1
|
Chen T, Karedla N, Enderlein J. Observation of E-cadherin adherens junction dynamics with metal-induced energy transfer imaging and spectroscopy. Commun Biol 2024; 7:1596. [PMID: 39613901 DOI: 10.1038/s42003-024-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Epithelial cadherin (E-cad) mediated cell-cell junctions play a crucial role in the establishment and maintenance of tissues and organs. In this study, we employed metal-induced energy transfer imaging and spectroscopy to investigate variations in intermembrane distance during adhesion between two model membranes adorned with E-cad. By correlating the measured intermembrane distances with the distinct E-cad junction states, we probed the dynamic behavior and diversity of E-cad junctions across different binding pathways. Our observations led to the identification of a transient intermediate state referred to as the X-dimeric state and enabled a detailed analysis of its kinetics. We discovered that the formation of the X-dimer leads to significant membrane displacement, subsequently impacting the formation of other X-dimers. These direct experimental insights into the subtle dynamics of E-cad-modified membranes and the resultant changes in intermembrane distance provide perspectives on the assembly of E-cad junctions between cells. This knowledge enhances our comprehension of tissue and organ development and may serve as a foundation for the development of innovative therapeutic strategies for diseases linked to cell-cell adhesion abnormalities.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
| | - Narain Karedla
- The Rosalind Franklin Institute, Didcot, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Hauke L, Isbaner S, Ghosh A, Guido I, Turco L, Chizhik AI, Gregor I, Karedla N, Rehfeldt F, Enderlein J. Metal-Induced Energy Transfer (MIET) for Live-Cell Imaging with Fluorescent Proteins. ACS NANO 2023; 17:8242-8251. [PMID: 36995274 PMCID: PMC10173696 DOI: 10.1021/acsnano.2c12372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metal-induced energy transfer (MIET) imaging is an easy-to-implement super-resolution modality that achieves nanometer resolution along the optical axis of a microscope. Although its capability in numerous biological and biophysical studies has been demonstrated, its implementation for live-cell imaging with fluorescent proteins is still lacking. Here, we present its applicability and capabilities for live-cell imaging with fluorescent proteins in diverse cell types (adult human stem cells, human osteo-sarcoma cells, and Dictyostelium discoideum cells), and with various fluorescent proteins (GFP, mScarlet, RFP, YPet). We show that MIET imaging achieves nanometer axial mapping of living cellular and subcellular components across multiple time scales, from a few milliseconds to hours, with negligible phototoxic effects.
Collapse
Affiliation(s)
- Lara Hauke
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sebastian Isbaner
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Arindam Ghosh
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Laura Turco
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Alexey I Chizhik
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ingo Gregor
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Narain Karedla
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Ghosh S, Ross U, Chizhik AM, Kuo Y, Jeong BG, Bae WK, Park K, Li J, Oron D, Weiss S, Enderlein J, Chizhik AI. Excitation Intensity-Dependent Quantum Yield of Semiconductor Nanocrystals. J Phys Chem Lett 2023; 14:2702-2707. [PMID: 36892266 PMCID: PMC10026174 DOI: 10.1021/acs.jpclett.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
One of the key phenomena that determine the fluorescence of nanocrystals is the nonradiative Auger-Meitner recombination of excitons. This nonradiative rate affects the nanocrystals' fluorescence intensity, excited state lifetime, and quantum yield. Whereas most of the above properties can be directly measured, the quantum yield is the most difficult to assess. Here we place semiconductor nanocrystals inside a tunable plasmonic nanocavity with subwavelength spacing and modulate their radiative de-excitation rate by changing the cavity size. This allows us to determine absolute values of their fluorescence quantum yield under specific excitation conditions. Moreover, as expected considering the enhanced Auger-Meitner rate for higher multiple excited states, increasing the excitation rate reduces the quantum yield of the nanocrystals.
