1
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
2
|
Bowles J, Jähnigen S, Agostini F, Vuilleumier R, Zehnacker A, Calvo F, Clavaguéra C. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. Chemphyschem 2024; 25:e202300982. [PMID: 38318765 DOI: 10.1002/cphc.202300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Polarizable force fields are an essential component for the chemically accurate modeling of complex molecular systems with a significant degree of fluxionality, beyond harmonic or perturbative approximations. In this contribution we examine the performance of such an approach for the vibrational spectroscopy of the alanine amino acid, in the gas and condensed phases, from the Fourier transform of appropriate time correlation functions generated along molecular dynamics (MD) trajectories. While the infrared (IR) spectrum only requires the electric dipole moment, the vibrational circular dichroism (VCD) spectrum further requires knowledge of the magnetic dipole moment, for which we provide relevant expressions to be used with polarizable force fields. The AMOEBA force field was employed here to model alanine in the neutral and zwitterionic isolated forms, solvated by water or nitrogen, and as a crystal. Within this framework, comparison of the electric and magnetic dipole moments to those obtained with nuclear velocity perturbation theory based on density-functional theory for the same MD trajectories are found to agree well with one another. The statistical convergence of the IR and VCD spectra is examined and found to be more demanding in the latter case. Comparisons with experimental frequencies are also provided for the condensed phases.
Collapse
Affiliation(s)
- Jessica Bowles
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Sascha Jähnigen
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Anne Zehnacker
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR8214, 91405, Orsay, France
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
3
|
Taherivardanjani S, Wylie L, Dötzer R, Kirchner B. Exploring the Influence of the Phosphorus-Heteroatom Substitution in Nicotine on Its Electronic and Vibrational Spectroscopic Properties. Chemistry 2024; 30:e202302534. [PMID: 37984418 DOI: 10.1002/chem.202302534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The influence of phosphorus substitution of nitrogen in heterocyclic compounds on the vibrational spectroscopy as well as frontier molecular orbitals are analyzed. Nicotine with two nitrogen atoms in its structure is taken as the sample system to be studied computationally. By replacing the nitrogen atom in one or both rings of this molecule with phosphorus, three nicotine derivatives are created. The vibrational circular dichroism and infrared spectra of these four molecules in their monomer state, as well as the assemblies up to trimers are determined. The aforementioned spectra are calculated using static quantum chemical calculations employing a cluster-weighted approach. The calculated gas phase spectra of nicotine are compared to their respective experimental spectra. It is observed that the nicotine derivatives with phosphorus in the methylpyrrolidine ring have considerably different gas phase and bulk phase vibrational circular dichroism spectra when compared to nicotine. The phosphorus substitution reduces the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as altering the polarizability and reactivity of the investigated molecules.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | | | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| |
Collapse
|
4
|
Blasius J, Drysch K, Pilz FH, Frömbgen T, Kielb P, Kirchner B. Efficient Prediction of Mole Fraction Related Vibrational Frequency Shifts. J Phys Chem Lett 2023; 14:10531-10536. [PMID: 37972218 DOI: 10.1021/acs.jpclett.3c02761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
While so far it has been possible to calculate vibrational spectra of mixtures at a particular composition, we present here a novel cluster approach for a fast and robust calculation of mole fraction dependent infrared and vibrational circular dichroism spectra at the example of acetonitrile/(R)-butan-2-ol mixtures. By assigning weights to a limited number of quantum chemically calculated clusters, vibrational spectra can be obtained at any desired composition by a weighted average of the single cluster spectra. In this way, peak positions carrying information about intermolecular interactions can be predicted. We show that mole fraction dependent peak shifts can be accurately modeled and, that experimentally recorded infrared spectra can be reproduced with high accuracy over the entire mixing range. Because only a very limited number of clusters is required, the presented approach is a valuable and computationally efficient tool to access mole fraction dependent spectra of mixtures on a routine basis.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Katrin Drysch
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, D-53115 Bonn, Germany
| | - Tom Frömbgen
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Patrycja Kielb
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, D-53115 Bonn, Germany
