1
|
Song M, Kim Y, Baek DS, Kim HY, Gu DH, Li H, Cunning BV, Yang SE, Heo SH, Lee S, Kim M, Lim JS, Jeong HY, Yoo JW, Joo SH, Ruoff RS, Kim JY, Son JS. 3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals. Nat Commun 2023; 14:8460. [PMID: 38123571 PMCID: PMC10733400 DOI: 10.1038/s41467-023-44145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Three-dimensional (3D) microprinting is considered a next-generation manufacturing process for the production of microscale components; however, the narrow range of suitable materials, which include mainly polymers, is a critical issue that limits the application of this process to functional inorganic materials. Herein, we develop a generalised microscale 3D printing method for the production of purely inorganic nanocrystal-based porous materials. Our process is designed to solidify all-inorganic nanocrystals via immediate dispersibility control and surface linking-induced interconnection in the nonsolvent linker bath and thereby creates multibranched gel networks. The process works with various inorganic materials, including metals, semiconductors, magnets, oxides, and multi-materials, not requiring organic binders or stereolithographic equipment. Filaments with a diameter of sub-10 μm are printed into designed complex 3D microarchitectures, which exhibit full nanocrystal functionality and high specific surface areas as well as hierarchical porous structures. This approach provides the platform technology for designing functional inorganics-based porous materials.
Collapse
Affiliation(s)
- Minju Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoonkyum Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Du San Baek
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Da Hwi Gu
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haiyang Li
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| | - Benjamin V Cunning
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Seong Eun Yang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Hwae Heo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seunghyun Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minhyuk Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rodney S Ruoff
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jin Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
2
|
Gu DH, Choi W, Son JS. Self-Assembly of Matchstick-Shaped Inorganic Nano-Surfactants with Controlled Surface Amphiphilicity. JACS AU 2022; 2:2307-2315. [PMID: 36311835 PMCID: PMC9597596 DOI: 10.1021/jacsau.2c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Molecular and nanoscale amphiphiles have been extensively studied as building blocks for organizing macroscopic matter through specific and local interactions. Among various amphiphiles, inorganic Janus nanoparticles have attracted a lot of attention owing to their ability to impart multifunctionalities, although the programmability to achieve complicated self-assembly remains a challenge. Here, we synthesized matchstick-shaped Janus nano-surfactants that mimic organic surfactant molecules and studied their programmable self-assembly. High amphiphilicity was achieved through the hard-soft acid-base-based ligand-exchange reaction with strong selectivity on the surface of nano-matchsticks consisting of Ag2S heads and CdS stems. The obtained nano-surfactants spontaneously assembled into diverse ordered structures such as lamellar, curved, wrinkled, cylindrical, and micellar structures depending on the vertical asymmetry and the interfacial tension controlled by their geometry and surface ligands. The correlation between the phase selectivity of suprastructures and the characteristics of nano-surfactants is discussed. This study realized the molecular amphiphile-like programmability of inorganic Janus nanostructures in self-assembly with the precise control on the surface chemistry.
Collapse
Affiliation(s)
- Da Hwi Gu
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wooyong Choi
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate
School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Generalised optical printing of photocurable metal chalcogenides. Nat Commun 2022; 13:5262. [PMID: 36071063 PMCID: PMC9452581 DOI: 10.1038/s41467-022-33040-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials. Optical 3D printing techniques are low-cost mask-less patterning methods, but their application is limited by the number of printable materials. Here, the authors report a generalized optical method to print 2D or micrometre-thick 2.5D architectures based on metal chalcogenides inks, showing the realization of micro-scale thermoelectric generators.
Collapse
|
4
|
Park SI, Jung SM, Kim JY, Yang J. Effects of Mono- and Bifunctional Surface Ligands of Cu-In-Se Quantum Dots on Photoelectrochemical Hydrogen Production. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6010. [PMID: 36079393 PMCID: PMC9457290 DOI: 10.3390/ma15176010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor nanocrystal quantum dots (QDs) are promising materials for solar energy conversion because of their bandgap tunability, high absorption coefficient, and improved hot-carrier generation. CuInSe2 (CISe)-based QDs have attracted attention because of their low toxicity and wide light-absorption range, spanning visible to near-infrared light. In this work, we study the effects of the surface ligands of colloidal CISe QDs on the photoelectrochemical characteristics of QD-photoanodes. Colloidal CISe QDs with mono- and bifunctional surface ligands are prepared and used in the fabrication of type-II heterojunction photoanodes by adsorbing QDs on mesoporous TiO2. QDs with monofunctional ligands are directly attached on TiO2 through partial ligand detachment, which is beneficial for electron transfer between QDs and TiO2. In contrast, bifunctional ligands bridge QDs and TiO2, increasing the amount of QD adsorption. Finally, photoanodes fabricated with oleylamine-passivated QDs show a current density of ~8.2 mA/cm2, while those fabricated with mercaptopropionic-acid-passivated QDs demonstrate a current density of ~6.7 mA/cm2 (at 0.6 VRHE under one sun illumination). Our study provides important information for the preparation of QD photoelectrodes for efficient photoelectrochemical hydrogen generation.
