- Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Abel S, Marchi M, Solier J, Finet S, Brillet K, Bonneté F. Structural insights into the membrane receptor ShuA in DDM micelles and in a model of gram-negative bacteria outer membrane as seen by SAXS and MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183504. [PMID: 33157097 DOI: 10.1016/j.bbamem.2020.183504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Successful crystallization of membrane proteins in detergent micelles depends on key factors such as conformational stability of the protein in micellar assemblies, the protein-detergent complex (PDC) monodispersity and favorable protein crystal contacts by suitable shielding of the protein hydrophobic surface by the detergent belt. With the aim of studying the influence of amphiphilic environment on membrane protein structure, stability and crystallizability, we combine molecular dynamics (MD) simulations with SEC-MALLS and SEC-SAXS (Size Exclusion Chromatography in line with Multi Angle Laser Light Scattering or Small Angle X-ray Scattering) experiments to describe the protein-detergent interactions that could help to rationalize PDC crystallization. In this context, we compare the protein-detergent interactions of ShuA from Shigella dysenteriae in n-Dodecyl-β-D-Maltopyranoside (DDM) with ShuA inserted in a realistic model of gram-negative bacteria outer membrane (OM) containing a mixture of bacterial lipopolysaccharide and phospholipids. To evaluate the quality of the PDC models, we compute the corresponding SAXS curves from the MD trajectories and compare with the experimental ones. We show that computed SAXS curves obtained from the MD trajectories reproduce better the SAXS obtained from the SEC-SAXS experiments for ShuA surrounded by 268 DDM molecules. The MD results show that the DDM molecules form around ShuA a closed belt whose the hydrophobic thickness appears slightly smaller (~22 Å) than the hydrophobic transmembrane domain of the protein (24.6 Å) suggested by Orientations of Proteins in Membranes (OPM) database. The simulations also show that ShuA transmembrane domain is remarkably stable in all the systems except for the extracellular and periplasmic loops that exhibit larger movements due to specific molecular interactions with lipopolysaccharides (LPS). We finally point out that this detergent behavior may lead to the occlusion of the periplasmic hydrophilic surface and poor crystal contacts leading to difficulties in crystallization of ShuA in DDM.
Collapse
Affiliation(s)
- Stéphane Abel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Massimo Marchi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Justine Solier
- Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces, UMR 5279 CNRS Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, INP, F38000 Grenoble, France
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique de Matériaux et de Cosmochimie, UMR 7590 CNRS-Sorbonne université, Bioinformatique et Biophysique, 4 Place Jussieu, F75005 Paris, France
| | - Karl Brillet
- Institut de Biologie Moléculaire et Cellulaire UPR 9002 CNRS, Architecture et Réactivité de l'ARN, 2 allée Konrad Roentgen, F67000 Strasbourg, France
| | - Françoise Bonneté
- Institut de Biologie Physico-Chimique (IBPC) UMR 7099 CNRS Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, 13 rue Pierre et Marie Curie, F75005 Paris, France.
| |
Collapse
|
7
|
Bengtsen T, Holm VL, Kjølbye LR, Midtgaard SR, Johansen NT, Tesei G, Bottaro S, Schiøtt B, Arleth L, Lindorff-Larsen K. Structure and dynamics of a nanodisc by integrating NMR, SAXS and SANS experiments with molecular dynamics simulations. eLife 2020; 9:e56518. [PMID: 32729831 PMCID: PMC7426092 DOI: 10.7554/elife.56518] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Nanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently conflicting observations about the shape of nanodiscs, and pave the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.
