1
|
Huang Y, Li H, Zhu L, Song Y, Fang H. Metal-Cation-Induced Tiny Ripple on Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1593. [PMID: 39404319 PMCID: PMC11477897 DOI: 10.3390/nano14191593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Ripples on graphene play a crucial role in manipulating its physical and chemical properties. However, producing ripples, especially at the nanoscale, remains challenging with current experimental methods. In this study, we report that tiny ripples in graphene can be generated by the adsorption of a single metal cation (Na+, K+, Mg2+, Ca2+, Cu2+, Fe3+) onto a graphene sheet, based on the density functional theory calculations. We attribute this to the cation-π interaction between the metal cation and the aromatic rings on the graphene surface, which makes the carbon atoms closer to metal ions, causing deformation of the graphene sheet, especially in the out-of-plane direction, thereby creating ripples. The equivalent pressures applied to graphene sheets in out-of-plane direction, generated by metal cation-π interactions, reach magnitudes on the order of gigapascals (GPa). More importantly, the electronic and mechanical properties of graphene sheets are modified by the adsorption of various metal cations, resulting in opened bandgaps and enhanced rigidity characterized by a higher elastic modulus. These findings show great potential for applications for producing ripples at the nanoscale in graphene through the regulation of metal cation adsorption.
Collapse
Affiliation(s)
- Yingying Huang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (L.Z.); (H.F.)
| | - Hanlin Li
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (L.Z.); (H.F.)
| | - Liuyuan Zhu
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (L.Z.); (H.F.)
| | - Yongshun Song
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (L.Z.); (H.F.)
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (H.L.); (L.Z.); (H.F.)
- School of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Cho YH, Jin M, Jin H, Han J, Yu S, Li L, Kim YS. Efficient Ionovoltaic Energy Harvesting via Water-Induced p-n Junction in Reduced Graphene Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404893. [PMID: 39099395 PMCID: PMC11481184 DOI: 10.1002/advs.202404893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Water motion-induced energy harvesting has emerged as a prominent means of facilitating renewable electricity from the interaction between nanostructured materials and water over the past decade. Despite the growing interest, comprehension of the intricate solid-liquid interfacial phenomena related to solid state physics remains elusive and serves as a hindrance to enhancing energy harvesting efficiency up to the practical level. Herein, the study introduces the energy harvester by utilizing inversion on the majority charge carrier in graphene materials upon interaction with water molecules. Specifically, various metal electrode configurations are employed on reduced graphene oxide (rGO) to unravel its distinctive charge carriers that experience the inversion in semiconductor type upon water contact, and exploit this characteristic to leverage the efficacy of generated electricity. Through the strategic arrangement of the metal electrodes on rGO membrane, the open-circuit voltage (Voc) and short-circuit current (Isc) have exhibited a remarkable augmentation, reaching 1.05 V and 31.6 µA, respectively. The demonstration of effectively tailoring carrier dynamics via electrode configuration expands the practicality by achieving high power density and elucidating how the water-induced carrier density modulation occurs in 2D nanomaterials.
Collapse
Affiliation(s)
- Yong Hyun Cho
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Minho Jin
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Huding Jin
- Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Junghyup Han
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Seungyeon Yu
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Lianghui Li
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
- Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySuwon‐si16229Republic of Korea
| |
Collapse
|
3
|
Kumar N. Uranyl (UO 22+) structuring and dynamics at graphene/electrolyte interface. Phys Chem Chem Phys 2024; 26:20799-20806. [PMID: 38958742 DOI: 10.1039/d4cp02108h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The physicochemical phenomena at the solid/electrolyte interfaces govern various industrial processes ranging from energy generation, storage, and catalysis to chemical separations and purification. Adsorption-based solid/liquid extraction methods are promising for the selective and rapid separation of nuclear (such as uranium) and other critical materials. In this study, we quantified the adsorption, complexation, and dynamics of UO22+ ions on the graphene surface in various electrolyte media (LiNO3, NaNO3 and CsNO3) using all-atom molecular dynamics simulations, in combination with network theory based subensemble analysis, enhanced sampling, and temporal analysis. We observe that the choice of background electrolyte impacts the propensity of UO22+ adsorption on the graphene surface, with LiNO3 being the most favorable at both low and high uranyl-nitrate concentrations. Even though UO22+ primarily retained its coordination with water and interacted via the outer-sphere mechanism with graphene, the interfacial segregation of NO3- increased the number of contact ion pairs (CIPs) between UO22+ and NO3- ions, and the residence times of UO22+ within the interfacial region. This study provides a fundamental understanding of the structure and dynamics of UO22+ on the solid surface necessary to design advanced adsorption-based separation methods for energy-relevant materials.
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Washington State University, Pullman, Washington 99163, USA.
| |
Collapse
|
4
|
Fong KD, Sumić B, O’Neill N, Schran C, Grey CP, Michaelides A. The Interplay of Solvation and Polarization Effects on Ion Pairing in Nanoconfined Electrolytes. NANO LETTERS 2024; 24. [PMID: 38592099 PMCID: PMC11057028 DOI: 10.1021/acs.nanolett.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
The nature of ion-ion interactions in electrolytes confined to nanoscale pores has important implications for energy storage and separation technologies. However, the physical effects dictating the structure of nanoconfined electrolytes remain debated. Here we employ machine-learning-based molecular dynamics simulations to investigate ion-ion interactions with density functional theory level accuracy in a prototypical confined electrolyte, aqueous NaCl within graphene slit pores. We find that the free energy of ion pairing in highly confined electrolytes deviates substantially from that in bulk solutions, observing a decrease in contact ion pairing but an increase in solvent-separated ion pairing. These changes arise from an interplay of ion solvation effects and graphene's electronic structure. Notably, the behavior observed from our first-principles-level simulations is not reproduced even qualitatively with the classical force fields conventionally used to model these systems. The insight provided in this work opens new avenues for predicting and controlling the structure of nanoconfined electrolytes.
Collapse
Affiliation(s)
- Kara D. Fong
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Barbara Sumić
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Niamh O’Neill
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph Schran
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 OHE, United
Kingdom
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Rezlerová E, Moučka F, Předota M, Lísal M. Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets. J Chem Phys 2024; 160:094701. [PMID: 38426518 DOI: 10.1063/5.0188104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Graphene-based applications, such as supercapacitors or capacitive deionization, take place in an aqueous environment, and they benefit from molecular-level insights into the behavior of aqueous electrolyte solutions in single-digit graphene nanopores with a size comparable to a few molecular diameters. Under single-digit graphene nanoconfinement (smallest dimension <2 nm), water and ions behave drastically different than in the bulk. Most aqueous electrolytes in the graphene-based applications as well as in nature contain a mix of electrolytes. We study several prototypical aqueous mixed alkali-chloride electrolytes containing an equimolar fraction of Li/Na, Li/K, or Na/K cations confined between neutral and positively or negatively charged parallel graphene sheets. The strong hydration shell of small Li+ vs a larger Na+ or large K+ with weaker or weak hydration shells affects the interplay between the ions's propensity to hydrate or dehydrate under the graphene nanoconfinement and the strength of the ion-graphene interactions mediated by confinement-induced layered water. We perform molecular dynamics simulations of the confined mixed-cation electrolytes using the effectively polarizable force field for electrolyte-graphene systems and focused on a relation between the electrochemical adsorption and structural properties of the water molecules and ions and their diffusion behavior. The simulations show that the one-layer nanoslits have the biggest impact on the ions' adsorption and the water and ions' diffusion. The positively charged one-layer nanoslits only allow for Cl- adsorption and strengthen the intermolecular bonding, which along with the ultrathin confinement substantially reduces the water and Cl- diffusion. In contrast, the negatively charged one-layer nanoslits only allow for adsorption of weakly hydrated Na+ or K+ and substantially break up the non-covalent bond network, which leads to the enhancement of the water and Na+ or K+ diffusion up to or even above the bulk diffusion. In wider nanoslits, cations adsorb closer to the graphene surfaces than Cl-'s with preferential adsorption of a weakly hydrated cation over a strongly hydrated cation. The positive graphene charge has an intuitive effect on the adsorption of weakly hydrated Na+'s or K+'s and Cl-'s and a counterintuitive effect on the adsorption of strongly hydrated Li+'s. On the other hand, the negative surface charge has an intuitive effect on the adsorption of both types of cations and only mild intuitive or counterintuitive effects on the Cl- adsorption. The diffusion of water molecules and ions confined in the wider nanoslits is reduced with respect to the bulk diffusion, more for the positive graphene charge, which strengthened the intermolecular bonding, and less for the negative surface charge, which weakened the non-covalent bond network.
