1
|
Zhou Z, Wu Y, He J, Frauenheim T, Prezhdo OV. Enhancing Extraction and Suppressing Cooling of Hot Electrons in Lead Halide Perovskites by Dipolar Surface Passivation. J Am Chem Soc 2024; 146:29905-29912. [PMID: 39417599 PMCID: PMC11528416 DOI: 10.1021/jacs.4c12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Slowing hot carrier (HC) cooling and improving HC extraction are considered two pivotal factors for enhancing power conversion efficiency in emerging HC photovoltaic applications of perovskites and other materials. Employing ab initio quantum dynamics simulations, we demonstrate the simultaneous slow cooling and efficient extraction of hot electrons at the C60/CsPbI3 interface through dipolar surface passivation with phenethylammonium and 4-fluorophenethylammonium ligands. The passivation effectively suppresses I-Pb lattice vibrations, weakens the hot electron-phonon interaction in CsPbI3, and thus slows down the HC cooling. At the same time, the dipolar surface passivation elevates the LUMO + 1 state in C60 and reduces the energy gap for HC extraction. Concurrently, higher-frequency vibrations of the dipolar layer enhance the coupling between C60 and CsPbI3, promoting efficient HC extraction further. These phenomena are intensified with increased polarity of the dipolar layer. Furthermore, we find that dipolar passivation has the opposite influence on cold electron collection at the band edge, underscoring the fact that the observed improvement in photovoltaic performance stems preferentially from the effective utilization of HCs rather than cold electrons. The work provides a new strategy for achieving high-performance HC perovskite solar cells.
Collapse
Affiliation(s)
- Zhaobo Zhou
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Yang Wu
- Bremen
Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Thomas Frauenheim
- School
of Science, Constructor University, Bremen 28759, Germany
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Oleg V. Prezhdo
- Departments
of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Lim JWM, Guo Y, Feng M, Cai R, Sum TC. Making and Breaking of Exciton Cooling Bottlenecks in Halide Perovskite Nanocrystals. J Am Chem Soc 2024; 146:437-449. [PMID: 38158611 DOI: 10.1021/jacs.3c09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Harnessing quantum confinement (QC) effects in semiconductors to retard hot carrier cooling (HCC) is an attractive approach for enabling efficient hot carrier extraction to overcome the Shockley-Queisser limit. However, there is a debate about whether halide perovskite nanocrystals (PNCs) can effectively exploit these effects. To address this, we utilized pump-probe and multipulse pump-push-probe spectroscopy to investigate HCC behavior in PNCs of varying sizes and cation compositions. Our results validate the presence of an intrinsic phonon bottleneck with clear manifestations of QC effects in small CsPbBr3 PNCs exhibiting slower HCC rates compared to those of larger PNCs. However, the replacement of inorganic Cs+ with organic cations suppresses this intrinsic bottleneck. Furthermore, PNCs exhibit distinct size-dependent HCC behavior in response to changes in the cold carrier densities. We attribute this to the enhanced exciton-exciton interactions in strongly confined PNCs that facilitate Auger heating. Importantly, our findings dispel the existing controversy and provide valuable insights into design principles for engineering QC effects in PNC hot carrier applications.
Collapse
Affiliation(s)
- Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
4
|
Akimov AV. Energy-Conserving and Thermally Corrected Neglect of Back-Reaction Approximation Method for Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:11673-11683. [PMID: 38109379 DOI: 10.1021/acs.jpclett.3c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In this work, the energy-conserving and thermally corrected neglect of the back-reaction approximation approach for nonadiabatic molecular dynamics in extended atomistic systems is developed. The new approach introduces three key corrections to the original method: (1) it enforces the total energy conservation, (2) it introduces an explicit coupling of the system to its environment, and (3) it introduces a renormalization of nonadiabatic couplings to account for a difference between the instantaneous nuclear kinetic energy and the kinetic energy of guiding trajectories. In the new approach, an auxiliary kinetic energy variable is introduced as an independent dynamical variable. The new approach produces nonzero equilibrium populations, whereas the original neglect of the back-reaction approximation method does not. It yields population relaxation time scales that are favorably comparable to the reference values, and it introduces an explicit and controllable way of dissipating energy into a bath without an assumption of the bath being at equilibrium.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| |
Collapse
|
5
|
Ravali V, Ghosh T. Charge carrier dynamics and transient spectral evolutions in lead halide perovskites. Chem Commun (Camb) 2023; 59:13939-13950. [PMID: 37934456 DOI: 10.1039/d3cc04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as promising materials for solar cell applications due to their unique photophysical properties. Most of the crucial properties related to solar cell performance such as carrier mobility, diffusion length, recombination rates, etc. have been estimated using ultrafast spectroscopic methods. While various methods have been developed to prepare and fabricate high-quality perovskite films for photovoltaic applications, understanding the charge carrier dynamics is also crucial at each stage of the charge generation, cooling, and recombination processes. Using femtosecond (fs) transient absorption (TA) spectroscopy, various stages of charge carrier dynamics in perovskite materials could be monitored. In this article, we focus on some of the recent experimental developments related to charge carrier dynamics in perovskites and discuss the current understanding of (1) exciton dissociation, (2) charge carrier thermalization, (3) hot carrier cooling, and (4) electron-phonon coupling along with some of the crucial spectral emergence in the pump-probe experiments of LHP materials.
