1
|
Salzmann H, Rasmussen AP, Eaves JD, Weber JM. Competition between Water-Water Hydrogen Bonds and Water-π Bonds in Pyrene-Water Cluster Anions. J Phys Chem A 2024; 128:2772-2781. [PMID: 38564313 DOI: 10.1021/acs.jpca.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present infrared spectra and density functional theory calculations of hydrated pyrene anion clusters with up to four water molecules. The experimental spectra were acquired by using infrared Ar messenger photodissociation spectroscopy. Water molecules form clusters on the surface of the pyrene, forming hydrogen bonds with the π-system. The structures of the water clusters and their interaction with the π-system are encoded in OH stretching vibrational modes. We find that the interactions between water molecules are stronger than the interactions between water molecules and the π-system. While all clusters show multiple conformers, three- and four-membered rings are the lowest energy structures in the larger hydrates.
Collapse
Affiliation(s)
- Heinrich Salzmann
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Anne P Rasmussen
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | - Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - J Mathias Weber
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
2
|
Higuchi H, Miyagawa M, Takaba H. Solvent-Solute Interaction Effect on Permeation Flux through Forward Osmosis Membranes Investigated by Non-Equilibrium Molecular Dynamics. MEMBRANES 2022; 12:membranes12121249. [PMID: 36557155 PMCID: PMC9788496 DOI: 10.3390/membranes12121249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/31/2023]
Abstract
The relationship between the solvent-solute interaction and permeation properties is fundamental in the development of the forward osmosis (FO) membrane. In this study, we report on the quantitative reproduction of the permeation flux, which has different solvent-solute interactions, through the modeled FO membrane by non-equilibrium molecular dynamics (NEMD). The interaction effect was investigated by changing the interatomic interaction between the solute and the solvent. The calculated permeation through the semi-permeable modeled FO membrane, in which the interaction between solvent and solution is equal to that between solutions, was consistent with the theoretical curve derived from the combination of the permeation flux and Van't Hoff equations. These results validate the NEMD for the evaluation of permeation in FO. On the other hand, the permeation is much derived from the theoretical values when the interaction between the solvent and solute atoms is relatively large. However, the simulated permeation was consistent with the theoretical curve, correcting the solution concentration by the coordination number of the solvent atoms to the solute atoms. Our results imply that permeation flux through the FO membrane is significantly changed by the interaction between the solute and the solvent and can be theoretically predicted by calculating the coordination number of the solvent to the solute, which can be readily estimated by equilibrium molecular dynamics simulation.
Collapse
|
3
|
Electrolyte adsorption in graphene and hexagonal boron nitride nanochannels. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Abdelhalim AOE, Sharoyko VV, Ageev SV, Farafonov VS, Nerukh DA, Postnov VN, Petrov AV, Semenov KN. Graphene Oxide of Extra High Oxidation: A Wafer for Loading Guest Molecules. J Phys Chem Lett 2021; 12:10015-10024. [PMID: 34618465 DOI: 10.1021/acs.jpclett.1c02766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a new modification of graphene oxide with very high content (85 wt %) of oxygen-containing functional groups (hydroxy, epoxy, lactol, carboxyl, and carbonyl groups) that forms stable aqueous dispersion in up to 9 g·L-1 concentration solutions. A novel faster method of the synthesis is described that produces up to 1 kg of the material and allows controlling the particle size in solution. The synthesized compound was characterized by various physicochemical methods and molecular dynamics modeling, revealing a unique structure in the form of a multilayered wafer of several sheets thick, where each sheet is highly corrugated. The ragged structure of the sheets forms pockets with hindered mobility of water that leads to the possibility of trapping guest molecules.
