1
|
Acar M, Tatini D, Ninham BW, Lo Nostro P. The Role of Polarizability in Isoelectronic Ions: The Case of Pseudohalides. Molecules 2025; 30:323. [PMID: 39860193 PMCID: PMC11767347 DOI: 10.3390/molecules30020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Specific ion effects are widespread and have been studied for over a century, yet they remain poorly understood. Terms like "kosmotropes" and "chaotropes" are convenient rules of thumb but the frequent reversal of the Hofmeister series implies their limitations. Polarizability is often used to classify ions, with kosmotropes considered low in polarizability and chaotropes high. However, for polyatomic ions, this framework becomes misleading. The anisotropic nature of polarizability in polyatomic ions plays a decisive role in shaping their behavior. In this work, we study pseudohalides (KOCN, KSCN, and KSeCN) aqueous solutions to explore these effects. We evaluate properties of these anions through experimental measurements of conductivity, density, viscosity, infrared spectra, and polarizability. Our results demonstrate that, even for linear isoelectronic polyatomic ions, the anisotropy of polarizability governs their hydration behavior.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Barry W. Ninham
- Materials Physics (Formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
2
|
Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL, Tarasov SA, Tverdislov VA, Uvarov AV. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem 2024; 12:1456533. [PMID: 39391834 PMCID: PMC11464478 DOI: 10.3389/fchem.2024.1456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of experimental methods has provided new information about the structure and structural fluctuations of water. Despite the appearance of numerous models, which aim to describe a wide range of thermodynamic and electrical characteristics of water, there is a deficit in systemic understanding of structuring in aqueous solutions. A particular challenge is the fact that even pure water is a heterogeneous, multicomponent system composed of molecular and supramolecular structures. The possibility of the existence of such structures and their nature are of fundamental importance for various fields of science. However, great difficulties arise in modeling relatively large supramolecular structures (e.g. extended hydration shells), where the bonds between molecules are characterized by low energy. Generally, such structures may be non-equilibrium but relatively long-lived. Evidently, the short times of water microstructure exchanges do not mean short lifetimes of macrostructures, just as the instability of individual parts does not mean the instability of the entire structure. To explain this paradox, we review the data from experimental and theoretical research. Today, only some of the experimental results on the lifetime of water structures have been confirmed by modeling, so there is not a complete theoretical picture of the structure of water yet. We propose a new hierarchical water macrostructure model to resolve the issue of the stability of water structures. In this model, the structure of water is presented as consisting of many hierarchically related levels (the stratification model). The stratification mechanism is associated with symmetry breaking at the formation of the next level, even with minimal changes in the properties of the previous level. Such a hierarchical relationship can determine the unique physico-chemical properties of water systems and, in the future, provide a complete description of them.
Collapse
Affiliation(s)
- German O. Stepanov
- Department of General and Medical biophysics, Medical Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rodionova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Anastasia O. Petrova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | | | | | - Sergey A. Tarasov
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Vsevolod A. Tverdislov
- Department of Biophysics Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V. Uvarov
- Department of Molecular Processes and Extreme States of Matter, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Fellows AP, Duque ÁD, Balos V, Lehmann L, Netz RR, Wolf M, Thämer M. How Thick is the Air-Water Interface?─A Direct Experimental Measurement of the Decay Length of the Interfacial Structural Anisotropy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18760-18772. [PMID: 39171356 PMCID: PMC11375779 DOI: 10.1021/acs.langmuir.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The air-water interface is a highly prevalent phase boundary impacting many natural and artificial processes. The significance of this interface arises from the unique properties of water molecules within the interfacial region, with a crucial parameter being the thickness of its structural anisotropy, or "healing depth". This quantity has been extensively assessed by various simulations which have converged to a prediction of a remarkably short length of ∼6 Å. Despite the absence of any direct experimental measurement of this quantity, this predicted value has surprisingly become widely accepted as fact. Using an advancement in nonlinear vibrational spectroscopy, we provide the first measurement of this thickness and, indeed, find it to be ∼6-8 Å, finally confirming the prior predictions. Lastly, by combining the experimental results with depth-dependent second-order spectra calculated from ab initio parametrized molecular dynamics simulations, which are also in excellent agreement with this experimental result, we shed light on this surprisingly short correlation length of molecular orientations at the interface.