Collapse
Affiliation(s)
- Eliška Rezlerová
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, Ústí n. Lab., Czech Republic
| | - Filip Moučka
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, Ústí n. Lab., Czech Republic
| | - Milan Předota
- Department of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Lísal
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, Ústí n. Lab., Czech Republic
| |
Collapse
|
6
|
Finney AR, Salvalaglio M. Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer. Faraday Discuss 2024; 249:334-362. [PMID: 37781909 DOI: 10.1039/d3fd00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Surfaces are able to control physical-chemical processes in multi-component solution systems and, as such, find application in a wide range of technological devices. Understanding the structure, dynamics and thermodynamics of non-ideal solutions at surfaces, however, is particularly challenging. Here, we use Constant Chemical Potential Molecular Dynamics (CμMD) simulations to gain insight into aqueous NaCl solutions in contact with graphite surfaces at high concentrations and under the effect of applied surface charges: conditions where mean-field theories describing interfaces cannot (typically) be reliably applied. We discover an asymmetric effect of surface charge on the electric double layer structure and resulting thermodynamic properties, which can be explained by considering the affinity of the surface for cations and anions and the cooperative adsorption of ions that occurs at higher concentrations. We characterise how the sign of the surface charge affects ion densities and water structure in the double layer and how the capacitance of the interface-a function of the electric potential drop across the double layer-is largely insensitive to the bulk solution concentration. Notably, we find that negatively charged graphite surfaces induce an increase in the size and concentration of extended liquid-like ion clusters confined to the double layer. Finally, we discuss how concentration and surface charge affect the activity coefficients of ions and water at the interface, demonstrating how electric fields in this region should be explicitly considered when characterising the thermodynamics of both solute and solvent at the solid/liquid interface.
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
7
|
Wei Z, Elliott JD, Papaderakis AA, Dryfe RA, Carbone P. Relation between Double Layer Structure, Capacitance, and Surface Tension in Electrowetting of Graphene and Aqueous Electrolytes. J Am Chem Soc 2024; 146:760-772. [PMID: 38153698 PMCID: PMC10785801 DOI: 10.1021/jacs.3c10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Deciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li+) concentration on the interfacial tension (γSL) of the charged graphene/electrolyte interface. We demonstrate that the dependence of γSL on the applied surface charge exhibits an asymmetric behavior relative to the neutral surface. At the positively charged graphene sheet, the electrowetting response is amplified by electrolyte concentration, resulting in a strongly hydrophilic surface. On the contrary, at negative potential bias, γSL shows a weaker response to the charging of the electrode. Changes in γSL greatly affect the total areal capacitance predicted by the Young-Lippmann equation but have a negligible impact on the simulated total areal capacitance, indicating that the EDL structure is not directly correlated with the wettability of the surface and different interfacial mechanisms drive the two phenomena. The proposed model is validated experimentally by studying the electrowetting response of highly oriented pyrolytic graphite over a wide range of electrolyte concentrations. Our work presents the first combined theoretical and experimental study on electrowetting using carbon surfaces, introducing new conceptual routes for the investigation of wetting phenomena under potential bias.
Collapse
Affiliation(s)
- Zixuan Wei
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Joshua D. Elliott
- Diamond
Light Source, Diamond House, Harwell Science
and Innovation Park, Oxfordshire, Didcot OX11 ODE, United Kingdom
| | - Athanasios A. Papaderakis
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Robert A.W. Dryfe
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Paola Carbone
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Qian C, Zhou K. Ab Initio Molecular Dynamics Investigation of the Solvation States of Hydrated Ions in Confined Water. Inorg Chem 2023; 62:17756-17765. [PMID: 37855150 DOI: 10.1021/acs.inorgchem.3c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ionic transport in nanoscale channels with a critical size comparable to that of ions and solutes exhibits exceptional performance in water desalination, ion separation, electrocatalysts, and supercapacitors. However, the solvation states (SSs), i.e., the hydration structures and probability distribution, of hydrated ions in nanochannels differ from those in the bulk and the perspective of continuum theory. In this work, we conduct ab initio enhanced-sampling atomistic simulations to investigate the ion-specific SSs of monovalent ions (including Li+, Na+, K+, F-, Cl-, and I-) in the graphene channel with a width of 1 nm. Our findings highlight that the SSs of those ions are primarily determined by ion-water hydration, where ion-wall interactions play a minor role. The distribution of ions in layered confined water is a result of ion-specific hydration, which arises from the synergy of entropy and enthalpy. The free energy barriers for transitions between SSs are on the order of 1kBT, allowing for modulation through applying external fields or modifying surface properties. As the ion-wall interaction strengthens, as observed in vermiculite and carbides and nitrides of transition metal channels, the probability of near-wall SSs increases. These results help to improve the performance of nanofluidic devices and provide crucial insights for developing accurate force fields of molecular simulations or advanced theoretical approaches for ion dynamics in confined channels.
Collapse
Affiliation(s)
- Chen Qian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Papaderakis AA, Roh JS, Polus K, Yang J, Bissett MA, Walton A, Juel A, Dryfe RAW. Dielectric-free electrowetting on graphene. Faraday Discuss 2023; 246:307-321. [PMID: 37409473 DOI: 10.1039/d3fd00037k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Electrowetting is a simple way to induce the spreading and retraction of electrolyte droplets. This method is widely used in "device" applications, where a dielectric layer is applied between the electrolyte and the conducting substrate. Recent work, including contributions from our own laboratory, have shown that reversible electrowetting can be achieved directly on conductors. We have shown that graphite surfaces, in particular when combined with highly concentrated electrolyte solutions, show a strong wetting effect. The process is driven by the interactions between the electrolyte ions and the surface, hence models of double-layer capacitance are able to explain changes in the equilibrium contact angles. Herein, we extend the approach to the investigation of electrowetting on graphene samples of varying thickness, prepared by chemical vapor deposition. We show that the use of highly concentrated aqueous electrolytes induces a clear yet subtle electrowetting response due to the adsorption of ions and the suppression of the negative effect introduced by the surface impurities accumulating during the transfer process. The latter have been previously reported to fully hinder electrowetting at lower electrolyte concentrations. An amplified wetting response is recorded in the presence of strongly adsorbed/intercalated anions in both aqueous and non-aqueous electrolytes. The phenomenon is interpreted based on the anion-graphene interactions and their influence on the energetics of the interface. By monitoring the dynamics of wetting, an irreversible behaviour is identified in all cases as a consequence of the irreversibility of anion adsorption and/or intercalation. Finally, the effect of the underlying reactions on the timescales of wetting is also examined.