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions" (TRA Matter), University of Bonn, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| |
Collapse
|
5
|
Merten C. Modelling solute-solvent interactions in VCD spectra analysis with the micro-solvation approach. Phys Chem Chem Phys 2023; 25:29404-29414. [PMID: 37881890 DOI: 10.1039/d3cp03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy has become an important part of the (stereo-)chemists' toolbox as a reliable method for the determination of absolute configurations. Being the chiroptical version of infrared spectroscopy, it has also been recognized as being very sensitive to conformational changes and intermolecular interactions. This sensitivity originates from the fact that the VCD spectra of individual conformers are often more different than their IR spectra, so that changes in conformational distributions or band positions and intensities become more pronounced. What is an advantage for studies focussing on intermolecular interactions can, however, quickly turn into a major obstacle during AC determinations: solute-solvent interactions can have a strong influence on spectral signatures and they must be accurately treated when simulating VCD and IR spectra. In this perspective, we showcase selected examples which exhibit particularly pronounced solvent effects. It is demonstrated that it is typically sufficient to model solute-solvent interactions by placing single solvent molecules near hydrogen bonding sites of the solute and subsequently use the optimized structures for spectra simulations. This micro-solvation approach works reasonably well for medium-sized, not too conformationally flexible molecules. We thus also discuss its limitations and outline the next steps that method development needs to take in order to further improve the workflows for VCD spectra predictions.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
6
|
Jähnigen S. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angew Chem Int Ed Engl 2023; 62:e202303595. [PMID: 37071543 DOI: 10.1002/anie.202303595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Chirality is a curious phenomenon that appears in various forms. While the concept of molecular (RS-)chirality is ubiquitous in chemistry, there are also more intricate forms of structural chirality. One of them is the enantiomorphism of crystals, especially molecular crystals, that describes the lack of mirror symmetry in the unit cell. Its relation to molecular chirality is not obvious, but still an open question, which can be addressed with chiroptical tools. Vibrational circular dichroism (VCD) denotes chiral infrared (IR) spectroscopy that is susceptible to both, the molecular as well as the intermolecular space by means of vibrational transitions. When carried out in the solid state, VCD delivers a very rich set of non-local contributions that are determined by crystal packing and collective motion. Since its discovery in the 1970s, VCD has become the method of choice for the determination of absolute configurations, but its applicability reaches beyond towards the study of different crystal forms and polymorphism. This brief review summarises the theoretical concepts of crystal chirality and how computations of solid-state VCD can shed light into the intimate connection of chiral structure and vibrational optical activity.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
7
|
Perera AS, Carlson CD, Cheramy J, Xu Y. Infrared and vibrational circular dichroism spectra of methyl β-D-glucopyranose in water: The application of the quantum cluster growth and clusters-in-a-liquid solvation models. Chirality 2023; 35:718-731. [PMID: 37162747 DOI: 10.1002/chir.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
The infrared (IR) and vibrational circular dichroism (VCD) spectra of methyl β-D-glucopyranose in water were measured. Both implicit and explicit solvation models were utilized to explain the observed spectra. The vast body of existing experimental and theoretical data suggested that about eight explicit water molecules are needed to account for the solvent effects, supported by the current Quantum Cluster Growth (QCG) analysis. Extensive manual and systematic conformational searches of the molecular target and its water clusters were carried out by using a recently developed conformational searching tool, conformer-rotamer ensemble sampling tool (CREST), and the microsolvation model in the associated QCG code. The Boltzmann averaged IR and VCD spectra of the methyl β-D-glucopyranose-(water)n (n = 8) conformers in the PCM of water provide better agreement with the experimental ones than those with n = 0, 1, and 2. The explicit solvation with eight water molecules was shown to greatly modify the conformational preference of methyl β-D-glucopyranose from its monomeric form. Further analyses show that the result is consistent with the existence of long-lived methyl β-D-glucopyranose monohydrates with the additional explicit water effects being accounted for with the quantum mechanical treatment of the other seven close-by water molecules in the PCM of water.