Collapse
Affiliation(s)
- Alexander P Fellows
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Álvaro Díaz Duque
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Vasileios Balos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Louis Lehmann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
4
|
Singh A, Doan LC, Lou D, Wen C, Vinh NQ. Interfacial Layers between Ion and Water Detected by Terahertz Spectroscopy. J Chem Phys 2022; 157:054501. [DOI: 10.1063/5.0095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamic fluctuations in hydrogen-bond network of water occur from femto- to nano-second timescale and provides insights into structural/dynamical aspects of water at ion-water interfaces. Employing terahertz spectroscopy assisted with molecular dynamics simulations, we study aqueous chloride solutions of five monovalent cations, namely, Li, Na, K, Rb and Cs. We show that ions modify the behavior of surrounding water molecules and form interfacial layers of water around them with physical properties distinct from that of bulk water. Small cations with high charge densities influence the kinetics of water well beyond the first solvation shell. At terahertz frequencies, we observe an emergence of fast relaxation processes of water with their magnitude following the ionic order Cs>Rb>K>Na>Li, revealing an enhanced population density of weakly coordinated water at ion-water interface. The results shed light on the structure breaking tendency of monovalent cations and provide insights into the properties of ionic solutions at the molecular level.
Collapse
Affiliation(s)
- Abhishek Singh
- Physics, Virginia Polytechnic Institute and State University, United States of America
| | - Luan C Doan
- Virginia Polytechnic Institute and State University, United States of America
| | - Djamila Lou
- Virginia Polytechnic Institute and State University, United States of America
| | - Chengyuan Wen
- Virginia Polytechnic Institute and State University - National Capital Region, United States of America
| | - Nguyen Q Vinh
- Department of Physics, Virginia Polytechnic Institute and State University, United States of America
| |
Collapse
|
5
|
Zhao L, Zhang M, Liu G, Zhao A, Gong X, Shi S, Zheng X, Gao J, Jiang Y. Tuning the Microstructure of a Zwitterion-Functionalized Polyethylenimine Loose NF Membrane for Dye Desalination. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingfeng Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Min Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Anan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xuesong Gong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobing Zheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
6
|
Onuki A. Long-range correlations of polarization and number densities in dilute electrolytes. J Chem Phys 2020; 153:234501. [DOI: 10.1063/5.0030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Duboisset J, Rondepierre F, Brevet PF. Long-Range Orientational Organization of Dipolar and Steric Liquids. J Phys Chem Lett 2020; 11:9869-9875. [PMID: 33170705 DOI: 10.1021/acs.jpclett.0c02705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Long-range orientational correlations in liquids have received recent renewed interest, in particular for the neat water case. These long-range orientational correlations, exceeding several tens of nanometers, originate from the presence of the strong permanent water dipolar moment. However, the exact dependence with the dipolar moment and the role of other local forces like steric hindrance has never been addressed. In this work, we experimentally measure long-range correlations for a set of liquids differing by their molecular weight and dipolar moment, in order to reveal the origin of their long-range organization. Hence, we show that the dipolar moment of a solvent molecule is not the unique feature determining the orientational correlation. Steric hindrance significantly helps to structure the liquids as well. In order to quantify these long-range correlations, we also derive theoretically the polarization resolved second harmonic scattering intensity as a function of the rotational invariants describing the dipolar and octupolar interaction.
Collapse
Affiliation(s)
- Julien Duboisset
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Fabien Rondepierre
- Institut Lumière Matière, Université de Lyon, UMR 5306 CNRS and Université Claude Bernard Lyon1, F-69622 Villeurbanne, France
| | - Pierre-François Brevet
- Institut Lumière Matière, Université de Lyon, UMR 5306 CNRS and Université Claude Bernard Lyon1, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Abstract
The dielectric nature of polar liquids underpins much of their ability to act as useful solvents, but its description is complicated by the long-ranged nature of dipolar interactions. This is particularly pronounced under the periodic boundary conditions commonly used in molecular simulations. In this article, the dielectric properties of a water model whose intermolecular electrostatic interactions are entirely short-ranged are investigated. This is done within the framework of local molecular-field theory (LMFT), which provides a well-controlled mean-field treatment of long-ranged electrostatics. This short-ranged model gives a remarkably good performance on a number of counts, and its apparent shortcomings are readily accounted for. These results not only lend support to LMFT as an approach for understanding solvation behavior, but also are relevant to those developing interaction potentials based on local descriptions of liquid structure.