Collapse
Affiliation(s)
- Vanga Ravali
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| | - Tufan Ghosh
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| |
Collapse
|
6
|
Brosseau P, Ghosh A, Seiler H, Strandell D, Kambhampati P. Exciton-polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J Chem Phys 2023; 159:184711. [PMID: 37962451 DOI: 10.1063/5.0173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Metal halide perovskite nanocrystals have been under intense investigation for their promise in optoelectronic devices due to their remarkable physics, such as liquid/solid duality. This liquid/solid duality may give rise to their defect tolerance and other such useful properties. This duality means that the electronic states are fluctuating in time, on a distribution of timescales from femtoseconds to picoseconds. Hence, these lattice induced energy fluctuations that are connected to polaron formation are also connected to exciton formation and dynamics. We observe these correlations and dynamics in metal halide perovskite nanocrystals of CsPbI3 and CsPbBr3 using two-dimensional electronic (2DE) spectroscopy, with its unique ability to resolve dynamics in heterogeneously broadened systems. The 2DE spectra immediately reveal a previously unobserved excitonic splitting in these 15 nm NCs that may have a coarse excitonic structure. 2D lineshape dynamics reveal a glassy response on the 300 fs timescale due to polaron formation. The lighter Br system shows larger amplitude and faster timescale fluctuations that give rise to dynamic line broadening. The 2DE signals enable 1D transient absorption analysis of exciton cooling dynamics. Exciton cooling within this doublet is shown to take place on a slower timescale than within the excitonic continuum. The energy dissipation rates are the same for the I and Br systems for incoherent exciton cooling but are very different for the coherent dynamics that give rise to line broadening. Exciton cooling is shown to take place on the same timescale as polaron formation, revealing both as coupled many-body excitation.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
7
|
Duan M, Wang Y, Zhang P, Du L. Effect of Cs + Doping on the Carrier Dynamics of MAPbI 3 Perovskite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6064. [PMID: 37687759 PMCID: PMC10488383 DOI: 10.3390/ma16176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Organic inorganic perovskite materials have received increasing attention in the optoelectronic field because of their unique properties. The ultrafast dynamics of photogenerated carriers determine photoelectric conversion efficiency, thus, it is feasible to influence the dynamics behavior of photogenerated carriers by regulating A-site cations. This paper mainly used transient absorption spectra (TAS) technology to study the photogenerated carriers relaxation processes of organic-inorganic perovskite CsxMA1-xPbI3 materials at different x values. Three sets of time constants were obtained by global fitting at different values of x. The experimental results showed that the crystal structure of perovskite could be affected by adjusting the Cs+ doping amount, thereby regulating the carrier dynamics. The appropriate amount of A-cation doping not only maintained the organic-inorganic perovskite crystal phase, but also prolonged the photogenerated carrier's lifetime. The 10% Cs+ doping CsxMA1-xPbI3 perovskite has potential for solar cell applications. We hope that our research can provide dynamics support for the development of organic-inorganic perovskite in solar cells.
Collapse
Affiliation(s)
- Menghan Duan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yunpeng Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Pingli Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Luchao Du
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Li H, Wang Q, Oteki Y, Ding C, Liu D, Guo Y, Li Y, Wei Y, Wang D, Yang Y, Masuda T, Chen M, Zhang Z, Sogabe T, Hayase S, Okada Y, Iikubo S, Shen Q. Enhanced Hot-Phonon Bottleneck Effect on Slowing Hot Carrier Cooling in Metal Halide Perovskite Quantum Dots with Alloyed A-Site. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301834. [PMID: 37311157 DOI: 10.1002/adma.202301834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Indexed: 06/15/2023]
Abstract
A deep understanding of the effect of the A-site cation cross-exchange on the hot-carrier relaxation dynamics in perovskite quantum dots (PQDs) has profound implications on the further development of disruptive photovoltaic technologies. In this study, the hot carrier cooling kinetics of pure FAPbI3 (FA+ , CH(NH2 )2 + ), MAPbI3 (MA+ , CH3 NH3 + + ), CsPbI3 (Cs+ , Cesium) and alloyed FA0.5 MA0.5 PbI3 , FA0.5 Cs0.5 PbI3 , and MA0.5 Cs0.5 PbI3 QDs are investigated using ultrafast transient absorption (TA) spectroscopy. The lifetimes of the initial fast cooling stage (<1 ps) of all the organic cation-containing PQDs are shorter than those of the CsPbI3 QDs, as verified by the electron-phonon coupling strength extracted from the temperature-dependent photoluminescence spectra. The lifetimes of the slow cooling stage of the alloyed PQDs are longer under illumination greater than 1 sun, which is ascribed to the introduction of co-vibrational optical phonon modes in the alloyed PQDs. This facilitated efficient acoustic phonon upconversion and enhanced the hot-phonon bottleneck effect, as demonstrated by first-principles calculations.