Collapse
Affiliation(s)
| | - Colton D Carlson
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Cheramy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Blasius J, Kirchner B. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry 2023; 29:e202301239. [PMID: 37341169 DOI: 10.1002/chem.202301239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Chirality transfer from the chiral molecule (R)-1,2-propylene oxide to the achiral anion of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid is observed. The chiral probe selectively affects one part of the binary ionic liquid, i. e., it has previously been shown experimentally and theoretically that this particular imidazolium cation can be affected by chirality transfer, but in the present system chirality is almost exclusively transferred to the anion and not to both parts of the solvent (anion and cation). This observation is of high relevance because of its selectivity and because anion effects are usually much more important in ionic liquid research than cation effects. From ab initio molecular dynamics simulations, a conformational analysis and dissected vibrational circular dichroism spectra are obtained to study the chirality transfer. While in the neat ionic liquid two mirror imaged trans conformers of the anion occur almost equally, we observe an excess of one of these conformers in the presence of the chiral solute, causing optical activity of the anion. Although the cis conformers are not tremendously affected by the chirality transfer, they gain in total population when (R)-1,2-propylene oxide is dissolved in the ionic liquid.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| |
Collapse
|
9
|
Alshalalfeh M, Sun N, Moraes AH, Utani APA, Xu Y. Conformational Distributions of Phenyl β-D-Glucopyranoside and Gastrodin in Solution by Vibrational Optical Activity and Theoretical Calculations. Molecules 2023; 28:molecules28104013. [PMID: 37241754 DOI: 10.3390/molecules28104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The conformational landscapes of two highly flexible monosaccharide derivatives, namely phenyl β-D-glucopyranoside (ph-β-glu) and 4-(hydroxymethyl)phenyl β-D-glucopyranoside, also commonly known as gastrodin, were explored using a combined experimental and theoretical approach. For the infrared, Raman, and the associated vibrational optical activity (VOA), i.e., vibrational circular dichroism and Raman optical activity, experiments of these two compounds in DMSO and in water were carried out. Extensive and systematic conformational searches were performed using a recently developed conformational searching tool called CREST (conformer-rotamer ensemble sampling tool) in the two solvents. Fourteen and twenty-four low-energy conformers were identified at the DFT level for ph-β-glu and gastrodin, respectively. The spectral simulations of individual conformers were done at the B3LYP-D3BJ/def2-TZVPD level with the polarizable continuum model of the solvents. The VOA spectral features exhibit much higher specificity to conformational differences than their parent infrared and Raman. The excellent agreements achieved between the experimental and simulated VOA spectra allow for the extraction of experimental conformational distributions of these two carbohydrates in solution directly. The experimental percentage abundances based on the hydroxymethyl (at the pyranose ring) conformations G+, G-, and T for ph-β-glu were obtained to be 15%, 75%, and 10% in DMSO and 53%, 40%, and 7% in water, respectively, in comparison to the previously reported gas phase values of 68%, 25%, and 7%, highlighting the important role of solvents in conformational preferences. The corresponding experimental distributions for gastrodin are 56%, 22%, and 22% in DMSO and 70%, 21%, and 9% in water.
Collapse
Affiliation(s)
- Mutasem Alshalalfeh
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ningjie Sun
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | | | | | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
10
|
Jähnigen S, Le Barbu-Debus K, Guillot R, Vuilleumier R, Zehnacker A. How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202215599. [PMID: 36441537 PMCID: PMC10107176 DOI: 10.1002/anie.202215599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Solid-State Vibrational Circular Dichroism (VCD) can be used to determine the absolute structure of chiral crystals, but its interpretation remains a challenge in modern spectroscopy. In this work, we investigate the effect of a twofold screw axis on the solid-state VCD spectrum in a combined experimental and theoretical analysis of P21 crystals of (S)-(+)-1-indanol. Even though the space group is achiral, a single proper symmetry operation has an important impact on the VCD spectrum, which reflects the supramolecular chirality of the crystal. Distinguishing between contributions originating from molecular chirality and from chiral crystal packing, we find that while IR absorption hardly depends on the symmetry of the space group, the situation is different for VCD, where completely new non-local patterns emerge. Understanding the two underlying mechanisms, namely gauge transport and direct coupling, will help to use VCD to distinguish polymorphic forms.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
11
|
Macchiagodena M, Bassu G, Vettori I, Fratini E, Procacci P, Pagliai M. 2-Butanol Aqueous Solutions: A Combined Molecular Dynamics and Small/Wide-Angle X-ray Scattering Study. J Phys Chem A 2022; 126:8826-8833. [DOI: 10.1021/acs.jpca.2c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Gavino Bassu
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Irene Vettori
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Emiliano Fratini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Piero Procacci
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Marco Pagliai
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
12
|
Buimaga-Iarinca L, Morari C. Calculation of infrared spectra for adsorbed molecules from the dipole autocorrelation function. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
14
|
Scholten K, Merten C. Solvation of the Boc-Val-Phe- nPr peptide characterized by VCD spectroscopy and DFT calculations. Phys Chem Chem Phys 2022; 24:3611-3617. [PMID: 35103263 DOI: 10.1039/d1cp05457k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The conformational preferences of peptides are strongly determined by hydrogen bonding interactions. Intermolecular solute-solvent interactions compete with intramolecular interactions, which typically stabilize the secondary structure of the peptide. The analysis of vibrational circular dichroism (VCD) spectra can give insights into solvation-induced changes in the conformational distribution of small peptides. Here we describe the VCD spectroscopic characterization of the model peptide Boc-Val-Phe-nPr in chloroform as representative for a weakly interacting solvent and dimethyl sulfoxide (DMSO-d6) as a strongly hydrogen bonding solvent. We show that the conformational preferences of the peptide in chloroform are well-described by the computationally predicted distribution of the isolated molecule assuming only implicit solvation effects through a continuum solvation model. In order to simulate the spectra recorded in DMSO-d6, solvation was accounted for explicitly by computed microsolvated structures containing one to three solvent molecules. A good match of the computed spectra with the experimental data is obtained by this method. Comparing the conformational distributions in deuterated chloroform-d1 and DMSO-d6, structures with intramolecular hydrogen bonds such as the (δ,δ)-conformer family contribute to the conformational distribution only when there is no strong interaction with the solvent. This is in contrast to the results for the related Boc-Pro-Phe-nPr studied before, for which the intramolecular interaction was found to persist in DMSO-d6. Furthermore, we discuss the influence of hydrogen bonding to different numbers of solvent molecules on the spectral signatures and show that the structure of the peptide in DMSO-d6 is best described as a mixture of twofold-solvated (δ,β)- and threefold-solvated (β,β)-conformers.