Collapse
Affiliation(s)
- Abdelsattar O E Abdelhalim
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Environmental Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, 197758, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Vladimir S Farafonov
- V. N. Karazin Kharkiv National University, 4 Svobody ploshchad', Kharkiv, 61022, Ukraine
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, Birmingham, B4 7ET, The United Kingdom
| | - Viktor N Postnov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, 197758, Russia
| |
Collapse
|
5
|
Poggioli AR, Limmer DT. Distinct Chemistries Explain Decoupling of Slip and Wettability in Atomically Smooth Aqueous Interfaces. J Phys Chem Lett 2021; 12:9060-9067. [PMID: 34516117 DOI: 10.1021/acs.jpclett.1c02828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite essentially identical crystallography and equilibrium structuring of water, nanoscopic channels composed of hexagonal boron nitride and graphite exhibit an order-of-magnitude difference in fluid slip. We investigate this difference using molecular dynamics simulations, demonstrating that its origin is in the distinct chemistries of the two materials. In particular, the presence of polar bonds in hexagonal boron nitride, absent in graphite, leads to Coulombic interactions between the polar water molecules and the wall. We demonstrate that this interaction is manifested in a large typical lateral force experienced by a layer of oriented hydrogen atoms in the vicinity of the wall, leading to the enhanced friction in hexagonal boron nitride. The fluid adhesion to the wall is dominated by dispersive forces in both materials, leading to similar wettabilities. Our results rationalize recent observations that the difference in frictional characteristics of graphite and hexagonal boron nitride cannot be explained on the basis of the minor differences in their wettabilities.
Collapse
Affiliation(s)
- Anthony R Poggioli
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Ahmed M, Blum M, Crumlin EJ, Geissler PL, Head-Gordon T, Limmer DT, Mandadapu KK, Saykally RJ, Wilson KR. Molecular Properties and Chemical Transformations Near Interfaces. J Phys Chem B 2021; 125:9037-9051. [PMID: 34365795 DOI: 10.1021/acs.jpcb.1c03756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The properties of bulk water and aqueous solutions are known to change in the vicinity of an interface and/or in a confined environment, including the thermodynamics of ion selectivity at interfaces, transition states and pathways of chemical reactions, and nucleation events and phase growth. Here we describe joint progress in identifying unifying concepts about how air, liquid, and solid interfaces can alter molecular properties and chemical reactivity compared to bulk water and multicomponent solutions. We also discuss progress made in interfacial chemistry through advancements in new theory, molecular simulation, and experiments.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ethan J Crumlin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kranthi K Mandadapu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard J Saykally
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Halder R, Jana B. On the Correlation between Pair Hydrophobicity and Mixing Enthalpies in Water–Alcohol Binary Mixtures. J Phys Chem B 2020; 124:8023-8031. [DOI: 10.1021/acs.jpcb.0c05952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Ajala AO, Voora V, Mardirossian N, Furche F, Paesani F. Assessment of Density Functional Theory in Predicting Interaction Energies between Water and Polycyclic Aromatic Hydrocarbons: from Water on Benzene to Water on Graphene. J Chem Theory Comput 2019; 15:2359-2374. [PMID: 30860827 DOI: 10.1021/acs.jctc.9b00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interactions of water with polycyclic aromatic hydrocarbons, from benzene to graphene, are investigated using various exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. The accuracy of the different functionals is assessed through comparisons with random phase approximation (RPA) and coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] calculations. Diffusion Monte Carlo (DMC) data reported in the literature are also used for comparison. Relatively large variations are found in interaction energies predicted by different DFT models, with GGA functionals underestimating the interaction strength for configurations with the water oxygen pointing toward the aromatic molecules. The meta-GGA B97M-rV and range-separated hybrid, meta-GGA ωB97M-V functionals provide nearly quantitative agreement with CCSD(T) values for the water-benzene, water-coronene, and water-circumcoronene dimers, while RPA and DMC predict interaction energies that differ by up to ∼1 kcal/mol and ∼0.4 kcal/mol from the corresponding CCSD(T) values, respectively. Similar trends among GGA, meta-GGA, and hybrid functionals are observed for larger polycyclic aromatic hydrocarbons. By performing absolutely localized molecular orbital energy decomposition analyses (ALMO-EDA), it is found that, independently of the number of carbon atoms and exchange-correlation functional, the dominant contributions to the interaction energies between water and polycyclic aromatic hydrocarbon molecules are the electrostatic and dispersion terms while polarization and charge transfer effects are negligibly small. Calculations carried out with GGA and meta-GGA functionals indicate that, as the number of carbon atoms increases, the interaction energies slowly converge to the corresponding values obtained for an infinite graphene sheet.