Collapse
Affiliation(s)
- Athanasios A Papaderakis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ji Soo Roh
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Kacper Polus
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jing Yang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Mark A Bissett
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alex Walton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Anne Juel
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
10
|
Rezlerová E, Moučka F, Předota M, Lísal M. Structure and self-diffusivity of alkali-halide electrolytes in neutral and charged graphene nanochannels. Phys Chem Chem Phys 2023; 25:21579-21594. [PMID: 37548441 DOI: 10.1039/d3cp03027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Understanding the microscopic behaviour of aqueous electrolyte solutions in graphene-based ultrathin nanochannels is important in nanofluidic applications such as water purification, fuel cells, and molecular sensing. Under extreme confinement (<2 nm), the properties of water and ions differ drastically from those in the bulk phase. We studied the structural and diffusion behaviour of prototypical aqueous solutions of electrolytes (LiCl, NaCl, and KCl) confined in both neutral and positively-, and negatively-charged graphene nanochannels. We performed molecular dynamics simulations of the solutions in the nanochannels with either one, two- or three-layer water structures using the effectively polarisable force field for graphene. We analysed the structure and intermolecular bond network of the confined solutions along with their relation to the self-diffusivity of water and ions. The simulations show that Na and K cations can more easily rearrange their solvation shells under the graphene nanoconfinement and adsorb on the graphene surfaces or dissolve in the confinement-induced layered water than the Li cation. The negative surface charge together with the presence of ions orient water molecules with hydrogens towards the graphene surfaces, which in turn weakens the intermolecular bond network. The one-layer nanochannels have the biggest effect on the water structure and intermolecular bonding as well as on the adsorption of ions with only co-ions entering these nanochannels. The self-diffusivity of confined water is strongly reduced with respect to the bulk water and decreases with diminishing nanochannel heights except for the negatively-charged one-layer nanochannel. The self-diffusivity of ions also decreases with the reducing the nanochannel heights except for the self-diffusivity of cations in the negatively-charged one-layer nanochannel, evidencing cooperative diffusion of confined water and ions. Due to the significant break-up of the intermolecular bond network in the negatively-charged one-layer nanochannel, self-diffusion coefficients of water and cations exceed those for the two- and three-layer nanochannels and become comparable to the bulk values.
Collapse
Affiliation(s)
- Eliška Rezlerová
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Ústín. Lab., Czech Republic
| | - Filip Moučka
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Ústín. Lab., Czech Republic
| | - Milan Předota
- Department of Physics, Faculty of Science, University of South Bohemia, České Budě jovice, Czech Republic
| | - Martin Lísal
- Research Group of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Ústín. Lab., Czech Republic
| |
Collapse
|
11
|
Qiu X, Cao M, Li Y. Metal-Organic Framework Sub-Nanochannels Formed inside Solid-State Nanopore with Proton Ultra-High Selectivity. Chemistry 2023; 29:e202300976. [PMID: 37221145 DOI: 10.1002/chem.202300976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Metal-Organic frameworks (MOFs) have the advantages of high porosity, angstrom-scale pore size, and unique structure. In this work, a kind of MOFs, UiO-66 and its derivatives (including aminated UiO-66-(NH2 )2 and sulfonated UiO-66-(NH-SAG)2 ), were constructed on the inner surface of solid-state nanopores for ultra-selective proton transport. UiO-66 and UiO-66-(NH2 )2 nanocrystal particles were in-situ grown at the orifice of glass nanopores firstly, which were used to investigate the ionic current responses in LiCl and HCl solutions when the monovalent anions (Cl- ) were unchanged. Compared with UiO-66-modifed nanopores, the aminated MOFs modification (UiO-66-(NH2 )2 ) can improve the proton selectivity obviously. However, when the UiO-66-(NH-SAG)2 nanopore is prepared by further post-modification with sulfo-acetic acid, lithium ions can hardly pass through the channel, and the interaction between protons and sulfonic acid groups can promote the transport of protons, thus achieving ultra-high selectivity to protons. This work provides a new way to achieve sub-nanochannels with high selectivity, which can widely be used in ion separation, sensing and energy conversion.
Collapse
Affiliation(s)
- Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Mengya Cao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
12
|
Ronghe A, Ayappa KG. Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37312291 DOI: 10.1021/acs.langmuir.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10-30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation-π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid-vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water-water hydrogen bonds and reduce surface tension at the liquid-vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.
Collapse
Affiliation(s)
- Anshaj Ronghe
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Di Pasquale N, Finney AR, Elliott JD, Carbone P, Salvalaglio M. Constant chemical potential-quantum mechanical-molecular dynamics simulations of the graphene-electrolyte double layer. J Chem Phys 2023; 158:134714. [PMID: 37031135 DOI: 10.1063/5.0138267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Abstract
We present the coupling of two frameworks-the pseudo-open boundary simulation method known as constant potential molecular dynamics simulations (CμMD), combined with quantum mechanics/molecular dynamics (QMMD) calculations-to describe the properties of graphene electrodes in contact with electrolytes. The resulting CμQMMD model was then applied to three ionic solutions (LiCl, NaCl, and KCl in water) at bulk solution concentrations ranging from 0.5 M to 6 M in contact with a charged graphene electrode. The new approach we are describing here provides a simulation protocol to control the concentration of electrolyte solutions while including the effects of a fully polarizable electrode surface. Thanks to this coupling, we are able to accurately model both the electrode and solution side of the double layer and provide a thorough analysis of the properties of electrolytes at charged interfaces, such as the screening ability of the electrolyte and the electrostatic potential profile. We also report the calculation of the integral electrochemical double layer capacitance in the whole range of concentrations analyzed for each ionic species, while the quantum mechanical simulations provide access to the differential and integral quantum capacitance. We highlight how subtle features, such as the adsorption of potassium graphene or the tendency of the ions to form clusters contribute to the ability of graphene to store charge, and suggest implications for desalination.
Collapse
Affiliation(s)
- Nicodemo Di Pasquale
- Department of Chemical Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Aaron R Finney
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Joshua D Elliott
- Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paola Carbone
- Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
14
|
Robert A, Berthoumieux H, Bocquet ML. Coupled Interactions at the Ionic Graphene-Water Interface. PHYSICAL REVIEW LETTERS 2023; 130:076201. [PMID: 36867792 DOI: 10.1103/physrevlett.130.076201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
We compute ionic free energy adsorption profiles at an aqueous graphene interface by developing a self-consistent approach. To do so, we design a microscopic model for water and put the liquid on an equal footing with the graphene described by its electronic band structure. By evaluating progressively the electronic and dipolar coupled electrostatic interactions, we show that the coupling level including mutual graphene and water screening permits one to recover remarkably the precision of extensive quantum simulations. We further derive the potential of mean force evolution of several alkali cations.
Collapse
Affiliation(s)
- Anton Robert
- PASTEUR, Département de chimie, École normale supérieure, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
| | - Hélène Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Marie-Laure Bocquet
- LPENS, École normale supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
15
|
H H, Mewada R, Mallajosyula SS. Capturing charge and size effects of ions at the graphene-electrolyte interface using polarizable force field simulations. NANOSCALE ADVANCES 2023; 5:796-804. [PMID: 36756506 PMCID: PMC9891073 DOI: 10.1039/d2na00733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
We present a systematic investigation capturing the charge and size effects of ions interacting with a graphene surface using polarizable simulations. Our results utilizing the Drude polarizable force field (FF) for ions, water and graphene surfaces, show that the graphene parameters previously developed by us are able to accurately capture the dynamics at the electrolyte-graphene interface. For monovalent ions, with increasing size, the solvation shell plays a crucial role in controlling the ion-graphene interactions. Smaller monovalent ions directly interact with the graphene surface, while larger ions interact with the graphene surface via a well-formed solvation shell. For divalent ions, both interaction modes are observed. For the anion Cl-, we observe direct interaction between the ions and the graphene surface. The anion-graphene interactions are strongly driven by the polarizability of the graphene surface. These effects are not captured in the absence of polarization by additive FF simulations. The present study underlines the importance of polarizability in capturing the interfacial phenomenon at the solid-solute interface.