Collapse
Affiliation(s)
- Hua Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Qing Wang
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Yusuke Oteki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Chao Ding
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yao Guo
- Department of Materials Science and Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yusheng Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yuyao Wei
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dandan Wang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yongge Yang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Taizo Masuda
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- CN development division, Toyota Motor Corporation, Susono, Shizuoka, 410-1193, Japan
| | - Mengmeng Chen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Zheng Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tomah Sogabe
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yoshitaka Okada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Satoshi Iikubo
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
9
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
10
|
Bian F, Wu X, Yang Z, Shao S, Meng X, Qin G. Quantitative Evaluation of the Carrier Separation Performance of Heterojunction Photocatalysts: The Case of g-C 3N 4/SrTiO 3. J Phys Chem Lett 2023; 14:2927-2932. [PMID: 36930040 DOI: 10.1021/acs.jpclett.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heterojunction photocatalysts are of great interest in the energy and environmental fields, because of their potential to significantly increase the efficiency of harvesting solar energy. Advances in design have been hampered by the continued use of only qualitative analyses. Quantitative evaluation of the carrier separation performance is urgently needed for the design and application of heterojunction photocatalysts. Taking the g-C3N4/SrTiO3 heterojunction as an example, we address the conventional energy band and electronic structure issues by first-principles analysis. After interface coupling, the band edge alignment reverses from that of the respective isolated states of the heterojunction components, suggesting new ways of thinking about the catalytic mechanism of the heterojunction. More significantly, we show the carrier separation performance of heterojunction photocatalysts can be quantitatively predicted by the nonadiabatic molecular dynamics method, enabling more precisely directed research and promoting the quantified design and application of heterojunction photocatalysis, making a contribution of great scientific significance.
Collapse
Affiliation(s)
- Fang Bian
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xinge Wu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhaoying Yang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Shao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiangying Meng
- College of Sciences, Northeastern University, Shenyang 110819, China
- Institute of Materials Intelligence Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute of Materials Intelligence Technology, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
11
|
Baker H, Perez CM, Sonnichsen C, Strandell D, Prezhdo OV, Kambhampati P. Breaking Phonon Bottlenecks through Efficient Auger Processes in Perovskite Nanocrystals. ACS NANO 2023; 17:3913-3920. [PMID: 36796027 DOI: 10.1021/acsnano.2c12220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hot phonon bottleneck has been under intense investigation in perovskites. In the case of perovskite nanocrystals, there may be hot phonon bottlenecks as well as quantum phonon bottlenecks. While they are widely assumed to exist, evidence is growing for the breaking of potential phonon bottlenecks of both forms. Here, we perform state-resolved pump/probe spectroscopy (SRPP) and time-resolved photoluminescence spectroscopy (t-PL) to unravel hot exciton relaxation dynamics in model systems of bulk-like 15 nm nanocrystals of CsPbBr3 and FAPbBr3, with FA being formamidinium. The SRPP data can be misinterpreted to reveal a phonon bottleneck even at low exciton concentrations, where there should be none. We circumvent that spectroscopic problem with a state-resolved method that reveals an order of magnitude faster cooling and breaking of the quantum phonon bottleneck that might be expected in nanocrystals. Since the prior pump/probe methods of analysis are shown to be ambiguous, we perform t-PL experiments to unambiguously confirm the existence of hot phonon bottlenecks as well. The t-PL experiments reveal there is no hot phonon bottleneck in these perovskite nanocrystals. Ab initio molecular dynamics simulations reproduce experiments by inclusion of efficient Auger processes. This experimental and theoretical work reveals insight on hot exciton dynamics, how they are precisely measured, and ultimately how they may be exploited in these materials.
Collapse
Affiliation(s)
- Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | |
Collapse
|
12
|
Han Y, Cheng X, Cui BB. Factors influencing self-trapped exciton emission of low-dimensional metal halides. MATERIALS ADVANCES 2023; 4:355-373. [DOI: 10.1039/d2ma00676f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this review, we mainly summarized the structure distortion, molecular engineering, electron–phonon coupling effect, external temperature and pressure, and metal ion doping that influence the self-trapped exciton emission of low-dimensional metal halides (LDMHs).
Collapse
Affiliation(s)
- Ying Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
| | - Xiaohua Cheng
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
- School of Materials Science and Engineering, BIT, Beijing 100081, P. R. China
| |
Collapse
|
13
|
Shi R, Fang Q, Vasenko AS, Long R, Fang WH, Prezhdo OV. Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. J Am Chem Soc 2022; 144:19137-19149. [PMID: 36206144 DOI: 10.1021/jacs.2c08627] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solar cells and optoelectronic devices are exposed to heat that degrades performance. Therefore, elucidating temperature-dependent charge carrier dynamics is essential for device optimization. Charge carrier lifetimes decrease with temperature in conventional semiconductors. The opposite, anomalous trend is observed in some experiments performed with MAPbI3 (MA = CH3NH3+) and other metal halide perovskites. Using ab initio quantum dynamics simulation, we establish the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3. We demonstrate that structural disorder arising from the phase transitions is as important as the disorder due to heating in the same phase. The carrier lifetimes grow both with increasing temperature in the same phase and upon transition to the higher-temperature phases. The increased lifetime is rationalized by structural disorder that induces partial charge localization, decreases nonadiabatic coupling, and shortens quantum coherence. Inelastic and elastic electron-vibrational interactions exhibit opposite dependence on temperature and phase. The partial disorder and localization arise from thermal motions of both the inorganic lattice and the organic cations and depend significantly on the phase. The structural deformations induced by thermal fluctuations and phase transitions are on the same order as deformations induced by defects, and hence, thermal disorder plays a very important role. Since charge localization increases carrier lifetimes but inhibits transport, an optimal regime maximizing carrier diffusion can be designed, depending on phase, temperature, material morphology, and device architecture. The atomistic mechanisms responsible for the enhanced carrier lifetimes at elevated temperatures provide guidelines for the design of improved solar energy and optoelectronic materials.