Collapse
Affiliation(s)
- Adeayo O Ajala
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Vamsee Voora
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Narbe Mardirossian
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E. California Boulevard , Pasadena , California 91125 , United States
| | - Filipp Furche
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States.,Materials Science and Engineering , University of California San Diego , La Jolla , California 92093 , United States.,San Diego Supercomputer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
9
|
Hestand NJ, Strong SE, Shi L, Skinner JL. Mid-IR spectroscopy of supercritical water: From dilute gas to dense fluid. J Chem Phys 2019; 150:054505. [DOI: 10.1063/1.5079232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicholas J. Hestand
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Steven E. Strong
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Liang Shi
- School of Natural Sciences, University of California, Merced, California 95344, USA
| | - J. L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Wilson J, Aksimentiev A. Water-Compression Gating of Nanopore Transport. PHYSICAL REVIEW LETTERS 2018; 120:268101. [PMID: 30004740 PMCID: PMC6262874 DOI: 10.1103/physrevlett.120.268101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/18/2018] [Indexed: 05/22/2023]
Abstract
Electric field-driven motion of biomolecules is a process essential to many analytics methods, in particular, to nanopore sensing, where a transient reduction of nanopore ionic current indicates the passage of a biomolecule through the nanopore. However, before any molecule can be examined by a nanopore, the molecule must first enter the nanopore from the solution. Previously, the rate of capture by a nanopore was found to increase with the strength of the applied electric field. Here, we theoretically show that, in the case of narrow pores in graphene membranes, increasing the strength of the electric field can not only decrease the rate of capture, but also repel biomolecules from the nanopore. As the strong electric field polarizes water near and within the nanopore, the high gradient of the field also produces a strong dielectrophoretic force that compresses the water. The pressure difference caused by the sharp water density gradient produces a hydrostatic force that repels DNA or proteins from the nanopore, preventing, in certain conditions, their capture. We show that such local compression of fluid can regulate the transport of biomolecules through nanoscale passages in the absence of physical gates and sort proteins according to their phosphorylated states.
Collapse
Affiliation(s)
- James Wilson
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 and Beckman Institute for Advanced Science and Technology
| |
Collapse
|
11
|
Qiu Y, Schwegler BR, Wang LP. Polarizable Molecular Simulations Reveal How Silicon-Containing Functional Groups Govern the Desalination Mechanism in Nanoporous Graphene. J Chem Theory Comput 2018; 14:4279-4290. [DOI: 10.1021/acs.jctc.8b00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yudong Qiu
- Chemistry Department, The University of California, Davis, Davis, California 95616, United States
| | - Benedict R. Schwegler
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Lee-Ping Wang
- Chemistry Department, The University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Oulebsir F, Vermorel R, Galliero G. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:561-571. [PMID: 29244508 DOI: 10.1021/acs.langmuir.7b03486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading conditions on the permeation process.
Collapse
Affiliation(s)
- Fouad Oulebsir
- Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S, UMR5150, University of Pau and Pays de l'Adour/CNRS/TOTAL , 64000 Pau, France
| | - Romain Vermorel
- Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S, UMR5150, University of Pau and Pays de l'Adour/CNRS/TOTAL , 64000 Pau, France
| | - Guillaume Galliero
- Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S, UMR5150, University of Pau and Pays de l'Adour/CNRS/TOTAL , 64000 Pau, France
| |
Collapse
|
14
|
Gao B, Jiang Z, Zhao M, Wu H, Pan F, Mayta JQ, Chang Z, Bu X. Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Vermorel R, Oulebsir F, Galliero G. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations. J Chem Phys 2017; 147:101102. [PMID: 28915736 DOI: 10.1063/1.4997865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.