Collapse
Affiliation(s)
- Hemanth H
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gujarat India-382355
| | - Rohan Mewada
- Discipline of Material Science and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat India-382355
| | - Sairam S Mallajosyula
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gujarat India-382355
| |
Collapse
|
16
|
Dočkal J, Lísal M, Moučka F. Molecular dynamics of preferential adsorption in mixed alkali–halide electrolytes at graphene electrodes. J Chem Phys 2022; 157:084704. [DOI: 10.1063/5.0097425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the microscopic behavior of aqueous electrolyte solutions in contact with graphene and related carbon surfaces is important in electrochemical technologies, such as capacitive deionization or supercapacitors. In this work, we focus on preferential adsorption of ions in mixed alkali–halide electrolytes containing different fractions of Li+/Na+ or Li+/K+ and/or Na+/K+ cations with Cl− anions dissolved in water. We performed molecular dynamics simulations of the solutions in contact with both neutral and positively and negatively charged graphene surfaces under ambient conditions, using the effectively polarizable force field. The simulations show that large ions are often intuitively attracted to oppositely charged electrodes. In contrast, the adsorption behavior of small ions tends to be counterintuitive. In mixed-cation solutions, one of the cations always supports the adsorption of the other cation, while the other cation weakens the adsorption of the first cation. In mixed-cation solutions containing large and small cations simultaneously, adsorption of the larger cations varies dramatically with the electrode charge in an intuitive way, while adsorption of the smaller cations changes oppositely, i.e., in a counterintuitive way. For (Li/K)Cl mixed-cation solutions, these effects allow the control of Li+ adsorption by varying the electrode charge, whereas, for LiCl single-salt solutions, Li+ adsorption is nearly independent of the electrode charge. We rationalize this cation–cation lever effect as a result of a competition between three driving forces: (i) direct graphene–ion interactions, (ii) the strong tendency of the solutions to saturate the network of non-covalent intermolecular bonds, and (iii) the tendency to suppress local charge accumulation in any region larger than typical interparticle distances. We analyze the driving forces in detail using a general method for intermolecular bonding based on spatial distribution functions and different contributions to the total charge density profiles. The analysis helps to predict whether an ion is more affected by each of the three driving forces, depending on the strength of the ion solvation shells and the compatibility between the contributions of the charge density profiles due to the ion and water molecules. This approach is general and can also be applied to other solutions under different thermodynamic conditions.
Collapse
Affiliation(s)
- Jan Dočkal
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, 400 96 Ústí nad Labem, Czech Republic and Department of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
| | - Martin Lísal
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, 400 96 Ústí nad Labem, Czech Republic and Department of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
| | - Filip Moučka
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3544/1, 400 96 Ústí nad Labem, Czech Republic and Department of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135/1, Prague, Czech Republic
| |
Collapse
|
17
|
Yang S, Zhao X, Lu YH, Barnard ES, Yang P, Baskin A, Lawson JW, Prendergast D, Salmeron M. Nature of the Electrical Double Layer on Suspended Graphene Electrodes. J Am Chem Soc 2022; 144:13327-13333. [PMID: 35849827 PMCID: PMC9335527 DOI: 10.1021/jacs.2c03344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
The structure of interfacial water near suspended graphene
electrodes
in contact with aqueous solutions of Na2SO4,
NH4Cl, and (NH4)2SO4 has
been studied using confocal Raman spectroscopy, sum frequency vibrational
spectroscopy, and Kelvin probe force microscopy. SO42– anions were found to preferentially accumulate near
the interface at an open circuit potential (OCP), creating an electrical
field that orients water molecules below the interface, as revealed
by the increased intensity of the O–H stretching peak of H-bonded
water. No such increase is observed with NH4Cl at the OCP.
The intensity of the dangling O–H bond stretching peak however
remains largely unchanged. The degree of orientation of the water
molecules as well as the electrical double layer strength increased
further when positive voltages are applied. Negative voltages on the
other hand produced only small changes in the intensity of the H-bonded
water peaks but affected the intensity and frequency of dangling O–H
bond peaks. The TOC figure is an oversimplified representation of
the system in this work.
Collapse
Affiliation(s)
- Shanshan Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Yi-Hsien Lu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Artem Baskin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,NASA Ames Research Center, Moffett Field, California 94035, United States
| | - John W Lawson
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Molecular dynamics of the interfacial solution structure of alkali-halide electrolytes at graphene electrodes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Hydrogen Bond Donors Influence on the Electrochemical Performance of Composite Graphene Electrodes/Deep Eutectic Solvents Interface. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of energy storage devices with better performance relies on the use of innovative materials and electrolytes, aiming to reduce the carbon footprint through the screening of low toxicity electrolytes and solvent-free electrode design protocols. The application of nanostructured carbon materials with high specific surface area, to prepare composite electrodes, is being considered as a promising starting point towards improving the power and energy efficiency of energy storage devices. Non-aqueous electrolytes synthesized using greener approaches with lower environmental impact make deep eutectic solvents (DES) promising alternatives for electrochemical energy storage and conversion applications. Accordingly, this work proposes a systematic study on the effect of the composition of DES containing a diol and an amide as HBD (hydrogen bond donor: 1,2-propylene glycol and urea), on the electrochemical performance of graphene and graphite composite electrodes/DES electrolyte interface. Glassy carbon (GC) was selected as the bare electrode material substrate to prepare the composite formulations since it provides an electrochemically reproducible surface. Gravimetric capacitance was measured for commercial graphene and commercial graphite/GC composite electrodes in contact with choline chloride, complexed with 1,2-propylene glycol, and urea as the HBD in 1:2 molar ratio. The electrochemical stability was followed by assessing the charge/discharge curves at 1, 2, and 4 A g−1. For comparison purposes, a parallel study was performed using commercial graphite. A four-fold increase in gravimetric capacitance was obtained when replacing commercial graphite (1.70 F g−1) by commercial graphene (6.19 F g−1) in contact with 1,2-propylene glycol-based DES. When using urea based DES no significant change in gravimetric capacitance was observed when commercial graphite is replaced by commercial graphene.
Collapse
|
20
|
Finney AR, Salvalaglio M. Bridging the gap between mesoscopic and molecular models of solid/liquid interfaces out-of-equilibrium. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
22
|
Kunhunni A, Kannam SK, Sathian SP, Todd BD, Daivis PJ. Hydrodynamic slip of alkali chloride solutions in uncharged graphene nanochannels. J Chem Phys 2022; 156:014704. [PMID: 34998359 DOI: 10.1063/5.0054681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using non-equilibrium molecular dynamics simulations, we demonstrate the effect of concentration and alkali cation types (K+, Na+, and Li+) on the hydrodynamic slip of aqueous alkali chloride solutions in an uncharged graphene nanochannel. We modeled the graphene-electrolyte interactions using the potential of Williams et al. [J. Phys. Chem. Lett. 8, 703 (2017)], which uses optimized graphene-ion Lennard-Jones interaction parameters to effectively account for surface and solvent polarizability effects on the adsorption of ions in an aqueous solution to a graphene surface. In our study, the hydrodynamic slip exhibits a decreasing trend for alkali chloride solutions with increasing salt concentration. The NaCl solution shows the highest reduction in the slip length followed by KCl and LiCl solutions, and the reduction in the slip length is very much dependent on the salt type. We also compared the slip length with that calculated using a standard unoptimized interatomic potential obtained from the Lorentz-Berthelot mixing rule for the ion-carbon interactions, which is not adjusted to account for the surface and solvent polarizability at the graphene surface. In contrast to the optimized model, the slip length of alkali chloride solutions in the unoptimized model shows only a nominal change with salt concentration and is also independent of the nature of salts. Our study shows that adoption of the computationally inexpensive optimized potential of Williams et al. for the graphene-ion interactions has a significant influence on the calculation of slip lengths for electrolyte solutions in graphene-based nanofluidic devices.
Collapse
Affiliation(s)
- Amith Kunhunni
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sridhar Kumar Kannam
- Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - B D Todd
- Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - P J Daivis
- Physics Discipline, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
23
|
Zhou K, Jiao S, Chen Y, Qin H, Liu Y. Reduced Ionic Conductivity but Enhanced Local Ionic Conductivity in Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12577-12585. [PMID: 34672598 DOI: 10.1021/acs.langmuir.1c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ionic transport in nanoscale channels with the critical size comparable to ions and solvents shows excellent performance on electrochemical desalination, ion separation, and supercapacitors. However, the key quantity ionic conductivity (σ) in the nanochannel that evaluates how easily the electric current is driven by an external voltage is still unknown because of the challenges in experimental measurement. In this work, we present an atomistic simulation-based study, which shows that how the ion concentration, nanoconfinement, and heterogeneous solvation modify the ionic conductivity in a two-dimensional graphene nanochannel. We find that σ in the confined channel is lower than that in the bulk (σb) at the same concentration along with enhanced ion-ion correlation. However, surprisingly, the local σ near the channel wall is more conductive than σb and is about 2-3 folds of the inner layer due to the highly concentrated charge carriers. Based on the layered feature of σ along the width of the channel, we propose a model that contains two dead (or depletion) layers, two highly conductive layers, and one inner layer to describe the ionic dynamics in the nanochannels. Our findings may open the way to unique nanofluidic functionalities, such as energy harvesting/storage and controlling transport at single-molecule and ion levels using the liquid layer near the wall.