Collapse
Affiliation(s)
- Tone Bengtsen
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Viktor L Holm
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | | | - Søren R Midtgaard
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Nicolai Tidemand Johansen
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Hermann MR, Hub JS. SAXS-Restrained Ensemble Simulations of Intrinsically Disordered Proteins with Commitment to the Principle of Maximum Entropy. J Chem Theory Comput 2019; 15:5103-5115. [DOI: 10.1021/acs.jctc.9b00338] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus R. Hermann
- Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Chen PC, Shevchuk R, Strnad FM, Lorenz C, Karge L, Gilles R, Stadler AM, Hennig J, Hub JS. Combined Small-Angle X-ray and Neutron Scattering Restraints in Molecular Dynamics Simulations. J Chem Theory Comput 2019; 15:4687-4698. [DOI: 10.1021/acs.jctc.9b00292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Po-chia Chen
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Roman Shevchuk
- Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Felix M. Strnad
- Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Charlotte Lorenz
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems ICS (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Lukas Karge
- Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Ralph Gilles
- Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems ICS (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Jesaitis AJ, Riesselman M, Taylor RM, Brumfield S. Enhanced Immunoaffinity Purification of Human Neutrophil Flavocytochrome B for Structure Determination by Electron Microscopy. Methods Mol Biol 2019; 1982:39-59. [PMID: 31172465 DOI: 10.1007/978-1-4939-9424-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Determination of the structure of human neutrophil (PMN) flavocytochrome b (Cytb) is a necessary step for the understanding of the structure-function essentials of NADPH oxidase activity. This understanding is crucial for structure-driven therapeutic approaches addressing control of inflammation and infection. Our work on purification and sample preparation of Cytb has facilitated progress toward the goal of structure determination. Here we describe exploiting immunoaffinity purification of Cytb for initial examination of its size and shape by a combination of classical and cryoelectron microscopic (EM) methods. For these evaluations, we used conventional negative-stain transmission electron microscopy (TEM) to examine both detergent-solubilized Cytb as single particles and Cytb in phosphatidylcholine reconstituted membrane vesicles as densely packed random, partially ordered, and subcrystalline arrays. In preliminary trials, we also examined single particles by cryoelectron microscopy (cryoEM) methods. We conclude that Cytb in detergent and reconstituted in membrane is a relatively compact, symmetrical protein of about 100 Å in maximum dimension. The negative stain, preliminary cryoEM, and crude molecular models suggest that the protein is probably a heterotetramer of two p22phox and gp91phox subunits in both detergent micelles and membrane vesicles. This exploratory study also suggests that high-resolution 2D electron microscopic approaches may be accessible to human material collected from single donors.
Collapse
Affiliation(s)
- Algirdas J Jesaitis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| | - Marcia Riesselman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Ross M Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Universal Cells , Seattle, WA, USA
| | - Susan Brumfield
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
11
|
Chen PC, Hennig J. The role of small-angle scattering in structure-based screening applications. Biophys Rev 2018; 10:1295-1310. [PMID: 30306530 PMCID: PMC6233350 DOI: 10.1007/s12551-018-0464-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In many biomolecular interactions, changes in the assembly states and structural conformations of participants can act as a complementary reporter of binding to functional and thermodynamic assays. This structural information is captured by a number of structural biology and biophysical techniques that are viable either as primary screens in small-scale applications or as secondary screens to complement higher throughput methods. In particular, small-angle X-ray scattering (SAXS) reports the average distance distribution between all atoms after orientational averaging. Such information is important when for example investigating conformational changes involved in inhibitory and regulatory mechanisms where binding events do not necessarily cause functional changes. Thus, we summarise here the current and prospective capabilities of SAXS-based screening in the context of other methods that yield structural information. Broad guidelines are also provided to assist readers in preparing screening protocols that are tailored to available X-ray sources.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69126, Heidelberg, Germany.
| |
Collapse
|
12
|
Li Y, Shivnaraine RV, Huang F, Wells JW, Gradinaru CC. Ligand-Induced Coupling between Oligomers of the M 2 Receptor and the G i1 Protein in Live Cells. Biophys J 2018; 115:881-895. [PMID: 30131171 DOI: 10.1016/j.bpj.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Uncertainty over the mechanism of signaling via G protein-coupled receptors (GPCRs) relates in part to questions regarding their supramolecular structure. GPCRs and heterotrimeric G proteins are known to couple as monomers under various conditions. Many GPCRs form oligomers under many of the same conditions, however, and the biological role of those complexes is unclear. We have used dual-color fluorescence correlation spectroscopy to identify oligomers of the M2 muscarinic receptor and of Gi1 in purified preparations and live Chinese hamster ovary cells. Measurements on differently tagged receptors (i.e., eGFP-M2 and mCherry-M2) and G proteins (i.e., eGFP-Gαi1β1γ2 and mCherry-Gαi1β1γ2) detected significant cross-correlations between the two fluorophores in each case, both in detergent micelles and in live cells, indicating that both the receptor and Gi1 can exist as homo-oligomers. Oligomerization of differently tagged Gi1 decreased upon the activation of co-expressed wild-type M2 receptor by an agonist. Measurements on a tagged M2 receptor (M2-mCherry) and eGFP-Gαi1β1γ2 co-expressed in live cells detected cross-correlations only in the presence of an agonist, which therefore promoted coupling of the receptor and the G protein. The effect of the agonist was retained when a fluorophore-tagged receptor lacking the orthosteric site (i.e., M2(D103A)-mCherry) was co-expressed with the wild-type receptor and eGFP-Gαi1β1γ2, indicating that the ligand acted via an oligomeric receptor. Our results point to a model in which an agonist promotes transient coupling of otherwise independent oligomers of the M2 receptor on the one hand and of Gi1 on the other and that an activated complex leads to a reduction in the oligomeric size of the G protein. They suggest that GPCR-mediated signaling proceeds, at least in part, via oligomers.