Collapse
Affiliation(s)
- Romain Vermorel
- Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S, UMR5150, University of Pau and Pays de l'Adour/CNRS/TOTAL, 64000 Pau, France
| | - Fouad Oulebsir
- Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S, UMR5150, University of Pau and Pays de l'Adour/CNRS/TOTAL, 64000 Pau, France
| | - Guillaume Galliero
- Laboratoire des Fluides Complexes et leurs Réservoirs-IPRA, E2S, UMR5150, University of Pau and Pays de l'Adour/CNRS/TOTAL, 64000 Pau, France
| |
Collapse
|
16
|
Strong SE, Eaves JD. Linear Response Theory for Water Transport Through Dry Nanopores. J Phys Chem A 2017; 121:5377-5382. [PMID: 28598162 DOI: 10.1021/acs.jpca.7b03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous two-dimensional crystals like graphene have the potential to revolutionize reverse-osmosis membrane technology. The permeability is a common figure of merit that describes the ease with which water flows through a membrane. For two-dimensional crystals, the permeability can be orders of magnitude higher than it is in conventional reverse-osmosis membranes. We apply our Gaussian Dynamics nonequilibrium molecular dynamics simulation method to very hydrophobic two-dimensional membranes and find that the current-pressure drop relationship becomes nonlinear. In this regime, the conventional permeability is an inadequate descriptor of the passage process, and the transport mechanism becomes a two-step one. The backing pressure first causes the pore to wet, and after it reaches a threshold pressure, water transport takes place from the wet state. We recover a simple description of the transport process by applying linear response theory with respect to the wet reference state rather than the dry one. A macroscopic thermodynamic argument supports our mechanistic description and predicts the wetting threshold pressure as a function of the contact angle.
Collapse
Affiliation(s)
- Steven E Strong
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel D Eaves
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Palmer T, Speck T. Thermodynamic formalism for transport coefficients with an application to the shear modulus and shear viscosity. J Chem Phys 2017; 146:124130. [DOI: 10.1063/1.4979124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Palmer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
18
|
Barclay PL, Lukes JR. Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion. Phys Rev E 2017; 94:063303. [PMID: 28085320 DOI: 10.1103/physreve.94.063303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/07/2022]
Abstract
A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.
Collapse
Affiliation(s)
- Paul L Barclay
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer R Lukes
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Abstract
Porous two-dimensional crystals offer many promises for water desalination applications. For computer simulation to play a predictive role in this area, however, one needs to have reliable methods for simulating an atomistic system with hydrodynamic currents and interpretative tools to relate microscopic interactions to emergent macroscopic dynamical quantities, such as friction, slip length, and permeability. In this article, we use Gaussian dynamics, a nonequilibrium molecular dynamics method that provides microscopic insights into the interactions that control the flows of both simple liquids and liquid water through atomically small channels. In simulations of aqueous transport, we mimic the effect of changing the membrane chemical composition by adjusting the attractive strength of the van der Waals interactions between the membrane atoms and water. We find that the wetting contact angle, a common measure of a membrane's hydrophobicity, does not predict the permeability of a membrane. Instead, the hydrophobic effect is subtle, with both static and dynamic effects that can both help and hinder water transport through these materials. The competition between the static and dynamical hydrophobicity balances an atomic membrane's tendency to wet against hydrodynamic friction, and determines an optimal contact angle for water passage through nonpolar membranes. To a reasonable approximation, the optimal contact angle depends only on the aspect ratio of the pore. We also find that water molecules pass through the most hydrophobic membranes in a punctuated series of bursts that are separated by long pauses. A continuous-time Markov model of these data provides evidence of a molecular analogue to the clogging transition, a phenomenon observed in driven granular flows.
Collapse
Affiliation(s)
- Steven E Strong
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel D Eaves
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|