Collapse
Affiliation(s)
- Ke Zhou
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuping Jiao
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Yan Chen
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huasong Qin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
24
|
Williams CD, Siperstein FR, Carbone P. High-throughput molecular simulations reveal the origin of ion free energy barriers in graphene oxide membranes. NANOSCALE 2021; 13:13693-13702. [PMID: 34477644 DOI: 10.1039/d1nr02169a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) membranes are highly touted as materials for contemporary separation challenges including desalination, yet understanding of the interplay between their structure and salt rejection is limited. K+ ion permeation through hydrated GO membranes was investigated by combining structurally realistic molecular models and high-throughput molecular dynamics simulations. We show that it is essential to consider the complex GO microstructure to quantitatively reproduce experimentally-derived free energy barriers to K+ permeation for membranes with various interlayer distances less than 1.3 nm. This finding confirms the non-uniformity of GO nanopores and the necessity of the high-throughput approach for this class of material. The large barriers arise due to significant dehydration of K+ inside the membrane, which can have as few as 3 coordinated water molecules, compared to 7 in bulk solution. Thus, even if the membranes have an average pore size larger than the ion's hydrated diameter, the significant presence of pores whose size is smaller than the hydrated diameter creates bottlenecks for the permeation process.
Collapse
Affiliation(s)
- Christopher D Williams
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
25
|
Finney AR, McPherson IJ, Unwin PR, Salvalaglio M. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem Sci 2021; 12:11166-11180. [PMID: 34522314 PMCID: PMC8386640 DOI: 10.1039/d1sc02289j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Graphite and related sp2 carbons are ubiquitous electrode materials with particular promise for use in e.g., energy storage and desalination devices, but very little is known about the properties of the carbon–electrolyte double layer at technologically relevant concentrations. Here, the (electrified) graphite–NaCl(aq) interface was examined using constant chemical potential molecular dynamics (CμMD) simulations; this approach avoids ion depletion (due to surface adsorption) and maintains a constant concentration, electroneutral bulk solution beyond the surface. Specific Na+ adsorption at the graphite basal surface causes charging of the interface in the absence of an applied potential. At moderate bulk concentrations, this leads to accumulation of counter-ions in a diffuse layer to balance the effective surface charge, consistent with established models of the electrical double layer. Beyond ∼0.6 M, however, a combination of over-screening and ion crowding in the double layer results in alternating compact layers of charge density perpendicular to the interface. The transition to this regime is marked by an increasing double layer size and anomalous negative shifts to the potential of zero charge with incremental changes to the bulk concentration. Our observations are supported by changes to the position of the differential capacitance minimum measured by electrochemical impedance spectroscopy, and are explained in terms of the screening behaviour and asymmetric ion adsorption. Furthermore, a striking level of agreement between the differential capacitance from solution evaluated in simulations and measured in experiments allows us to critically assess electrochemical capacitance measurements which have previously been considered to report simply on the density of states of the graphite material at the potential of zero charge. Our work shows that the solution side of the double layer provides the more dominant contribution to the overall measured capacitance. Finally, ion crowding at the highest concentrations (beyond ∼5 M) leads to the formation of liquid-like NaCl clusters confined to highly non-ideal regions of the double layer, where ion diffusion is up to five times slower than in the bulk. The implications of changes to the speciation of ions on reactive events in the double layer are discussed. CμMD reveals multi-layer electrolyte screening in the double layer beyond 0.6 M, which affects ion activities, speciation and mobility; asymmetric charge screening explains concentration dependent changes to electrochemical properties.![]()
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| | - Ian J McPherson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| |
Collapse
|
26
|
Di Pasquale N, Elliott JD, Hadjidoukas P, Carbone P. Dynamically Polarizable Force Fields for Surface Simulations via Multi-output Classification Neural Networks. J Chem Theory Comput 2021; 17:4477-4485. [PMID: 34197102 DOI: 10.1021/acs.jctc.1c00360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a general procedure to introduce electronic polarization into classical Molecular Dynamics (MD) force fields using a Neural Network (NN) model. We apply this framework to the simulation of a solid-liquid interface where the polarization of the surface is essential to correctly capture the main features of the system. By introducing a multi-input, multi-output NN and treating the surface polarization as a discrete classification problem, we are able to obtain very good accuracy in terms of quality of predictions. Through the definition of a custom loss function we are able to impose a physically motivated constraint within the NN itself making this model extremely versatile, especially in the modeling of different surface charge states. The NN is validated considering the redistribution of electronic charge density within a graphene based electrode in contact with an aqueous electrolyte solution, a system highly relevant to the development of next generation low-cost supercapacitors. We compare the performances of our NN/MD model against Quantum Mechanics/Molecular Dynamics simulations where we obtain a most satisfactory agreement.
Collapse
Affiliation(s)
- Nicodemo Di Pasquale
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9AL, United Kingdom
| | - Joshua D Elliott
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9AL, United Kingdom
| | | | - Paola Carbone
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9AL, United Kingdom
| |
Collapse
|
27
|
Aydin F, Moradzadeh A, Bilodeau CL, Lau EY, Schwegler E, Aluru NR, Pham TA. Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cation-π Interaction, and Confinement. J Chem Theory Comput 2021; 17:1596-1605. [PMID: 33625224 DOI: 10.1021/acs.jctc.0c00827] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between simulation results depending on the specific treatment of intermolecular interactions remain. In the following, we present a systematic investigation of the structure and dynamics of two representative solutions, that is, KCl and LiCl, confined in narrow carbon nanotubes (CNTs) with a diameter of 1.1 and 1.5 nm, using a combination of first-principles and classical MD simulations. Our simulations show that the inclusion of both polarization and cation-π interactions is essential for the description of ion solvation under confinement, particularly for large ions with weak hydration energies. Beyond the variation in ion solvation, we find that cation-π interactions can significantly influence the transport properties of ions in CNTs, particularly for KCl, where our simulations point to a strong correlation between ion dehydration and diffusion. Our study highlights the complex interplay between nanoconfinement and specific intermolecular interactions that strongly control the solvation and transport properties of ions.
Collapse
Affiliation(s)
- Fikret Aydin
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, United States
| | - Alireza Moradzadeh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Camille L Bilodeau
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Edmond Y Lau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, United States
| | - Eric Schwegler
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tuan Anh Pham
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, United States
| |
Collapse
|
28
|
Zhu H, Xu Y, Yan Y, Xu J, Yang C. Interfacial Diffusion of Hydrated Ion on Graphene Surface: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13613-13620. [PMID: 33146536 DOI: 10.1021/acs.langmuir.0c02450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydration plays an important role in the diffusion and sieving of ions within nanochannels. However, it is hard to quantitatively analyze the contribution of hydration to the diffusion rates due to the complex hydrogen-bond and charge interactions between atoms. Here, we quantitatively investigated the interfacial diffusion rates of a single hydrated ion with different number of water molecules on graphene surface through molecular dynamics simulation. The simulation results show the ballistic diffusion mode by analyzing the mean-square displacement, and the diffusion rates change nonmonotonically with the hydration number. The potential energy profiles with the changing position of the hydrated ion on graphene surface were further analyzed, which shows the dominant factor for interfacial diffusion changing from ion-graphene interaction to water-graphene interaction as the number of water molecules increases. Besides, it was found that the surface hydrophilicity weakened the influence of hydration number on the diffusion rates of hydrated ion. Finally, the diffusion properties of different hydrated ions on graphene surface were investigated, and the hydrated Li+, Na+, and K+ containing three, four, and five water molecules, respectively, show the fastest diffusion rate. This work demonstrates the interfacial diffusion behavior and mechanism of hydrated ions at the molecular level, which can provide valuable guidance in nanosensors, seawater desalination, and other hydrated ion-related fields.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinxiang Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yishu Yan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
29
|
Fuchs D, Bayer BC, Gupta T, Szabo GL, Wilhelm RA, Eder D, Meyer JC, Steiner S, Gollas B. Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40937-40948. [PMID: 32805835 PMCID: PMC7496728 DOI: 10.1021/acsami.0c11467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Graphene electrodes and deep eutectic solvents (DESs) are two emerging material systems that have individually shown highly promising properties in electrochemical applications. To date, however, it has not been tested whether the combination of graphene and DESs can yield synergistic effects in electrochemistry. We therefore study the electrochemical behavior of a defined graphene monolayer of centimeter-scale, which was produced by chemical vapor deposition and transferred onto insulating SiO2/Si supports, in the common DES choline chloride/ethylene glycol (12CE) under typical electrochemical conditions. We measure the graphene potential window in 12CE and estimate the apparent electron transfer kinetics of an outer-sphere redox couple. We further explore the applicability of the 12CE electrolyte to fabricate nanostructured metal (Zn) and metalloid (Ge) hybrids with graphene by electrodeposition. By comparing our graphene electrodes with common bulk glassy carbon electrodes, a key finding we make is that the two-dimensional nature of the graphene electrodes has a clear impact on DES-based electrochemistry. Thereby, we provide a first framework toward rational optimization of graphene-DES systems for electrochemical applications.