Collapse
Affiliation(s)
- Kevin Scholten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
15
|
Kirchner B, Blasius J, Alizadeh V, Gansäuer A, Hollóczki O. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. J Phys Chem B 2022; 126:766-777. [PMID: 35034453 DOI: 10.1021/acs.jpcb.1c09092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The theoretical treatment of ionic liquids must focus now on more realistic models while at the same time keeping an accurate methodology when following recent ionic liquids research trends or allowing predictability to come to the foreground. In this Perspective, we summarize in three cases of advanced ionic liquid research what methodological progress has been made and point out difficulties that need to be overcome. As particular examples to discuss we choose reactions, chirality, and radicals in ionic liquids. All these topics have in common that an explicit or accurate treatment of the electronic structure and/or intermolecular interactions is required (accurate methodology), while at the same time system size and complexity as well as simulation time (realistic model) play an important role and must be covered as well.
Collapse
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.,Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| |
Collapse
|
16
|
Jähnigen S, Sebastiani D, Vuilleumier R. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution. Phys Chem Chem Phys 2021; 23:17232-17241. [PMID: 34369531 DOI: 10.1039/d1cp03106f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a computational study of vibrational circular dichroism (VCD) in solutions of (S)-lactic acid, relying on ab initio molecular dynamics (AIMD) and full solvation with bulk water. We discuss the effect of the hydrogen bond network on the aggregation behaviour of the acid: while aggregates of the solute represent conditions encountered in a weakly interacting solvent, the presence of water drastically interferes with the clusters - more strongly than originally anticipated. For both scenarios we computed the VCD spectra by means of nuclear velocity perturbation theory (NVPT). The comparison with experimental data allows us to establish a VCD-structure relationship that includes the solvent network around the chiral solute. We suggest that fundamental modes with strong polarisation such as the carbonyl stretching vibration can borrow VCD from the chirally restructured solvent cage, which extends the common explanatory models of VCD generation in aqueous solution.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| | | | | |
Collapse
|
17
|
Jähnigen S, Zehnacker A, Vuilleumier R. Computation of Solid-State Vibrational Circular Dichroism in the Periodic Gauge. J Phys Chem Lett 2021; 12:7213-7220. [PMID: 34310135 DOI: 10.1021/acs.jpclett.1c01682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce a new theoretical formalism to compute solid-state vibrational circular dichroism (VCD) spectra from molecular dynamics simulations. Having solved the origin-dependence problem of the periodic magnetic gauge, we present IR and VCD spectra of (1S,2S)-trans-1,2-cyclohexanediol obtained from first-principles molecular dynamics calculations and nuclear velocity perturbation theory, along with the experimental results. Because the structure model imposes periodic boundary conditions, the common origin of the rotational strength has hitherto been ill-defined and was approximated by means of averaging multiple origins. The new formalism reconnects the periodic model with the finite physical system and restores gauge freedom. It nevertheless fully accounts for nonlocal spatial couplings from the gauge transport term. We show that even for small simulation cells the rich nature of solid-state VCD spectra found in experiments can be reproduced to a very satisfactory level.