Collapse
Affiliation(s)
- Subhabrata Ghosh
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Ulrich Ross
- IV. Physical
Institute - Solids and Nanostructures, Georg
August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Anna M. Chizhik
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Yung Kuo
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Byeong Guk Jeong
- School of
Chemical and Biomolecular Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Wan Ki Bae
- SKKU Advanced
Institute of Nanotechnology (SAINT), Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Kyoungwon Park
- Korea Electronics
Technology Institute, Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Jack Li
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Dan Oron
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Weiss
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California
Los Angeles, Los Angeles, California 90095, United States
- Department
of Physiology, University of California
Los Angeles, Los Angeles, California 90095, United States
- Department
of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Jörg Enderlein
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells,” (MBExC), Georg August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Alexey I. Chizhik
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Ghosh A, Chizhik AI, Karedla N, Enderlein J. Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution. Nat Protoc 2021; 16:3695-3715. [PMID: 34099942 DOI: 10.1038/s41596-021-00558-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
Super-resolution fluorescence imaging that surpasses the classical optical resolution limit is widely utilized for resolving the spatial organization of biological structures at molecular length scales. In one example, single-molecule localization microscopy, the lateral positions of single molecules can be determined more precisely than the diffraction limit if the camera collects individual photons separately. Using several schemes that introduce engineered optical aberrations in the imaging optics, super-resolution along the optical axis (perpendicular to the sample plane) has been achieved, and single-molecule localization microscopy has been successfully applied for the study of 3D biological structures. Nonetheless, the achievable axial localization accuracy is typically three to five times worse than the lateral localization accuracy. Only a few exceptional methods based on interferometry exist that reach nanometer 3D super-resolution, but they involve enormous technical complexity and restricted sample preparations that inhibit their widespread application. We developed metal-induced energy transfer imaging for localizing fluorophores along the axial direction with nanometer accuracy, using only a conventional fluorescence lifetime imaging microscope. In metal-induced energy transfer, experimentally measured fluorescence lifetime values increase linearly with axial distance in the range of 0-100 nm, making it possible to calculate their axial position using a theoretical model. If graphene is used instead of the metal (graphene-induced energy transfer), the same range of lifetime values occurs over a shorter axial distance (~25 nm), meaning that it is possible to get very accurate axial information at the scale of a membrane bilayer or a molecular complex in a membrane. Here, we provide a step-by-step protocol for metal- and graphene-induced energy transfer imaging in single molecules, supported lipid bilayer and live-cell membranes. Depending on the sample preparation time, the complete duration of the protocol is 1-3 d.
Collapse
Affiliation(s)
- Arindam Ghosh
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany
| | - Alexey I Chizhik
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany
| | - Narain Karedla
- Rosalind Franklin Institute, Didcot, UK.,Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany. .,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg August University, Göttingen, Germany.
| |
Collapse
|
5
|
Ruhlandt D, Andresen M, Jensen N, Gregor I, Jakobs S, Enderlein J, Chizhik AI. Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity. Commun Biol 2020; 3:627. [PMID: 33128009 PMCID: PMC7599333 DOI: 10.1038/s42003-020-01316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state.
Collapse
Affiliation(s)
- Daja Ruhlandt
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany
| | - Martin Andresen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ingo Gregor
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- University of Göttingen Medical Faculty, Clinic of Neurology, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," (MBExC), University of Göttingen, Göttingen, Germany
| | - Jörg Enderlein
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," (MBExC), University of Göttingen, Göttingen, Germany.
| | - Alexey I Chizhik
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany.
| |
Collapse
|
6
|
Rao E, Foderà V, Leone M, Vetri V. Direct observation of alpha-lactalbumin, adsorption and incorporation into lipid membrane and formation of lipid/protein hybrid structures. Biochim Biophys Acta Gen Subj 2019; 1863:784-794. [PMID: 30742952 DOI: 10.1016/j.bbagen.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (α-La). α-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize α-La-membrane mechanisms of interaction and α-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imaging, we are able to distinguish between protein adsorption and insertion in the membranes. Our results indicate that, upon addition of α-La to giant vesicles samples, protein is inserted into the lipid bilayer with rates that are concentration-dependent. The formation of heterogeneous hybrid protein-lipid co-aggregates, paralleled with protein conformational and structural changes, alters the membrane structure and morphology, leading to an increase in membrane fluidity.
Collapse
Affiliation(s)
- Estella Rao
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, Universitetsparken 2, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Maurizio Leone
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
7
|
Singh MK, Khan MF, Shweta H, Sen S. Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer. Phys Chem Chem Phys 2017; 19:25870-25885. [DOI: 10.1039/c7cp03108d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effect of dielectric environment and lipid fluidity/rigidity in multi-chromophoric FRET from a series of donors to acceptors at lipid/water interfaces are monitored by tailored donor–acceptor pairs.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Mohammad Firoz Khan
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Him Shweta
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Sobhan Sen
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| |
Collapse
|