Collapse
Affiliation(s)
- Soo Ik Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sung-Mok Jung
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
5
|
Lesnyak V. Chemical Transformations of Colloidal Semiconductor Nanocrystals Advance Their Applications. J Phys Chem Lett 2021; 12:12310-12322. [PMID: 34932359 DOI: 10.1021/acs.jpclett.1c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, colloidal semiconductor nanocrystals (NCs) are finding more and more applications in optoelectronic devices. Their usage, however, is still very far from the great potential already demonstrated in many fields owing to their unique features. While researchers are still struggling to achieve a wider gamut of different semiconductor nanomaterials with more controllable properties, the library of already existing candidates is large enough to harness their potential. Modification of well-studied semiconductor NCs by means of their chemical transformations can greatly advance their practical exploitation. In this Perspective, the main types of chemical transformations represented by ligand and cation exchange reactions and their recent examples are summarized. While ligand exchange is used to adjust the surface of a semiconductor NC, cation exchange allows us to engineer its core composition. Both approaches greatly extend the range of properties of the resulting nanomaterials, advancing their further incorporation into optoelectronic devices.
Collapse
Affiliation(s)
- Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
6
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
7
|
Ma L, Zhu J, Li W, Huang R, Wang X, Guo J, Choi JH, Lou Y, Wang D, Zou G. Immobilized Precursor Particle Driven Growth of Centimeter-Sized MoTe 2 Monolayer. J Am Chem Soc 2021; 143:13314-13324. [PMID: 34375083 DOI: 10.1021/jacs.1c06250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molybdenum ditelluride (MoTe2) has attracted ever-growing attention in recent years due to its novel characteristics in spintronics and phase-engineering, and an efficient and convenient method to achieve large-area high-quality film is an essential step toward electronic applications. However, the growth of large-area monolayer MoTe2 is challenging. Here, for the first time, we achieve the growth of a centimeter-sized monoclinic MoTe2 monolayer and manifest the mechanism of immobilized precursor particle driven growth. Microscopic characterizations reveal an obvious trend of immobilized precursor particles being consumed by the monolayer and continuing to provide a source for the growth of the monolayer. Time-of-flight secondary ion mass spectrometry verifies the attachment of hydroxide ions on the surface of the MoTe2 monolayer, thereby realizing the inhibition of crystal growth along the [001] zone axis and the continuous growth of the MoTe2 monolayer. The first-principles DFT calculations prove the mechanism of immobilized precursor particles and the absorption of hydroxide ions on the MoTe2 monolayer. The as-grown MoTe2 monolayer exhibits a surface roughness of 0.19 nm and average conductivity of 1.5 × 10-5 S/m, which prove the smoothness and uniformity of the MoTe2 monolayer. Temperature-dependent electrical measurements together with the transfer characteristic curves further demonstrate the typical semimetallic properties of monoclinic MoTe2. Our research elaborates the microscopic process of immobilized precursor particles to grow large-area MoTe2 monolayer and provides a new thinking about the growth of many other two-dimensional materials.
Collapse
Affiliation(s)
- Liang Ma
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Juntong Zhu
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Wei Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Rong Huang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 China
| | - Xiangyi Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Jun Guo
- Testing and Analysis Center, Soochow University, Suzhou 215123, China
| | - Jin-Ho Choi
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Yanhui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Dan Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123 China
| |
Collapse
|
8
|
Choi W, Kim JM, Hwang CK, Choe M, Baek S, Ban HW, Gu DH, Jeong H, Chae KH, Lim Y, Lee Z, Kim JY, Son JS. Thiometallate precursors for the synthesis of supported Pt and PtNi nanoparticle electrocatalysts: Size-focusing by S capping. NANOSCALE 2020; 12:10498-10504. [PMID: 32391820 DOI: 10.1039/c9nr10706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report for the first time the successful preparation of thiometallate-based precursors for use in a bottom-up synthetic process of supported Pt and PtNi nanoparticle catalyst. This precursor enabled the monodisperse synthesis of supported Pt nanoparticles and the in situ formation of S, which were caught directly in a collection system by the nanoparticle synthetic processes consisting of impregnation and thermal processes. S is proven to act as a capping agent in generating highly stable nanoparticles with the size ranging from 2 nm to 3 nm and further favors the formation of monodispersed particles by solid-state digestive ripening. The proposed synthetic methodology can be applied to high-quality PtNi alloy nanoparticle systems. The current route is readily scalable, and multi-gram quantities can be prepared. The prepared carbon-supported Pt and PtNi nanoparticles were characterized as electrocatalysts for the oxygen reduction reaction and exhibited superior performance and durability to commercial Pt/C.