Collapse
Affiliation(s)
- Yuchong Li
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Fei Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
13
|
Dias Mirandela G, Tamburrino G, Ivanović MT, Strnad FM, Byron O, Rasmussen T, Hoskisson PA, Hub JS, Zachariae U, Gabel F, Javelle A. Merging In-Solution X-ray and Neutron Scattering Data Allows Fine Structural Analysis of Membrane-Protein Detergent Complexes. J Phys Chem Lett 2018; 9:3910-3914. [PMID: 29939747 DOI: 10.1021/acs.jpclett.8b01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labeled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. First, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS, which has been adapted to predict SANS data. Second, the use of MONSA which allows one to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.
Collapse
Affiliation(s)
- Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
- Physics, School of Science and Engineering , University of Dundee , Dundee , DD1 4NH , United Kingdom
| | - Miloš T Ivanović
- Theoretical Physics , Saarland University , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Felix M Strnad
- Institute for Microbiology and Genetics , University of Goettingen , Justus-von-Liebig-Weg 11 , 37077 Göttingen , Germany
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , G12 8QQ , United Kingdom
| | - Tim Rasmussen
- School of Medical Sciences , University of Aberdeen , Foresterhill, Aberdeen AB25 2ZD , United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| | - Jochen S Hub
- Theoretical Physics , Saarland University , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
- Physics, School of Science and Engineering , University of Dundee , Dundee , DD1 4NH , United Kingdom
| | - Frank Gabel
- Institut Laue-Langevin , 71 Avenue des Martyrs 38042 Grenoble , France
- University of Grenoble Alpes, CEA, CNRS, IBS , 38000 Grenoble , France
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| |
Collapse
|
14
|
Mahieu E, Gabel F. Biological small-angle neutron scattering: recent results and development. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:715-726. [DOI: 10.1107/s2059798318005016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Small-angle neutron scattering (SANS) has increasingly been used by the structural biology community in recent years to obtain low-resolution information on solubilized biomacromolecular complexes in solution. In combination with deuterium labelling and solvent-contrast variation (H2O/D2O exchange), SANS provides unique information on individual components in large heterogeneous complexes that is perfectly complementary to the structural restraints provided by crystallography, nuclear magnetic resonance and electron microscopy. Typical systems studied include multi-protein or protein–DNA/RNA complexes and solubilized membrane proteins. The internal features of these systems are less accessible to the more broadly used small-angle X-ray scattering (SAXS) technique owing to a limited range of intra-complex and solvent electron-density variation. Here, the progress and developments of biological applications of SANS in the past decade are reviewed. The review covers scientific results from selected biological systems, including protein–protein complexes, protein–RNA/DNA complexes and membrane proteins. Moreover, an overview of recent developments in instruments, sample environment, deuterium labelling and software is presented. Finally, the perspectives for biological SANS in the context of integrated structural biology approaches are discussed.
Collapse
|
15
|
Interpreting solution X-ray scattering data using molecular simulations. Curr Opin Struct Biol 2018; 49:18-26. [DOI: 10.1016/j.sbi.2017.11.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/04/2017] [Indexed: 01/23/2023]
|
16
|
Ivanović MT, Bruetzel LK, Shevchuk R, Lipfert J, Hub JS. Quantifying the influence of the ion cloud on SAXS profiles of charged proteins. Phys Chem Chem Phys 2018; 20:26351-26361. [DOI: 10.1039/c8cp03080d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MD simulations and Poisson–Boltzmann calculations predict ion cloud effects on SAXS experiments.