Collapse
Affiliation(s)
- Ran Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Qiu Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | | | - Run Long
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
14
|
Zhou Z, He J, Frauenheim T, Prezhdo OV, Wang J. Control of Hot Carrier Cooling in Lead Halide Perovskites by Point Defects. J Am Chem Soc 2022; 144:18126-18134. [PMID: 36125494 DOI: 10.1021/jacs.2c08487] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hot carriers (HCs) in lead halide perovskites are prone to rapidly relax at the band edge and waste plentiful photon energy, severely limiting their conversion efficiency as HC photovoltaic devices. Here, the HC cooling dynamics of MAPbI3 perovskite with common vacancy point defects (e.g., MAv+ and Iv-) and an interstitial point defect (e.g., Ii-) is elucidated, and the underlying physics is explicated using ab initio nonadiabatic molecular dynamics. Contrary to vacancy point defects, the interstitial point defect reduces the band degeneracy, decreases the HC -phonon interaction, weakens the nonadiabatic coupling, and ultimately slows down hot electron cooling by a factor of 1.5-2. Furthermore, the band-by-band relaxation pathway and direct relaxation pathway are uncovered for hot electron cooling and hot hole cooling, respectively, explaining why hot electrons can store more energy than hot holes during the cooling process. Besides, oxygen molecules interacting with Ii- sharply accelerate the hot electron cooling, making it even faster than that of the pristine system and revealing the detrimental effect of oxygen on HC cooling. This work provides significant insights into the defect-dependent HC cooling dynamics and suggests a new strategy to design high-efficiency HC photovoltaic devices.
Collapse
Affiliation(s)
- Zhaobo Zhou
- School of Physics, Southeast University, Nanjing 211189, China.,Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany.,Beijing Computational Science Research Center, Beijing 100193, China.,Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
15
|
Kaur G, Shukla A, Babu KJ, Ghosh HN. Chemically Engineered Avenues: Opportunities for Attaining Desired Carrier Cooling in Perovskites. CHEM REC 2022; 22:e202200106. [PMID: 35882519 DOI: 10.1002/tcr.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Hot carrier extraction-based devices are presently being persuaded as the most revolutionary means of surpassing the theoretical thermodynamic conversion efficiency limit (∼67 % for a model hot carrier solar cell). However, for practical realisation, there stand various hurdles that need to be surmounted, a major among all being the rapid hot carrier cooling rate. Though, the perovskite family has already demonstrated itself to exhibit slower cooling in contrast to the prototypical semiconductors. Decelerating this entire process of cooling further can prove to be a crucial stride in this regard. Quite contrarily, for the optoelectronic applications the situation is entirely conflicting where quick rate of cooling is a chief prerequisite. In the recent times, there have been various key developments that have targeted altering this cooling rate by various chemically engineered strategies. This review highlights such blueprints that can be utilized towards the advantageous alteration of the carrier cooling in accordance with the device requirements.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Ayushi Shukla
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India.,RPC Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India
| |
Collapse
|
16
|
Shakiba M, Stippell E, Li W, Akimov AV. Nonadiabatic Molecular Dynamics with Extended Density Functional Tight-Binding: Application to Nanocrystals and Periodic Solids. J Chem Theory Comput 2022; 18:5157-5180. [PMID: 35758936 DOI: 10.1021/acs.jctc.2c00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report a new methodology for nonadiabatic molecular dynamics calculations within the extended tight-binding (xTB) framework. We demonstrate the applicability of the developed approach to finite and periodic systems with thousands of atoms by modeling "hot" electron relaxation dynamics in silicon nanocrystals and electron-hole recombination in both a graphitic carbon nitride monolayer and a titanium-based metal-organic framework (MOF). This work reports the nonadiabatic dynamic simulations in the largest Si nanocrystals studied so far by the xTB framework, with diameters up to 3.5 nm. For silicon nanocrystals, we find a non-monotonic dependence of "hot" electron relaxation rates on the nanocrystal size, in agreement with available experimental reports. We rationalize this relationship by a combination of decreasing nonadiabatic couplings related to system size and the increase of available coherent transfer pathways in systems with higher densities of states. We emphasize the importance of proper treatment of coherences for obtaining such non-monotonic dependences. We characterize the electron-hole recombination dynamics in the graphitic carbon nitride monolayer and the Ti-containing MOF. We demonstrate the importance of spin-adaptation and proper sampling of surface hopping trajectories in modeling such processes. We also assess several trajectory surface hopping schemes and highlight their distinct qualitative behavior in modeling the excited-state dynamics in superexchange-like models depending on how they handle coherences between nearly parallel states.