Collapse
Affiliation(s)
- David Fuchs
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz A-8010, Austria
| | - Bernhard C. Bayer
- Institute
of Materials Chemistry, Vienna University
of Technology (TU Wien), Getreidemarkt 9, Vienna A-1060, Austria
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna A-1090, Austria
| | - Tushar Gupta
- Institute
of Materials Chemistry, Vienna University
of Technology (TU Wien), Getreidemarkt 9, Vienna A-1060, Austria
| | - Gabriel L. Szabo
- Institute
of Applied Physics, Vienna University of
Technology (TU Wien), Wiedner Hauptstraße 8-10, Vienna A-1040, Austria
| | - Richard A. Wilhelm
- Institute
of Applied Physics, Vienna University of
Technology (TU Wien), Wiedner Hauptstraße 8-10, Vienna A-1040, Austria
| | - Dominik Eder
- Institute
of Materials Chemistry, Vienna University
of Technology (TU Wien), Getreidemarkt 9, Vienna A-1060, Austria
| | - Jannik C. Meyer
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna A-1090, Austria
| | - Sandra Steiner
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz A-8010, Austria
| | - Bernhard Gollas
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz A-8010, Austria
| |
Collapse
|
30
|
Ojaghlou N, Bratko D, Salanne M, Shafiei M, Luzar A. Solvent-Solvent Correlations across Graphene: The Effect of Image Charges. ACS NANO 2020; 14:7987-7998. [PMID: 32491826 DOI: 10.1021/acsnano.9b09321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wetting experiments show pure graphene to be weakly hydrophilic, but its contact angle (CA) also reflects the character of the supporting material. Measurements and molecular dynamics simulations on suspended and supported graphene often reveal a CA reduction due to the presence of the supporting substrate. A similar reduction is consistently observed when graphene is wetted from both sides. The effect has been attributed to transparency to molecular interactions across the graphene sheet; however, the possibility of substrate-induced graphene polarization has also been considered. Computer simulations of CA on graphene have so far been determined by ignoring the material's conducting properties. We improve the graphene model by incorporating its conductivity according to the constant applied potential molecular dynamics. Using this method, we compare the wettabilities of suspended graphene and graphene supported by water by measuring the CA of cylindrical water drops on the sheets. The inclusion of graphene conductivity and concomitant polarization effects leads to a lower CA on suspended graphene, but the CA reduction is significantly bigger when the sheets are also wetted from the opposite side. The stronger adhesion is accompanied by a profound change in the correlations among water molecules across the sheet. While partial charges on water molecules interacting across an insulator sheet attract charges of the opposite sign, apparent attraction among like charges is manifested across the conducting graphene. The change is associated with graphene polarization, as the image charges inside the conductor attract equally signed partial charges of water molecules on both sides of the sheet. Additionally, using a nonpolar liquid (diiodomethane), we affirm a detectable wetting translucency when liquid-liquid forces are dominated by dispersive interactions. Our findings are important for predictive modeling toward a variety of applications including sensors, fuel cell membranes, water filtration, and graphene-based electrode materials in high-performance supercapacitors.
Collapse
Affiliation(s)
- Neda Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Phenix, F-75005 Paris, France
| | - Mahdi Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
31
|
Elliott JD, Troisi A, Carbone P. A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene. J Chem Theory Comput 2020; 16:5253-5263. [PMID: 32644791 DOI: 10.1021/acs.jctc.0c00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new Quantum Mechanical/Molecular Dynamics (QM/MD) simulation loop to model the coupling between the electron and atom dynamics in solid/liquid interfacial systems. The method can describe simultaneously both the quantum mechanical surface polarizability emerging from the proximity to the electrolyte and the electrolyte structure and dynamics. In the current setup, Density Functional Tight Binding calculations for the electronic structure calculations of the surface are coupled with classical molecular dynamics to simulate the electrolyte solution. The reduced computational cost of the QM part makes the coupling with a classical simulation engine computationally feasible and allows simulation of large systems for hundreds of nanoseconds. We tested the method by simulating both a noncharged graphene flake and a noncharged and charged infinite graphene sheet immersed in an NaCl electrolyte solution. We found that, when no bias is applied, ions preferentially remained in solution, and only cations are mildly attracted to the surface of the graphene. This preferential adsorption of cations vs anions seems to persist also when the surface is moderately charged and rules out any substantial ions/surface charge transfer.
Collapse
Affiliation(s)
- Joshua D Elliott
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Paola Carbone
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
32
|
Iamprasertkun P, Ejigu A, Dryfe RAW. Understanding the electrochemistry of "water-in-salt" electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Chem Sci 2020; 11:6978-6989. [PMID: 34122994 PMCID: PMC8159404 DOI: 10.1039/d0sc01754j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
A new approach to expand the accessible voltage window of electrochemical energy storage systems, based on so-called "water-in-salt" electrolytes, has been expounded recently. Although studies of transport in concentrated electrolytes date back over several decades, the recent demonstration that concentrated aqueous electrolyte systems can be used in the lithium ion battery context has rekindled interest in the electrochemical properties of highly concentrated aqueous electrolytes. The original aqueous lithium ion battery conception was based on the use of concentrated solutions of lithium bis(trifluoromethanesulfonyl)imide, although these electrolytes still possess some drawbacks including cost, toxicity, and safety. In this work we describe the electrochemical behavior of a simple 1 : 1 electrolyte based on highly concentrated aqueous solutions of potassium fluoride (KF). Highly ordered pyrolytic graphite (HOPG) is used as well-defined model carbon to study the electrochemical properties of the electrolyte, as well as its basal plane capacitance, from a microscopic perspective: the KF electrolyte exhibits an unusually wide potential window (up to 2.6 V). The faradaic response on HOPG is also reported using K3Fe(CN)6 as a model redox probe: the highly concentrated electrolyte provides good electrochemical reversibility and protects the HOPG surface from adsorption of contaminants. Moreover, this electrolyte was applied to symmetrical supercapacitors (using graphene and activated carbon as active materials) in order to quantify its performance in energy storage applications. It is found that the activated carbon and graphene supercapacitors demonstrate high gravimetric capacitance (221 F g-1 for activated carbon, and 56 F g-1 for graphene), a stable working voltage window of 2.0 V, which is significantly higher than the usual range of water-based capacitors, and excellent stability over 10 000 cycles. These results provide fundamental insight into the wider applicability of highly concentrated electrolytes, which should enable their application in future of energy storage technologies.
Collapse
Affiliation(s)
- Pawin Iamprasertkun
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161-275-4598
- National Graphene Institute, University of Manchester Oxford Road M13 9PL UK
| | - Andinet Ejigu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161-275-4598
- National Graphene Institute, University of Manchester Oxford Road M13 9PL UK
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK +44 (0)161-275-4598
- National Graphene Institute, University of Manchester Oxford Road M13 9PL UK
| |
Collapse
|
33
|
Convertino D, Fabbri F, Mishra N, Mainardi M, Cappello V, Testa G, Capsoni S, Albertazzi L, Luin S, Marchetti L, Coletti C. Graphene Promotes Axon Elongation through Local Stall of Nerve Growth Factor Signaling Endosomes. NANO LETTERS 2020; 20:3633-3641. [PMID: 32208704 DOI: 10.1021/acs.nanolett.0c00571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.