Collapse
Affiliation(s)
- Sascha Jähnigen
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| |
Collapse
|
18
|
Brehm M, Thomas M. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules 2021; 26:1875. [PMID: 33810337 PMCID: PMC8036805 DOI: 10.3390/molecules26071875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without any tuning, empiricism, or rescaling. We show that the basis set dependence of our method is very small. Only the total electron density is evaluated, and thus, the approach can be combined with any electronic structure method that provides volumetric total electron densities-it is not limited to Hartree-Fock or density functional theory (DFT). We have implemented the method into our open-source software tool TRAVIS.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| | | |
Collapse
|
19
|
Esch BVD, Peters LDM, Sauerland L, Ochsenfeld C. Quantitative Comparison of Experimental and Computed IR-Spectra Extracted from Ab Initio Molecular Dynamics. J Chem Theory Comput 2021; 17:985-995. [PMID: 33512155 DOI: 10.1021/acs.jctc.0c01279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimentally measured infrared spectra are often compared to their computed equivalents. However, the accordance is typically characterized by visual inspection, which is prone to subjective judgment. The primary challenge for a similarity-based analysis is that the artifacts introduced by each approach are very different and, therefore, may require preprocessing steps to determine and correct impeding irregularities. To allow for automated objective assessment, we propose a practical and comprehensive workflow involving scaling factors, a novel baseline correction scheme, and peak smoothing. The resulting spectra can then easily be compared quantitatively using similarity measures, for which we found the Pearson correlation coefficient to be the most suitable. The proposed procedure is then applied to compare the agreement of the experimental infrared spectra from the NIST Chemistry Web book with the calculated spectra using standard harmonic frequency analysis and spectra extracted from ab initio molecular dynamics simulations at different levels of theory. We conclude that the direct, quantitative comparison of calculated and measured IR spectra might become a novel, sophisticated approach to benchmark quantum-chemical methods. In the present benchmark, simulated spectra based on ab initio molecular dynamics show in general better agreement with the experiment than static calculations.
Collapse
Affiliation(s)
- Beatriz von der Esch
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Laurens D M Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Lena Sauerland
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| |
Collapse
|
20
|
Kirchner B, Blasius J, Esser L, Reckien W. Predicting Vibrational Spectroscopy for Flexible Molecules and Molecules with Non‐Idle Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Lars Esser
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Werner Reckien
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| |
Collapse
|
21
|
Seeger ZL, Izgorodina EI. A Systematic Study of DFT Performance for Geometry Optimizations of Ionic Liquid Clusters. J Chem Theory Comput 2020; 16:6735-6753. [PMID: 32865998 DOI: 10.1021/acs.jctc.0c00549] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clusters of two ion pairs of imidazolium-based ionic liquids were optimized with 43 different levels of theory, including DFT functionals and MP2-based methods combined with varying Dunning's basis sets, and added dispersion corrections. Better preforming DFT functionals were then applied to clusters consisting of four ion pairs. Excellent performance of some DFT functionals for the two ion pair clusters did not always match that of the four ion-paired clusters despite interionic distances remaining constant between the optimized two and four ion-paired clusters of the same ionic liquid. Combinations of DFT functional and basis set such as ωB97X-D/cc-pVDZ, M06-2X/aug-cc-pVDZ, B3LYP-D3/cc-pVTZ, and TPSS-D3/cc-pVTZ gave excellent results for geometry optimization of two ion-paired clusters of imidazolium ionic liquids but gave larger deviations when applied to the four ion-paired clusters of varying ionic liquids. Empirical dispersion corrections were seen to be crucial in correctly capturing correlation effects in the studied ionic liquid clusters, becoming more important in larger clusters. Dunning's double-ζ basis set, cc-pVDZ, is associated with the smallest root mean squared deviations for geometries; however, it also produces the largest deviations in total electronic energies. ωB97X-D and M06-2X produced the best performance with the augmented version of this basis set. The triple-ζ basis set, cc-pVTZ, leads to the best performance of most of the DFT functionals (especially the dispersion-corrected ones) used, whereas its augmented version, aug-cc-pVTZ, was not seen to improve results. The combinations of functional and basis set that gave the best geometry and energetics in both two and four ion-paired clusters were PBE-D3/cc-pVTZ, ωB97X-D/aug-cc-pVDZ, and BLYP-D3/cc-pVTZ. All three combinations are recommended for geometry optimizations of larger clusters of ionic liquids. PBE-D3/cc-pVTZ performed the best with an average deviation of 2.3 kJ mol-1 and a standard deviation of 3.4 kJ mol-1 for total electronic energy when applied to four ion-paired clusters. Geometries optimized with FMO2-SRS-MP2/cc-pVTZ produced total energy within 2.0 kJ mol-1 off the benchmark in two ion-paired clusters, with the cc-pVDZ basis set performing unsurprisingly poorly with the same method. The error increased to 4.8 kJ mol-1 on average in four ion-paired clusters, with the smallest RMSD deviations in geometries when compared to the benchmark ones. This study is the first report that investigated the performance of DFT functionals for two and four ion-paired clusters of a wide range of ionic liquids consisting of commonly used cations such as pyrrolidinium, imidazolium, pyridinium, and ammonium. It also identified the importance of assessing the performance of quantum chemical methods for ionic liquids on a variety of cation-anion combinations.