Collapse
Affiliation(s)
- Mohammad Shakiba
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Elizabeth Stippell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
17
|
Gao Q, Kang J. Hot carrier relaxation in CsPbBr 3 nanocrystals: electron-hole asymmetry and shape effects. Phys Chem Chem Phys 2022; 24:9891-9896. [PMID: 35416203 DOI: 10.1039/d2cp00634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimization of the optoelectronic performance of lead halide perovskite (LHP) nanocrystals calls for understanding and manipulation of their hot carrier relaxation processes. In this work, the hot carrier relaxation in a nanocube (NC) and a nanoplate (NPL) of CsPbBr3 is studied using non-adiabatic molecular dynamics based on first-principles calculations. Strong electron-hole asymmetry in the relaxation processes is observed. Regardless of the nanocrystal shape, the hot hole cooling rate is much faster than that of hot electrons. Moreover, while the hot-hole relaxation is insensitive to the excitation energy, faster relaxation of hot electrons is observed with a lower excitation energy. The origin of the asymmetry is associated with the orbital characters and density of states at the band edges. The hot-hole relaxation is strongly affected by the shape of the nanocrystal. It is faster in the NPL than in the NC. This is attributed to the larger atomic displacements in the NPL due to its higher surface/volume ratio. These results provide theoretical insights for fundamental understanding of excited-state dynamics in LHPs and may help the development of hot-carrier optoelectronic devices.
Collapse
Affiliation(s)
- Qiang Gao
- Beijing Computational Science Research Center, Beijing 100193, China.
| | - Jun Kang
- Beijing Computational Science Research Center, Beijing 100193, China.
| |
Collapse
|
18
|
Evidence of auger heating in hot carrier cooling of CsPbBr3 nanocrystals. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zhan J, Yang J, Xie X, Prezhdo OV, Li W. Interplay of structural fluctuations and charge carrier dynamics is key for high performance of hybrid lead halide perovskites. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01482c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interplay of organic cation rotation and inorganic lattice fluctuation maintains the high performance of hybrid organic–inorganic perovskites.
Collapse
Affiliation(s)
- Juan Zhan
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Jack Yang
- School of Material Science and Engineering, Materials and Manufacturing Futures Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiaoyin Xie
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
20
|
Effect of Chlorine Vacancy on the Electronic and Optical Properties of CsSnCl3 Perovskites for Optoelectronic Applications. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
22
|
Manipulation of hot carrier cooling dynamics in two-dimensional Dion-Jacobson hybrid perovskites via Rashba band splitting. Nat Commun 2021; 12:3995. [PMID: 34183646 PMCID: PMC8239041 DOI: 10.1038/s41467-021-24258-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Hot-carrier cooling processes of perovskite materials are typically described by a single parabolic band model that includes the effects of carrier-phonon scattering, hot phonon bottleneck, and Auger heating. However, little is known (if anything) about the cooling processes in which the spin-degenerate parabolic band splits into two spin-polarized bands, i.e., the Rashba band splitting effect. Here, we investigated the hot-carrier cooling processes for two slightly different compositions of two-dimensional Dion–Jacobson hybrid perovskites, namely, (3AMP)PbI4 and (4AMP)PbI4 (3AMP = 3-(aminomethyl)piperidinium; 4AMP = 4-(aminomethyl)piperidinium), using a combination of ultrafast transient absorption spectroscopy and first-principles calculations. In (4AMP)PbI4, upon Rashba band splitting, the spin-dependent scattering of hot electrons is responsible for accelerating hot-carrier cooling at longer delays. Importantly, the hot-carrier cooling of (4AMP)PbI4 can be extended by manipulating the spin state of the hot carriers. Our findings suggest a new approach for prolonging hot-carrier cooling in hybrid perovskites, which is conducive to further improving the performance of hot-carrier-based optoelectronic and spintronic devices. Hybrid perovskite is a promising class of material for optoelectronic applications due to the slow hot-carrier cooling, yet the process is not well-understood in material with Rashba band splitting. Here, the authors reveal spin-flipping and spin-dependent scattering of hot electrons are responsible for accelerating the cooling at longer delays.
Collapse
|
23
|
Li W, She Y, Vasenko AS, Prezhdo OV. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. NANOSCALE 2021; 13:10239-10265. [PMID: 34031683 DOI: 10.1039/d1nr01990b] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron-phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge-charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China.
| | | | | | | |
Collapse
|
24
|
Madjet MEA, Ali E, Carignano M, Vendrell O, Chakraborty HS. Ultrafast Transfer and Transient Entrapment of Photoexcited Mg Electron in Mg@C_{60}. PHYSICAL REVIEW LETTERS 2021; 126:183002. [PMID: 34018762 DOI: 10.1103/physrevlett.126.183002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Electron relaxation is studied in endofullerene Mg@C_{60} after an initial localized photoexcitation in Mg by nonadiabatic molecular dynamics simulations. Two approaches to the electronic structure of the excited electronic states are used: (i) an independent particle approximation based on a density-functional theory description of molecular orbitals and (ii) a configuration-interaction description of the many-body effects. Both methods exhibit similar relaxation times, leading to an ultrafast decay and charge transfer from Mg to C_{60} within tens of femtoseconds. Method (i) further elicits a transient trap of the transferred electron that can delay the electron-hole recombination. Results shall motivate experiments to probe these ultrafast processes by two-photon transient absorption or photoelectron spectroscopy in gas phase, in solution, or as thin films.