Collapse
Affiliation(s)
- Domenica Convertino
- NEST, Scuola Normale Superiore, 56127 Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Filippo Fabbri
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Marco Mainardi
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Giovanna Testa
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Simona Capsoni
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Section of Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Stefano Luin
- NEST, Scuola Normale Superiore, 56127 Pisa, Italy
- NEST Istituto Nanoscienze, CNR and Scuola Normale Superiore, 56126 Pisa, Italy
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
- Department of Pharmacy, University of Pisa, 56127 Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| |
Collapse
|
34
|
Zhou K, Xu Z. Field-enhanced selectivity in nanoconfined ionic transport. NANOSCALE 2020; 12:6512-6521. [PMID: 32154818 DOI: 10.1039/c9nr10731b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluid transport confined in nanochannels shows ultrafast permeation and highly efficient separation performance. However, the size-controlled selectivity of hydrated ions with a similar valence and size, such as alkali ions, is well below 5. We propose in this work to boost ion selectivity through the interaction with the wall of flow channels, which can be enhanced by applying an external electric field across the channel. Molecular simulations show that for ions diffusing near the walls of a graphene nanochannel, the hydration shells are perturbed, endowing the contrast in ion-wall interactions to modify the ion-specific free energy landscape. The trapping/hopping nature of ion diffusion near the wall leads to the conclusion that the diffusivity depends on the free energy barriers rather than the hydration size. This effect can be magnified by elevating the field strength, yielding more than ∼10-fold enhancement in the diffusivity-specific selectivity. With recent experimental advances in external electric field control and local electric field modulation near the surface, this work demonstrates a possible route to achieve high selectivity of alkali ions in nanofluidics, and explore the molecular structures and dynamics of hydrated ions near a surface.
Collapse
Affiliation(s)
- Ke Zhou
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Faraezi S, Khan MS, Ohba T. Dehydration of Cations Inducing Fast Ion Transfer and High Electrical Capacitance Performance on Graphene Electrode in Aqueous Electrolytes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sharifa Faraezi
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Md Sharif Khan
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Tomonori Ohba
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
36
|
Zhan C, Cerón MR, Hawks SA, Otani M, Wood BC, Pham TA, Stadermann M, Campbell PG. Specific ion effects at graphitic interfaces. Nat Commun 2019; 10:4858. [PMID: 31649261 PMCID: PMC6813325 DOI: 10.1038/s41467-019-12854-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
Improved understanding of aqueous solutions at graphitic interfaces is critical for energy storage and water desalination. However, many mechanistic details remain unclear, including how interfacial structure and response are dictated by intrinsic properties of solvated ions under applied voltage. In this work, we combine hybrid first-principles/continuum simulations with electrochemical measurements to investigate adsorption of several alkali-metal cations at the interface with graphene and within graphene slit-pores. We confirm that adsorption energy increases with ionic radius, while being highly dependent on the pore size. In addition, in contrast with conventional electrochemical models, we find that interfacial charge transfer contributes non-negligibly to this interaction and can be further enhanced by confinement. We conclude that the measured interfacial capacitance trends result from a complex interplay between voltage, confinement, and specific ion effects-including ion hydration and charge transfer. Understanding aqueous solutions at graphitic interfaces is critical in a wide variety of emerging technologies. Here, the authors unravel specific ion effects at the interface with graphene and within graphene slit-pores by coupling first-principles simulations and electrochemical measurements.
Collapse
Affiliation(s)
- Cheng Zhan
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Maira R Cerón
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Minoru Otani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | | | | |
Collapse
|
37
|
Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat Commun 2019; 10:2490. [PMID: 31186413 PMCID: PMC6560108 DOI: 10.1038/s41467-019-10420-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/09/2019] [Indexed: 11/08/2022] Open
Abstract
Biological fluoride ion channels are sub-1-nanometer protein pores with ultrahigh F− conductivity and selectivity over other halogen ions. Developing synthetic F− channels with biological-level selectivity is highly desirable for ion separations such as water defluoridation, but it remains a great challenge. Here we report synthetic F− channels fabricated from zirconium-based metal-organic frameworks (MOFs), UiO-66-X (X = H, NH2, and N+(CH3)3). These MOFs are comprised of nanometer-sized cavities connected by sub-1-nanometer-sized windows and have specific F− binding sites along the channels, sharing some features of biological F− channels. UiO-66-X channels consistently show ultrahigh F− conductivity up to ~10 S m−1, and ultrahigh F−/Cl− selectivity, from ~13 to ~240. Molecular dynamics simulations reveal that the ultrahigh F− conductivity and selectivity can be ascribed mainly to the high F− concentration in the UiO-66 channels, arising from specific interactions between F− ions and F− binding sites in the MOF channels. While biological fluoride ion channels display excellent F− conductivity and selectivity, designing synthetic analogues remains highly challenging. Here the authors show that zirconium-based metal–organic frameworks with F− binding sites and sub-1-nanometer channels exhibit ultrahigh F− conductivity and selectivity.
Collapse
|
38
|
Diao Y, Greenwood G, Wang MC, Nam S, Espinosa-Marzal RM. Slippery and Sticky Graphene in Water. ACS NANO 2019; 13:2072-2082. [PMID: 30629408 DOI: 10.1021/acsnano.8b08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding modulation of water molecule slippage along graphene surfaces is crucial for many promising applications of two-dimensional materials. Here, we examine normal and shear forces on supported single-layer graphene using atomic force microscopy and find that the electrolyte composition affects the molecular slippage of nanometer thick films of aqueous electrolytes along the graphene surface. In light of the shear-assisted thermally activated theory, water molecules along the graphene plane are very mobile when subjected to shear. However, upon addition of an electrolyte, the cations can make water stick to graphene, while ion-specific and concentration effects are present. Recognizing the tribological and tribochemical utility of graphene, we also evaluate the impact of this behavior on its frictional response in the presence of water. It appears that the addition of an electrolyte to pure water causes a reduction of the thermal activation energy and of the shear-activation length at several concentrations, both results conversely affecting the friction force. Further, this work can inspire innovation in research areas where changes of the molecular slippage through the modulation of the doping characteristics of graphene in liquid environment can be of use, including molecular sensing, lubrication, and energy storage.
Collapse
Affiliation(s)
- Yijue Diao
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Gus Greenwood
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Michael Cai Wang
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , 1206 W. Green Street , Urbana , Illinois 61801 , United States
- Department of Mechanical Engineering , University of South Florida , 4202 E Fowler Ave. , Tampa , Florida 33620 , United States
| | - SungWoo Nam
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , 1206 W. Green Street , Urbana , Illinois 61801 , United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Matthews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
39
|
Iamprasertkun P, Hirunpinyopas W, Keerthi A, Wang B, Radha B, Bissett MA, Dryfe RAW. Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects. J Phys Chem Lett 2019; 10:617-623. [PMID: 30672302 DOI: 10.1021/acs.jpclett.8b03523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Carbon materials are ubiquitous in energy storage; however, many of the fundamental electrochemical properties of carbons are still not fully understood. In this work, we studied the capacitance of highly ordered pyrolytic graphite (HOPG), with the aim of investigating specific ion effects seen in the capacitance of the basal plane and edge-oriented planes of the material. A series of alkali metal cations, from Li+, Na+, K+, Rb+, and Cs+ with chloride as the counterion, were used at a fixed electrolyte concentration. The basal plane capacitance at a fixed potential relative to the potential of zero charge was found to increase from 4.72 to 9.39 μF cm-2 proceeding down Group 1. In contrast, the edge-orientated samples display capacitance ca. 100 times higher than those of the basal plane, attributed to pseudocapacitance processes associated with the presence of oxygen groups and largely independent of cation identity. This work improves understanding of capacitive properties of carbonaceous materials, leading to their continued development for use in energy storage.