Collapse
Affiliation(s)
- Zoe L Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Ekaterina I Izgorodina
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Blasius J, Kirchner B. Cluster-Weighting in Bulk Phase Vibrational Circular Dichroism. J Phys Chem B 2020; 124:7272-7283. [DOI: 10.1021/acs.jpcb.0c06313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
23
|
Blasius J, Elfgen R, Hollóczki O, Kirchner B. Glucose in dry and moist ionic liquid: vibrational circular dichroism, IR, and possible mechanisms. Phys Chem Chem Phys 2020; 22:10726-10737. [PMID: 32150178 DOI: 10.1039/c9cp06798a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids and their mixtures with water show remarkable features in cellulose processing. For this reason, understanding the behavior of carbohydrates in ionic liquids is important. In the present study, we investigated three d-glucose isomers (α, β and open-chain) in 1-ethyl-3-methylimidazolium acetate in the presence and absence of water, through ab initio molecular dynamics simulations. In the complex hydrogen bonding network of these mixtures, the most interesting observation is that upon water addition every hydrogen bond elongates, except the glucose-glucose hydrogen bond for the open-chain and the α-form which shortens, clearly showing the beginning of the crystallization process. The ring glucose rearranges from on-top to in-plane and the open form changes from a coiled to a more linear arrangement when adding water which explains the contradiction that the center of mass distances of the glucose molecules with other glucose molecules grow while the hydrogen bonds shorten. The appearance of coiled open forms indicates that the previously suggested isomerization between these forms is possible and might play a role in the solubility of the related carbohydrates. The calculated IR and VCD spectra reveal insight into the intermolecular interactions, with good to excellent agreements with experimental spectra. Investigating the role of the cation, distances between the acidic carbon atom of the cation and the glucose carbon atom where ring closure and opening occurs are found, which are way shorter than dispersion-like interactions between aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany.
| | | | | | | |
Collapse
|
24
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
25
|
Krupová M, Kessler J, Bouř P. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. Chempluschem 2020; 85:561-575. [DOI: 10.1002/cplu.202000014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Mathematics and PhysicsCharles University Ke Karlovu 3 12116 Prague 2 Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
26
|
Polavarapu PL, Santoro E. Vibrational optical activity for structural characterization of natural products. Nat Prod Rep 2020; 37:1661-1699. [DOI: 10.1039/d0np00025f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the recent progress towards elucidating the structures of chiral natural products and applications using vibrational optical activity (VOA) spectroscopy.
Collapse
|
27
|
Weirich L, Blanke K, Merten C. More complex, less complicated? Explicit solvation of hydroxyl groups for the analysis of VCD spectra. Phys Chem Chem Phys 2020; 22:12515-12523. [DOI: 10.1039/d0cp01656j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With increasing size of the molecules, hydrogen bonding induced solvent effects on the IR and VCD spectra become more negligible.
Collapse
Affiliation(s)
- Luisa Weirich
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| | - Katharina Blanke
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| | - Christian Merten
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| |
Collapse
|
28
|
Weirich L, Magalhães de Oliveira J, Merten C. How many solvent molecules are required to solvate chiral 1,2-diols with hydrogen bonding solvents? A VCD spectroscopic study. Phys Chem Chem Phys 2020; 22:1525-1533. [DOI: 10.1039/c9cp06030h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A VCD spectroscopic analysis of selected model systems for solute–solvent interactions of chiral diols with hydrogen bonding solvents DMSO and ACN.
Collapse
Affiliation(s)
- Luisa Weirich
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| | | | - Christian Merten
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| |
Collapse
|
29
|
Le Barbu-Debus K, Bowles J, Jähnigen S, Clavaguéra C, Calvo F, Vuilleumier R, Zehnacker A. Assessing cluster models of solvation for the description of vibrational circular dichroism spectra: synergy between static and dynamic approaches. Phys Chem Chem Phys 2020; 22:26047-26068. [DOI: 10.1039/d0cp03869e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solvation effects are essential for defining the shape of vibrational circular dichroism (VCD) spectra.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| | - Jessica Bowles
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Sascha Jähnigen
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Carine Clavaguéra
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Florent Calvo
- Université Grenoble Alpes
- CNRS
- LiPhy
- F-38000 Grenoble
- France
| | - Rodolphe Vuilleumier
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| |
Collapse
|
30
|
Perlt E, Berger SA, Kelterer AM, Kirchner B. Anharmonicity of Vibrational Modes in Hydrogen Chloride-Water Mixtures. J Chem Theory Comput 2019; 15:2535-2547. [PMID: 30811198 DOI: 10.1021/acs.jctc.8b01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thorough analysis of molecular vibrations in the binary system hydrogen chloride/water is presented considering a set of small mixed and pure clusters. In addition to the conventional normal-mode analysis based on the diagonalization of the Hessian, anharmonic frequencies were obtained from the perturbative VPT2 and PT2-VSCF method using hybrid density functional theory. For all normal modes, potential energy curves were modeled by displacing the atoms from the minimum geometry along the normal mode vectors. Three model potentials, a harmonic potential, a Morse potential, and a fourth order polynomial, were applied to fit these curves. From these data, it was possible not only to characterize distinct vibrations as mainly harmonic, anharmonic, or involving higher order terms but also to extract force constants, k, and anharmonicity constants, xe. By investigating all different types of intramolecular vibrations including covalent stretching or bending vibrations and intermolecular vibrations such as librations, we could demonstrate that while vibrational frequencies can be obtained applying scaling factors to harmonic results, useful anharmonicity constants cannot be predicted in such a way and the usage of more elaborate vibrational methods is necessary. For each particular type of molecular vibration, we could however determine a relationship between the wavenumber or wavenumber shift and the anharmonicity constant, which allows us to estimate mode dependent anharmonicity constants for larger clusters in the future.