Collapse
Affiliation(s)
- Mohamed El-Amine Madjet
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Department of Natural Sciences, D. L. Hubbard Center for Innovation, Northwest Missouri State University, Maryville, Missouri 64468, USA
| | - Esam Ali
- Department of Natural Sciences, D. L. Hubbard Center for Innovation, Northwest Missouri State University, Maryville, Missouri 64468, USA
| | - Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry and Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 229 and 225, 69120 Heidelberg, Germany
| | - Himadri S Chakraborty
- Department of Natural Sciences, D. L. Hubbard Center for Innovation, Northwest Missouri State University, Maryville, Missouri 64468, USA
| |
Collapse
|
25
|
Smith B, Shakiba M, Akimov AV. Crystal Symmetry and Static Electron Correlation Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. J Phys Chem Lett 2021; 12:2444-2453. [PMID: 33661640 DOI: 10.1021/acs.jpclett.0c03799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using a recently developed many-body nonadiabatic molecular dynamics (NA-MD) framework for large condensed matter systems, we study the phonon-driven nonradiative relaxation of excess electronic excitation energy in cubic and tetragonal phases of the lead halide perovskite CsPbI3. We find that the many-body treatment of the electronic excited states significantly changes the structure of the excited states' coupling, promotes a stronger nonadiabatic coupling of states, and ultimately accelerates the relaxation dynamics relative to the single-particle description of excited states. The acceleration of the nonadiabatic dynamics correlates with the degree of configurational mixing, which is controlled by the crystal symmetry. The higher-symmetry cubic phase of CsPbI3 exhibits stronger configuration mixing than does the tetragonal phase and subsequently yields faster nonradiative dynamics. Overall, using a many-body treatment of excited states and accounting for decoherence dynamics are important for closing the gap between the computationally derived and experimentally measured nonradiative excitation energy relaxation rates.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
26
|
Smith B, Shakiba M, Akimov AV. Nonadiabatic Dynamics in Si and CdSe Nanoclusters: Many-Body vs Single-Particle Treatment of Excited States. J Chem Theory Comput 2021; 17:678-693. [DOI: 10.1021/acs.jctc.0c01009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Alexey V. Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| |
Collapse
|
27
|
Kaur G, Ghosh HN. Hot Carrier Relaxation in CsPbBr 3-Based Perovskites: A Polaron Perspective. J Phys Chem Lett 2020; 11:8765-8776. [PMID: 32961059 DOI: 10.1021/acs.jpclett.0c02339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Long-standing interpretations for the exceptional photovoltaic and optoelectronic properties showcased by the perovskite family pertain to the underlying complicated interplay of polaron formation and hot carrier cooling. This Perspective primarily focuses on reassessing the existing status of polaron studies conducted on CsPbBr3-based systems in particular, in the framework of transient absorption investigations. The role of the key aspect that is ultimately accountable for deciding the fate of polaron formation, i.e., the carrier-longitudinal optical phonon coupling, has been comprehensively evaluated in terms of diverse factors which affect this Fröhlich interaction-mediated coupling. The study provides a detailed discussion regarding the alterations in lattice polarity, surrounding dielectric medium, lattice temperature, and system dimensionality which can influence the charge screening extent and thereby the polaron formation. Such studies concerning strategies for achieving easily attainable modulations in polaron formation in CsPbBr3-based systems are highly relevant for technological advancement.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
28
|
Mix LT, Ghosh D, Tisdale J, Lee MC, O'Neal KR, Sirica N, Neukirch AJ, Nie W, Taylor AJ, Prasankumar RP, Tretiak S, Yarotski DA. Hot Carrier Cooling and Recombination Dynamics of Chlorine-Doped Hybrid Perovskite Single Crystals. J Phys Chem Lett 2020; 11:8430-8436. [PMID: 32902990 DOI: 10.1021/acs.jpclett.0c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the photoexcited properties and behavior of hybrid perovskites by halide doping has the potential to impact a wide range of emerging technologies, including solar cells and radiation detectors. Crystalline samples of methylammonium lead bromide substituted with chlorine (MAPbBr3-xClx) were examined by transient reflectivity spectroscopy and nonadiabatic molecular dynamics simulations. At picosecond time scales, the addition of chlorine to the perovskite crystal increased the observed rate of hot carrier cooling and the calculated electron-phonon coupling constants. Chlorine-doped samples also exhibit a slower surface recombination velocity and a smaller ambipolar mobility.