Collapse
Affiliation(s)
- Pawin Iamprasertkun
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
- National Graphene Institute , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Wisit Hirunpinyopas
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
- National Graphene Institute , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Ashok Keerthi
- School of Physics and Astronomy , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
- National Graphene Institute , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Bin Wang
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Boya Radha
- School of Physics and Astronomy , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
- National Graphene Institute , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Mark A Bissett
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
- National Graphene Institute , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Robert A W Dryfe
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
- National Graphene Institute , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| |
Collapse
|
40
|
Chen L, Guo Y, Xu Z, Yang X. Multiscale Simulation of the Interaction and Adsorption of Ions on a Hydrophobic Graphene Surface. Chemphyschem 2018; 19:2954-2960. [PMID: 30142233 DOI: 10.1002/cphc.201800428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/07/2022]
Abstract
The adsorption of ions on a graphene surface is very important to control relevant graphene-based processes. In this work, a multiscale simulation was carried out to study the adsorption of Na+ /Cl- ions on graphene by combining quantum mechanics calculations and molecular dynamics (MD) simulations. The interaction energies of the ions with graphene were computed using density functional theory (DFT). It was found that the ions show strong interaction with a graphene cluster and the overwhelming portion of the interaction energy is the ion-π orbital interaction. The large orbital interaction can be ascribed to the two contributions arising from the ion-induced polarization of graphene and the charge transfer between ion and graphene. Their different contribution degrees reveal that the polarization effect plays a main role on the orbital interaction for ion adsorption. Comparatively, for Na/Cl atom adsorption, the charge transfer shows large part to the orbital interaction with weak atom-induced polarization. The obtained interaction energies were applied to develop new interaction potentials between ion and graphene, and then MD simulations were used to study the interfacial adsorption behavior of Na+ /Cl- aqueous solution onto the graphene surface. Due to enhanced ion-π interactions, Na+ /Cl- cooperatively demonstrates a strong ion adsorption layer through direct contact with the hydrophobic graphene surface. Our simulation result presents a new understanding of ion-graphene interactions.
Collapse
Affiliation(s)
- Luohao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Zhijun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Xiaoning Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
41
|
Pampaloni NP, Lottner M, Giugliano M, Matruglio A, D'Amico F, Prato M, Garrido JA, Ballerini L, Scaini D. Single-layer graphene modulates neuronal communication and augments membrane ion currents. NATURE NANOTECHNOLOGY 2018; 13:755-764. [PMID: 29892019 DOI: 10.1038/s41565-018-0163-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 05/08/2018] [Indexed: 05/24/2023]
Abstract
The use of graphene-based materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that single-layer graphene increases neuronal firing by altering membrane-associated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we hypothesize that the graphene-ion interactions that are maximized when single-layer graphene is deposited on electrically insulating substrates are crucial to these effects.
Collapse
Affiliation(s)
| | - Martin Lottner
- Walter Schottky Institut and Physik-Department, Technische Universität München, Garching, Germany
| | - Michele Giugliano
- Molecular, Cellular, and Network Excitability, Department of Biomedical Sciences, Universiteit Antwerp, Antwerp, Belgium
- Department of Computer Science, University of Sheffield, Sheffield, UK
- Lab of Neural Microcircuitry, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Alessia Matruglio
- CNR-IOM-Istituto Officina dei Materiali, Trieste, Italy
- CERIC-ERIC (Central European Research Infrastructure Consortium), Trieste, Italy
| | | | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Nanobiotechnology Laboratory, CIC biomaGUNE, San Sebastiàn, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Josè Antonio Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Spain.
- ICREA3, Barcelona, Spain.
| | - Laura Ballerini
- International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Denis Scaini
- International School for Advanced Studies (SISSA), Trieste, Italy.
- Elettra Sincrotrone Trieste S.C.p.A., Trieste, Italy.
| |
Collapse
|
42
|
Sun J, Liu Y. Matrix Effect Study and Immunoassay Detection Using Electrolyte-Gated Graphene Biosensor. MICROMACHINES 2018; 9:mi9040142. [PMID: 30424076 PMCID: PMC6187333 DOI: 10.3390/mi9040142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023]
Abstract
Significant progress has been made on the development of electrolyte-gated graphene field effect transistor (EGGFET) biosensors over the last decade, yet they are still in the stage of proof-of-concept. In this work, we studied the electrolyte matrix effects, including its composition, pH and ionic strength, and demonstrate that variations in electrolyte matrices have a significant impact on the Fermi level of the graphene channel and the sensitivity of the EGGFET biosensors. This is attributed to the polarization-induced interaction between the electrolyte and the graphene at the interface which can lead to considerable modulation of the Fermi level of the graphene channel. As a result, the response of the EGGFET biosensors is susceptible to the matrix effect which might lead to high uncertainty or even false results. Then, an EGGFET immunoassay is presented which aims to allow good regulation of the matrix effect. The multichannel design allows in-situ calibration with negative control, as well as statistical validation of the measurement results. Its performance is demonstrated by the detection of human immunoglobulin G (IgG) from serum. The detection range is estimated to be around 2–50 nM with a coefficient of variation (CV) of less than 20% and the recovery rate for IgG detection is around 85–95%. Compared with traditional immunoassay techniques, the EGGFET immunoassay is label-free and ready to be integrated with microfluidics sensor platforms, suggesting its great prospect for point-of-care applications.
Collapse
Affiliation(s)
- Jianbo Sun
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Yuxin Liu
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
43
|
Hardy A, Dix J, Williams CD, Siperstein FR, Carbone P, Bock H. Design Rules for Graphene and Carbon Nanotube Solvents and Dispersants. ACS NANO 2018; 12:1043-1049. [PMID: 29361221 DOI: 10.1021/acsnano.7b05159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The constantly widening industrial applications of carbon-based nanomaterials puts into sharp perspective the lack of true solvents in which the materials spontaneously exfoliate to individual molecules. This work shows that the different geometry of graphene compared to that of carbon nanotubes can change the potency of a molecule to act as a solvent or dispersant. Through analysis of the structure/function relationships, we derive a number of design rules that will aid the identification of the best solvent or dispersant candidates.
Collapse
Affiliation(s)
- Adam Hardy
- Institute of Chemical Sciences, Heriot Watt University , Edinburgh EH14 4AS, United Kingdom
| | - James Dix
- School of Chemical Engineering and Analytical Science, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Christopher D Williams
- School of Chemical Engineering and Analytical Science, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Flor R Siperstein
- School of Chemical Engineering and Analytical Science, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Henry Bock
- Institute of Chemical Sciences, Heriot Watt University , Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
44
|
Striolo A, Grady BP. Surfactant Assemblies on Selected Nanostructured Surfaces: Evidence, Driving Forces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8099-8113. [PMID: 28516778 DOI: 10.1021/acs.langmuir.7b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfactant adsorption at solid-liquid interfaces is critical for a number of applications of vast industrial interest and can also be used to seed surface-modification processes. Many of the surfaces of interest are nanostructured, as they might present surface roughness at the molecular scale, chemical heterogeneity, as well as a combination of both surface roughness and chemical heterogeneity. These effects provide lateral confinement on the surfactant aggregates. It is of interest to quantify how much surfactant adsorbs on such nanostructured surfaces and how the surfactant aggregates vary as the degree of lateral confinement changes. This review focuses on experimental evidence on selected substrates, including gold- and carbon-based substrates, suggesting that lateral confinement can have pronounced effects both on the amount adsorbed and on the morphology of the aggregates as well as on a systematic study, via diverse simulation approaches, on the effect of lateral confinement on the structure of the surfactant aggregates. Atomistic and coarse-grained simulations conducted for surfactants on graphene sheets and carbon nanotubes are reviewed, as well as coarse-grained simulations for surfactant adsorption on nanostructured surfaces. Finally, we suggest a few possible extensions of these studies that could positively impact a few practical applications. In particular, the simultaneous effect of lateral confinement and of the coadsorption of molecular compounds within the surface aggregates is expected to yield interesting fundamental results with long-lasting consequences in applications ranging from drug delivery to the design of advanced materials.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering University College London , London, WC1E 7JE United Kingdom
| | - Brian Patrick Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
45
|
Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water. Proc Natl Acad Sci U S A 2017; 114:13369-13373. [PMID: 28827359 DOI: 10.1073/pnas.1702760114] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN- ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.
Collapse
|