Collapse
Affiliation(s)
- Eva Perlt
- Department of Chemistry , University of California, Irvine , 1102 Natural Sciences II , Irvine , California 92697-2025 , United States
| | - Sarah A Berger
- Institute of Physical and Theoretical Chemistry, NAWI Graz , Graz University of Technology , Stremayrgasse 9 , 8010 Graz , Austria
| | - Anne-Marie Kelterer
- Institute of Physical and Theoretical Chemistry, NAWI Graz , Graz University of Technology , Stremayrgasse 9 , 8010 Graz , Austria
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry , University of Bonn , Beringstrasse 4 , D-53115 Bonn , Germany
| |
Collapse
|
31
|
Weirich L, Merten C. Solvation and self-aggregation of chiral alcohols: how hydrogen bonding affects their VCD spectral signatures. Phys Chem Chem Phys 2019; 21:13494-13503. [DOI: 10.1039/c9cp01407a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IR and VCD spectra of chiral alcohols in different solvents are analyzed with DFT spectra calculations. We show that for ACN or DMSO explicit solvation is needed to reproduce experimental spectra.
Collapse
Affiliation(s)
- Luisa Weirich
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| | - Christian Merten
- Ruhr-Universität Bochum
- Fakultät für Chemie und Biochemie
- Organische Chemie II
- 44801 Bochum
- Germany
| |
Collapse
|
32
|
Brehm M, Sebastiani D. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. J Chem Phys 2018; 148:193802. [PMID: 30307180 DOI: 10.1063/1.5010342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie-Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institut für Chemie-Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
33
|
Brehm M, Thomas M. An Efficient Lossless Compression Algorithm for Trajectories of Atom Positions and Volumetric Data. J Chem Inf Model 2018; 58:2092-2107. [PMID: 30223650 DOI: 10.1021/acs.jcim.8b00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present our newly developed and highly efficient lossless compression algorithm for trajectories of atom positions and volumetric data. The algorithm is designed as a two-step approach. In the first step, efficient polynomial extrapolation schemes reduce the information entropy of the data by exploiting both spatial and temporal continuity. The second step processes the data by a series of transformations (Burrows-Wheeler, move-to-front, run length encoding) and finally compresses the stream with multitable canonical Huffman coding. Our approach reaches a compression ratio of around 15:1 for typical position trajectories in the XYZ format. For volumetric data trajectories in Gaussian Cube format (such as electron density), even a compression ratio of around 35:1 is yielded, which is by far the smallest size of all formats compared here. At the same time, compression and decompression are still reasonably fast for everyday use. The precision of the data can be selected by the user. For storage of the compressed data, we introduce the BQB file format, which is very robust, flexible, and efficient. In contrast to most archiving formats, it allows fast random access to individual trajectory frames. Our method is implemented in C++ and provided as free software under the GNU LGPL license. It has been included in the TRAVIS program package but is also available as stand-alone tool and as a library ("libbqb") for use in other projects.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie - Theoretische Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Martin Thomas
- Institut für Chemie - Theoretische Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
34
|
Jähnigen S, Scherrer A, Vuilleumier R, Sebastiani D. VCD‐Verstärkung durch chirale Packungseffekte in molekularen Kristallen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sascha Jähnigen
- Martin-Luther-Universität Halle-Wittenberg Institut für Chemie von-Danckelmann-Platz 4 Halle 06120 Deutschland
| | - Arne Scherrer
- Martin-Luther-Universität Halle-Wittenberg Institut für Chemie von-Danckelmann-Platz 4 Halle 06120 Deutschland
| | - Rodolphe Vuilleumier
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris Frankreich
| | - Daniel Sebastiani
- Martin-Luther-Universität Halle-Wittenberg Institut für Chemie von-Danckelmann-Platz 4 Halle 06120 Deutschland
| |
Collapse
|
35
|
Jähnigen S, Scherrer A, Vuilleumier R, Sebastiani D. Chiral Crystal Packing Induces Enhancement of Vibrational Circular Dichroism. Angew Chem Int Ed Engl 2018; 57:13344-13348. [DOI: 10.1002/anie.201805671] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/25/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Sascha Jähnigen
- Martin-Luther-Universität Halle-WittenbergInstitut für Chemie von-Danckelmann-Platz 4 Halle 06120 Germany
| | - Arne Scherrer
- Martin-Luther-Universität Halle-WittenbergInstitut für Chemie von-Danckelmann-Platz 4 Halle 06120 Germany