Collapse
Affiliation(s)
- L Tyler Mix
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeremy Tisdale
- Material Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Min-Cheol Lee
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kenneth R O'Neal
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Sirica
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wanyi Nie
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Antoinette J Taylor
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rohit P Prasankumar
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry A Yarotski
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
29
|
Uratani H, Nakai H. Simulating the Coupled Structural-Electronic Dynamics of Photoexcited Lead Iodide Perovskites. J Phys Chem Lett 2020; 11:4448-4455. [PMID: 32418430 DOI: 10.1021/acs.jpclett.0c01028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motivated by the optoelectronic applications of lead halide perovskites (LHPs), researchers have paid considerable attention to their photoexcited-state dynamics, where the coupling between the electronic and nuclear dynamics is pronounced. Here, we present simulations of the photoexcited-state dynamics of representative lead iodide perovskites, CsPbI3 and MAPbI3 (MA = CH3NH3), by adopting nonadiabatic molecular dynamics combined with the linear-response time-dependent density-functional tight-binding (LR-TD-DFTB) method, an efficient excited-state calculation framework. In the calculations, the electronic wave function and the nuclear coordinates were propagated in a mutually dependent manner. The results suggest that the excited LHPs undergo exciton dissociation, hot carrier cooling, and polaron formation on similar time scales. In particular, the decay of the carrier energy is attributed to not only the relaxation toward the band edge but also the change in orbital energy originating from the structural deformation, highlighting the importance of coupling between the electronic and nuclear degrees of freedom.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
30
|
Masada S, Yamada T, Tahara H, Hirori H, Saruyama M, Kawawaki T, Sato R, Teranishi T, Kanemitsu Y. Effect of A-Site Cation on Photoluminescence Spectra of Single Lead Bromide Perovskite Nanocrystals. NANO LETTERS 2020; 20:4022-4028. [PMID: 32330045 DOI: 10.1021/acs.nanolett.0c01417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Lead halide perovskite (APbX3) nanocrystals exhibit photoluminescence (PL) with both wide wavelength tunability and high quantum efficiency. While the Pb-X6 octahedra mainly determines the near-band-edge optical properties and the A-site cation affects the structural stability, the role of the A-site cation in determining the optical properties is still unclear. Here, we report the PL properties of three types of lead bromide perovskite APbBr3 nanocrystals with different cations [A = HC(NH2)2+, CH3NH3+, and Cs+], as revealed by single-dot spectroscopy, and discuss the influence of the A-site cation on the PL spectrum. The nanocrystal size dependences of the PL energy and lifetime show no large variation with the species of the A-site cation. We find that the size of the A-site cation determines the coupling strength between electrons and longitudinal-optical phonons in the nanocrystal and thus affects the PL spectral shape, especially the low-energy tail.
Collapse
Affiliation(s)
- Sojiro Masada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takumi Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hirokazu Tahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tokuhisa Kawawaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
Hopper TR, Gorodetsky A, Jeong A, Krieg F, Bodnarchuk MI, Maimaris M, Chaplain M, Macdonald TJ, Huang X, Lovrincic R, Kovalenko MV, Bakulin AA. Hot Carrier Dynamics in Perovskite Nanocrystal Solids: Role of the Cold Carriers, Nanoconfinement, and the Surface. NANO LETTERS 2020; 20:2271-2278. [PMID: 32142303 DOI: 10.1021/acs.nanolett.9b04491] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Carrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck". However, the role of carrier-carrier interactions, and the material properties that control cooling in LHPs, is still disputed. To address these factors, we utilize ultrafast "pump-push-probe" spectroscopy on LHP nanocrystal (NC) films. We find that the addition of cold carriers to LHP NCs increases the cooling rate, competing with the phonon bottleneck. By comparing different NCs and bulk samples, we deduce that the cooling behavior is intrinsic to the LHP composition and independent of the NC size or surface. This can be contrasted with other colloidal nanomaterials, where confinement and trapping considerably influence the cooling dynamics.
Collapse
Affiliation(s)
- Thomas R Hopper
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Andrei Gorodetsky
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Ahhyun Jeong
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Franziska Krieg
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Marios Maimaris
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Marine Chaplain
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Thomas J Macdonald
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Xiaokun Huang
- Institute for High-Frequency Technology, Technische Universität Braunschweig, Schleinitzstrasse 22, 38106 Braunschweig, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
- Kirchhoff Institute for Physics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Robert Lovrincic
- Institute for High-Frequency Technology, Technische Universität Braunschweig, Schleinitzstrasse 22, 38106 Braunschweig, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A Bakulin
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
32
|
Banerjee S, Kang J, Zhang X, Wang LW. The effects of interstitial iodine in hybrid perovskite hot carrier cooling: A non-adiabatic molecular dynamics study. J Chem Phys 2020; 152:091102. [DOI: 10.1063/1.5132595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Swastika Banerjee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Jun Kang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Xiuwen Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
33
|
Zhang Z, Qiao L, Mora-Perez C, Long R, Prezhdo OV. Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. J Chem Phys 2020; 152:064707. [DOI: 10.1063/1.5131342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Carlos Mora-Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
34
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
35
|
Wang J, Li W, Yin WJ. Passivating Detrimental DX Centers in CH 3 NH 3 PbI 3 for Reducing Nonradiative Recombination and Elongating Carrier Lifetime. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906115. [PMID: 31840331 DOI: 10.1002/adma.201906115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/25/2019] [Indexed: 06/10/2023]
Abstract
After a period of rapid, unprecedented development, the growth in the efficiency of perovskite solar cells has recently slowed. Further improvement of cell efficiency will rely on the in-depth understanding and delicate control of defect passivation. Here, the formation mechanism of iodine vacancies (VI ), a typical deep defect in CH3 NH3 PbI3 (MAPbI3 ), is elucidated. The structural and electronic behaviors of VI are like those of a DX center, a kind of detrimental defect formed by large atomic displacement. Aided by the passivation mechanism of DX centers in tetrahedral semiconductors, it is found that the introduction of Br strengthens chemical bonds and prevents large atomic displacements during defect charging. It therefore reduces the defect states and diminishes electron-phonon coupling. Using time-domain density functional theory (DFT) combined with nonadiabatic molecular dynamics, it is found that the carrier lifetime can be enhanced from 3.2 ns in defective MAPbI3 to 19 ns in CH3 NH3 Pb(I0.96 Br0.04 )3 . This work advances our understanding of how a small amount of Br doping improves the carrier dynamics and cell performance of MAPbI3 . It may also provide a route to enhance the carrier lifetimes and efficiencies of perovskite solar cells by defect passivation.