Collapse
Affiliation(s)
- Wooyong Choi
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Baek S, Kim J, Kim H, Park S, Ban HW, Gu DH, Jeong H, Kim F, Lee J, Jung BM, Choa YH, Kim KH, Son JS. Controlled Grafting of Colloidal Nanoparticles on Graphene through Tailored Electrostatic Interaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11824-11833. [PMID: 30843681 DOI: 10.1021/acsami.9b01519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nanoparticle/graphene hybrid composites have been of great interest in various disciplines due to their unique synergistic physicochemical properties. In this study, we report a facile and generalized synthesis method for preparing nanoparticle/exfoliated graphene (EG) composites by tailored electrostatic interactions. EG was synthesized by an electrochemical method, which produced selectively oxidized graphene sheets at the edges and grain boundaries. These EG sheets were further conjugated with polyethyleneimine to provide positive charges at the edges. The primary organic ligands of the colloidal nanoparticles were exchanged with Cl- or MoS42- anions, generating negatively charged colloidal nanoparticles in polar solvents. By simple electrostatic interactions between the EG and nanoparticles in a solution, nanoparticles were controllably assembled at the edges of the EG. Furthermore, the generality of this process was verified for a wide range of nanoparticles, such as semiconductors, metals, and magnets, on the EG. As a model application, designed composites with size-controlled FeCo nanoparticle/EG were utilized as electromagnetic interference countermeasure materials that showed a size-dependent shift of the frequency ranges on the electromagnetic absorption properties. The current generalized process will offer great potential for the large-scale production of well-designed graphene nanocomposites for electronic and energy applications.
Collapse
Affiliation(s)
- Seongheon Baek
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Jinu Kim
- Department of Physics , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Han Kim
- Department of Materials Science and Chemical Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| | - Sangmin Park
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyeong Woo Ban
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Da Hwi Gu
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyewon Jeong
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Fredrick Kim
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Joonsik Lee
- Functional Composites Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Republic of Korea
| | - Byung Mun Jung
- Functional Composites Department , Korea Institute of Materials Science (KIMS) , Changwon 51508 , Republic of Korea
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| | - Ki Hyeon Kim
- Department of Physics , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Jae Sung Son
- School of Materials Science and Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
10
|
Yang J, Choi MK, Sheng Y, Jung J, Bustillo K, Chen T, Lee SW, Ercius P, Kim JH, Warner JH, Chan EM, Zheng H. MoS 2 Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS 2 Transfer. NANO LETTERS 2019; 19:1788-1795. [PMID: 30741548 DOI: 10.1021/acs.nanolett.8b04821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two dimensional (2D) materials have found various applications because of their unique physical properties. For example, graphene has been used as the electron transparent membrane for liquid cell transmission electron microscopy (TEM) due to its high mechanical strength and flexibility, single-atom thickness, chemical inertness, etc. Here, we report using 2D MoS2 as a functional substrate as well as the membrane window for liquid cell TEM, which is enabled by our facile and polymer-free MoS2 transfer process. This provides the opportunity to investigate the growth of Pt nanocrystals on MoS2 substrates, which elucidates the formation mechanisms of such heterostructured 2D materials. We find that Pt nanocrystals formed in MoS2 liquid cells have a strong tendency to align their crystal lattice with that of MoS2, suggesting a van der Waals epitaxial relationship. Importantly, we can study its impact on the kinetics of the nanocrystal formation. The development of MoS2 liquid cells will allow further study of various liquid phenomena on MoS2, and the polymer-free MoS2 transfer process will be implemented in a wide range of applications.
Collapse
Affiliation(s)
- Jiwoong Yang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Moon Kee Choi
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yuewen Sheng
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jaebong Jung
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Karen Bustillo
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tongxin Chen
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Seung-Wuk Lee
- Department of Bioengineering and Tsinghua Berkeley Shenzhen Institute , University of California , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Peter Ercius
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ji Hoon Kim
- School of Mechanical Engineering , Pusan National University , Busan 46241 , South Korea
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Emory M Chan
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Haimei Zheng
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
11
|
Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E. Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem Commun (Camb) 2017; 53:1002-1024. [DOI: 10.1039/c6cc08742f] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Core/shell heterostructures provide controlled optical properties, tuneable electronic structure, and chemical stability due to an appropriate interface design.
Collapse
|