Collapse
Affiliation(s)
- Miloš T. Ivanović
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics
- 37077 Göttingen
- Germany
| | - Linda K. Bruetzel
- Ludwig-Maximilian-Universität München, Department of Physics
- 80799 München
- Germany
| | - Roman Shevchuk
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics
- 37077 Göttingen
- Germany
| | - Jan Lipfert
- Ludwig-Maximilian-Universität München, Department of Physics
- 80799 München
- Germany
| | - Jochen S. Hub
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics
- 37077 Göttingen
- Germany
| |
Collapse
|
17
|
Koutsioubas A. Low-Resolution Structure of Detergent-Solubilized Membrane Proteins from Small-Angle Scattering Data. Biophys J 2018; 113:2373-2382. [PMID: 29211991 DOI: 10.1016/j.bpj.2017.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the ever-increasing usage of small-angle scattering as a valuable complementary method in the field of structural biology, applications concerning membrane proteins remain elusive mainly due to experimental challenges and the relative lack of theoretical tools for the treatment of scattering data. This fact adds up to general difficulties encountered also by other established methods (crystallography, NMR) for the study of membrane proteins. Following the general paradigm of ab initio methods for low-resolution restoration of soluble protein structure from small-angle scattering data, we construct a general multiphase model with a set of physical constraints, which, together with an appropriate minimization procedure, gives direct structural information concerning the different components (protein, detergent molecules) of detergent-solubilized membrane protein complexes. Assessment of the method's precision and robustness is evaluated by performing shape restorations from simulated data of a tetrameric α-helical membrane channel (Aquaporin-0) solubilized by n-Dodecyl β-D-Maltoside and from previously published small-angle neutron scattering experimental data of the filamentous hemagglutinin adhesin β-barrel protein transporter solubilized by n-Octyl β-D-glucopyranoside. It is shown that the acquisition of small-angle neutron scattering data at two different solvent contrasts, together with an estimation of detergent aggregation number around the protein, permits the reliable reconstruction of the shape of membrane proteins without the need for any prior structural information.
Collapse
Affiliation(s)
- Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Garching, Germany.
| |
Collapse
|
18
|
Bernadó P, Shimizu N, Zaccai G, Kamikubo H, Sugiyama M. Solution scattering approaches to dynamical ordering in biomolecular systems. Biochim Biophys Acta Gen Subj 2017; 1862:253-274. [PMID: 29107147 DOI: 10.1016/j.bbagen.2017.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Abstract
Clarification of solution structure and its modulation in proteins and protein complexes is crucially important to understand dynamical ordering in macromolecular systems. Small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are among the most powerful techniques to derive structural information. Recent progress in sample preparation, instruments and software analysis is opening up a new era for small-angle scattering. In this review, recent progress and trends of SAXS and SANS are introduced from the point of view of instrumentation and analysis, touching on general features and standard methods of small-angle scattering. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Giuseppe Zaccai
- Institut Laue Langevin, Institut de Biologie Structurale, CNRS, CNRS, UGA, Grenoble, France
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan..
| |
Collapse
|
19
|
Shevchuk R, Hub JS. Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics. PLoS Comput Biol 2017; 13:e1005800. [PMID: 29045407 PMCID: PMC5662244 DOI: 10.1371/journal.pcbi.1005800] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/30/2017] [Accepted: 09/29/2017] [Indexed: 12/24/2022] Open
Abstract
Small-angle X-ray scattering is an increasingly popular technique used to detect protein structures and ensembles in solution. However, the refinement of structures and ensembles against SAXS data is often ambiguous due to the low information content of SAXS data, unknown systematic errors, and unknown scattering contributions from the solvent. We offer a solution to such problems by combining Bayesian inference with all-atom molecular dynamics simulations and explicit-solvent SAXS calculations. The Bayesian formulation correctly weights the SAXS data versus prior physical knowledge, it quantifies the precision or ambiguity of fitted structures and ensembles, and it accounts for unknown systematic errors due to poor buffer matching. The method further provides a probabilistic criterion for identifying the number of states required to explain the SAXS data. The method is validated by refining ensembles of a periplasmic binding protein against calculated SAXS curves. Subsequently, we derive the solution ensembles of the eukaryotic chaperone heat shock protein 90 (Hsp90) against experimental SAXS data. We find that the SAXS data of the apo state of Hsp90 is compatible with a single wide-open conformation, whereas the SAXS data of Hsp90 bound to ATP or to an ATP-analogue strongly suggest heterogenous ensembles of a closed and a wide-open state.
Collapse
Affiliation(s)
- Roman Shevchuk
- Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Jochen S. Hub
- Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Gabel F. Applications of SANS to Study Membrane Protein Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:201-214. [DOI: 10.1007/978-981-10-6038-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Marchi M. A first principle particle mesh method for solution SAXS of large bio-molecular systems. J Chem Phys 2016; 145:045101. [DOI: 10.1063/1.4959123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|