| | - Rodolphe Vuilleumier
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Daniel Sebastiani
- Martin-Luther-Universität Halle-WittenbergInstitut für Chemie von-Danckelmann-Platz 4 Halle 06120 Germany
| |
Collapse
|
36
|
Xia Y, Koenis MAJ, Collados JF, Ortiz P, Harutyunyan SR, Visscher L, Buma WJ, Nicu VP. Regional Susceptibility in VCD Spectra to Dynamic Molecular Motions: The Case of a Benzyl α-Hydroxysilane. Chemphyschem 2018; 19:561-565. [PMID: 29244237 DOI: 10.1002/cphc.201701335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 01/24/2023]
Abstract
Experimental and theoretical studies of the vibrational circular dichroism (VCD) spectrum of 3-methyl-1-(methyldiphenlsilyl)-1-phenylbutan-1-ol, whose absolute configuration is key to elucidating the Brook rearrangement of tertiary benzylic α-hydroxylsilanes, are presented. It is found that the entire OH-bending region in this spectrum-a region that provides important marker bands-cannot be reproduced at all by standard theoretical approaches even though other regions are well described. Using a novel approach to disentangle contributions to the rotational strength of these bands, internal coordinates are identified that critically influence the appearance of this part of the spectrum. We show that the agreement between experiment and theory is greatly improved when structural dynamics along these coordinates are explicitly taken into account. The general applicability of the approach underlines its usefulness for structurally flexible chiral systems, a situation that is more the rule rather than the exception.
Collapse
Affiliation(s)
- Yiyin Xia
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Mark A J Koenis
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Juan F Collados
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Pablo Ortiz
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling, Section Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Wybren J Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Valentin P Nicu
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Lucian Blaga University of Sibiu, Faculty of Agricultural Sciences, Food Industry and Environmental Protection, 7-9 Ioan Ratiu Street, 550012, Sibiu, Romania
| |
Collapse
|
37
|
Brehm M, Thomas M. Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations. J Phys Chem Lett 2017; 8:3409-3414. [PMID: 28685571 DOI: 10.1021/acs.jpclett.7b01616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present our novel methodology for computing Raman optical activity (ROA) spectra of liquid systems from ab initio molecular dynamics (AIMD) simulations. The method is built upon the recent developments to obtain magnetic dipole moments from AIMD and to integrate molecular properties by using radical Voronoi tessellation. These techniques are used to calculate optical activity tensors for large and complex periodic bulk phase systems. Only AIMD simulations are required as input, and no time-consuming perturbation theory is involved. The approach relies only on the total electron density in each time step and can readily be combined with a wide range of electronic structure methods. To the best of our knowledge, these are the first computed ROA spectra for a periodic bulk phase system. As an example, the experimental ROA spectrum of liquid (R)-propylene oxide is reproduced very well.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Thomas
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
38
|
Srebro-Hooper M, Autschbach J. Calculating Natural Optical Activity of Molecules from First Principles. Annu Rev Phys Chem 2017; 68:399-420. [DOI: 10.1146/annurev-physchem-052516-044827] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
39
|
Luber S. Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics. J Chem Theory Comput 2017; 13:1254-1262. [DOI: 10.1021/acs.jctc.6b00820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Luber
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
40
|
Reiter K, Kühn M, Weigend F. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements. J Chem Phys 2017; 146:054102. [DOI: 10.1063/1.4974897] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
41
|
Merten C. Vibrational optical activity as probe for intermolecular interactions. Phys Chem Chem Phys 2017; 19:18803-18812. [DOI: 10.1039/c7cp02544k] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A detailed VCD spectroscopic analysis of well-selected chiral model systems can give valuable and unprecedented insights into intermolecular interactions such as solvation or reactant–substrate binding in catalysis.
Collapse
|
42
|
Scherrer A, Vuilleumier R, Sebastiani D. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase. J Chem Phys 2016; 145:084101. [DOI: 10.1063/1.4960653] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|