Collapse
|
9
|
Fetisov EO, Mundy CJ, Schenter GK, Benmore CJ, Fulton JL, Kathmann SM. Nanometer-Scale Correlations in Aqueous Salt Solutions. J Phys Chem Lett 2020; 11:2598-2604. [PMID: 32163289 DOI: 10.1021/acs.jpclett.0c00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intermediate-range (1-4 nm) correlation of cations, anions, and water in aqueous alkaline earth salt solutions is measured using synchrotron X-ray diffraction. We differentiate from the entire solution structure factor, SX(Q), a separate region at low Q (<1.5 Å-1) containing local diffraction maxima (prepeaks) that indicate nanometer-scale oscillatory behavior. These features are quantitatively reproduced with classical molecular dynamics simulations. At high concentrations, the prepeaks emerge from correlations arising from the existence of small quasi close-packed lattice-like structures comprised of cation hydration spheres. We also analyze the concentration dependence of the prepeak and discuss the overall results in light of the rich literature dealing with intermediate-range correlations underlying universal phenomena in concentrated electrolytes.
Collapse
Affiliation(s)
- Evgenii O Fetisov
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gregory K Schenter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chris J Benmore
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - John L Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Banerjee P, Bagchi B. Ion pair correlations due to interference between solvent polarizations induced in water. J Chem Phys 2020; 152:064501. [DOI: 10.1063/1.5133753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Puja Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
11
|
Cota R, Tiwari A, Ensing B, Bakker HJ, Woutersen S. Hydration interactions beyond the first solvation shell in aqueous phenolate solution. Phys Chem Chem Phys 2020; 22:19940-19947. [DOI: 10.1039/d0cp01209b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the orientational dynamics of water molecules solvating phenolate ions using ultrafast vibrational spectroscopy and density functional theory-based molecular dynamics simulations.
Collapse
Affiliation(s)
- Roberto Cota
- Van 't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
- AMOLF
| | - Ambuj Tiwari
- Van 't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | | | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| |
Collapse
|
12
|
Friedman R. Specific Ion and Concentration Effects in Acetate Solutions with Na + , K + and Cs .. Chemphyschem 2019; 20:1006-1010. [PMID: 30817057 DOI: 10.1002/cphc.201900163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/27/2019] [Indexed: 11/10/2022]
Abstract
How salt ions affect solutes and the water beyond the solvation shell is not well understood. Molecular dynamics simulations of alkali-acetate solutions were analysed here in order to examine if, and how, different cations and solute concentrations affect the water structure and the interactions between water and acetates. The results revealed that water structure is perturbed to more than 1 nm away from the acetates and that this effect is more pronounced in physiological than in molar electrolyte concentrations. Analysis of simulations of a soluble protein revealed that the water orientation is perturbed to at least 1.5 nm from the protein structure. Furthermore, modifications to the orientation of water around carboxylate side chains were shown to depend on the local environment on the protein surface, and could extend to well over 1 nm, which may have an effect on protein dynamics during MD simulations in small water boxes.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, SE-391 82, Sweden
| |
Collapse
|
13
|
Pluhařová E, Jungwirth P, Matubayasi N, Marsalek O. Structure and Dynamics of the Hydration Shell: Spatially Decomposed Time Correlation Approach. J Chem Theory Comput 2019; 15:803-812. [PMID: 30537825 DOI: 10.1021/acs.jctc.8b00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular simulations provide insight into solvation structures and dynamics with unparalleled spatial and temporal resolution. Here, we take advantage of this fact and develop a set of generally applicable computational tools for a detailed analysis of the hydration shell around an ionic or molecular solute. These tools allow us to quantify and visualize orientationally resolved radial distribution functions as well as distance-resolved orientational time-correlation functions of water molecules surrounding the solute. Such a detailed view of the hydration shells allows us to unravel important structural and dynamical features, which are not accessible when employing standard analysis techniques.
Collapse
Affiliation(s)
- Eva Pluhařová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 18223 Prague 8 , Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague 6 , Czech Republic
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , Toyonaka, Osaka 560-8531 , Japan.,Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| | - Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague 6 , Czech Republic.,Charles University , Faculty of Mathematics and Physics , Ke Karlovu 3 , 12116 Prague 2 , Czech Republic
| |
Collapse
|
14
|
Rudzinski JF, Radu M, Bereau T. Automated detection of many-particle solvation states for accurate characterizations of diffusion kinetics. J Chem Phys 2019; 150:024102. [PMID: 30646696 DOI: 10.1063/1.5064808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Discrete-space kinetic models, i.e., Markov state models, have emerged as powerful tools for reducing the complexity of trajectories generated from molecular dynamics simulations. These models require configuration-space representations that accurately characterize the relevant dynamics. Well-established, low-dimensional order parameters for constructing this representation have led to widespread application of Markov state models to study conformational dynamics in biomolecular systems. On the contrary, applications to characterize single-molecule diffusion processes have been scarce and typically employ system-specific, higher-dimensional order parameters to characterize the local solvation state of the molecule. In this work, we propose an automated method for generating a coarse configuration-space representation, using generic features of the solvation structure-the coordination numbers about each particle. To overcome the inherent noisy behavior of these low-dimensional observables, we treat the features as indicators of an underlying, latent Markov process. The resulting hidden Markov models filter the trajectories of each feature into the most likely latent solvation state at each time step. The filtered trajectories are then used to construct a configuration-space discretization, which accurately describes the diffusion kinetics. The method is validated on a standard model for glassy liquids, where particle jumps between local cages determine the diffusion properties of the system. Not only do the resulting models provide quantitatively accurate characterizations of the diffusion constant, but they also reveal a mechanistic description of diffusive jumps, quantifying the heterogeneity of local diffusion.
Collapse
Affiliation(s)
| | - Marc Radu
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
15
|
Duignan TT, Peng M, Nguyen AV, Zhao XS, Baer MD, Mundy CJ. Detecting the undetectable: The role of trace surfactant in the Jones-Ray effect. J Chem Phys 2018; 149:194702. [DOI: 10.1063/1.5050421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy T. Duignan
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA
| | - Mengsu Peng
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Anh V. Nguyen
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - X. S. Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Marcel D. Baer
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
16
|
Borgis D, Belloni L, Levesque M. What Does Second-Harmonic Scattering Measure in Diluted Electrolytes? J Phys Chem Lett 2018; 9:3698-3702. [PMID: 29902007 DOI: 10.1021/acs.jpclett.8b01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We derive a theoretical expression of the second harmonic scattering signal in diluted electrolytes compared with bulk water. We show that the enhancement of the signal with respect to pure water observed recently for electrolytes at very low dilution in the micromolar range is a mere manifestation of the Debye screening that makes the infinite-range dipole-dipole solvent correlations in 1/ r3 disappear as soon as the ionic concentration becomes finite. In q space, this translates into a correlation function having a well known singular behavior around q = 0, which drives the observed ionic effects. We find that the signal is independent of the ion-induced long-range behavior of the function ⟨cos ϕ( r)⟩ that has been recently discussed. We find also that the enhancement depends on the experimental geometry and occurs only for in-plane polarization detection, as observed experimentally. On the contrary, the measured isotope effect between light and heavy water cannot be fully explained.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation , USR 3441 CNRS-CEA-Université Paris-Saclay , 91191 Gif-sur-Yvette , France
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , 91191 Gif-sur-Yvette , France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
17
|
Chang R, Asatyas S, Lkhamsuren G, Hirohara M, Mondarte EAQ, Suthiwanich K, Sekine T, Hayashi T. Water near bioinert self-assembled monolayers. Polym J 2018. [DOI: 10.1038/s41428-018-0075-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Zhang Q, Pan Z, Zhang L, Zhang R, Chen Z, Jin T, Wu T, Chen X, Zhuang W. Ion effect on the dynamics of water hydrogen bonding network: A theoretical and computational spectroscopy point of view. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- Department of ChemistryBohai UniversityJinzhouChina
| | - Zhijun Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Ruiting Zhang
- School of Physics and Optoelectronic EngineeringXidian UniversityXi'anChina
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Tan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Tianmin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Xian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| |
Collapse
|
19
|
Jungwirth P, Laage D. Ion-Induced Long-Range Orientational Correlations in Water: Strong or Weak, Physiologically Relevant or Unimportant, and Unique to Water or Not? J Phys Chem Lett 2018; 9:2056-2057. [PMID: 29669422 DOI: 10.1021/acs.jpclett.8b01027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo nam. 2 , 16610 Prague 6 , Czech Republic
| | - Damien Laage
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
20
|
Berthoumieux H. Gaussian field model for polar fluids as a function of density and polarization: Toward a model for water. J Chem Phys 2018; 148:104504. [DOI: 10.1063/1.5012828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- H. Berthoumieux
- CNRS, UMR 7600, LPTMC, F-75005 Paris, France and Sorbonne Universités, UPMC Université Paris 06, UMR 7600, LPTMC, F-75005 Paris, France
| |
Collapse
|