Collapse
Affiliation(s)
- Jing Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Wan-Jian Yin
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China
| |
Collapse
|
36
|
Yan H, Li Y, Li X, Wang B, Li M. Hot carrier relaxation in Cs 2TiI y Br 6-y ( y = 0, 2 and 6) by a time-domain ab initio study. RSC Adv 2020; 10:958-964. [PMID: 35494478 PMCID: PMC9048232 DOI: 10.1039/c9ra06731k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Cs2TiI y Br6-y is a potential light absorption material for all-inorganic lead free perovskite solar cells due to its suitable and tunable bandgap, high optical absorption coefficient and high environmental stability. However, solar cells fabricated based on Cs2TiI y Br6-y do not perform well, and the reasons for their low efficiency are still unclear. Herein, hot carrier relaxation processes in Cs2TiI y Br6-y (y = 0, 2 and 6) were investigated by a time-domain density functional theory combined with the non-adiabatic molecular dynamics method. It was found that the relaxation time of the hot carriers in Cs2TiI y Br6-y ranges from 2-3 ps, which indicates that the hot carriers within 10 nm from the Cs2TiI y Br6-y /TiO2 interface can be effectively extracted before their energy is lost completely. The carrier-phonon non-adiabatic coupling (NAC) analyses demonstrate that the longer hot electron relaxation time in Cs2TiI2Br4 compared with that in Cs2TiBr6 and Cs2TiI6 originates from its weaker NAC strength. Furthermore, the electron-phonon interaction analyses indicate that the relaxation of hot electrons mainly comes from the coupling between the electrons distributed on the Ti-X bonds and the Ti-X vibrations, and that of hot holes can be attributed to the coupling between the electrons distributed on the X atoms and the distortions of [TiI y Br6-y ]2-. The simulation results indicate that Cs2TiI2Br4 should be better than Cs2TiBr6 and Cs2TiI6 to act as a light absorption layer based on the hot carrier energy loss, and the hot electron relaxation time in Cs2TiI y Br6-y can be adjusted by tuning the proportion of the I element.
Collapse
Affiliation(s)
- Hejin Yan
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University Beijing China 102206
| | - Yingfeng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University Beijing China 102206
| | - Xiang Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University Beijing China 102206
| | - Bingxin Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University Beijing China 102206
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University Beijing China 102206
| |
Collapse
|
37
|
Yin J, Maity P, Naphade R, Cheng B, He JH, Bakr OM, Brédas JL, Mohammed OF. Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals. ACS NANO 2019; 13:12621-12629. [PMID: 31613089 DOI: 10.1021/acsnano.9b04085] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hot carrier (HC) cooling is a critical photophysical process that significantly influences the optoelectronic performance of hybrid perovskite-based devices. The hot carrier extraction at the device interface is very challenging because of its ultrashort lifetime. Here, ultrafast transient reflectance spectroscopy measurements and time-domain ab initio calculations show how the dielectric constant of the organic spacers can control and slow the HC cooling dynamics in single-crystal 2D Ruddlesden-Popper hybrid perovskites. We find that (EA)2PbI4 (EA = HOC2H4NH3+) that correspond to a high dielectric constant organic spacer has a longer HC cooling time compared to that of (AP)2PbI4 (AP = HOC3H6NH3+) and (PEA)2PbI4 (PEA = C6H5C2H4NH3+). The slow HC relaxation process in the former case can be ascribed to a stronger screening of the Coulomb interactions, a small nonradiative internal conversion within the conduction bands, as well as a weak electron-phonon coupling. Our findings provide a strategy to prolong the hot carrier cooling time in low-dimensional hybrid perovskite materials by using organic spacers with reduced dielectric confinement.
Collapse
Affiliation(s)
- Jun Yin
- Division of Physical Science and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Partha Maity
- Division of Physical Science and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Rounak Naphade
- Division of Physical Science and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Bin Cheng
- Computer, Electrical, and Mathematical Sciences and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Jr-Hau He
- Computer, Electrical, and Mathematical Sciences and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics (COPE) , Georgia Institute of Technology , Atlanta , Georgia 30332-0400 , United States
| | - Omar F Mohammed
- Division of Physical Science and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Li M, Fu J, Xu Q, Sum TC. Slow Hot-Carrier Cooling in Halide Perovskites: Prospects for Hot-Carrier Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802486. [PMID: 30600555 DOI: 10.1002/adma.201802486] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/24/2018] [Indexed: 05/25/2023]
Abstract
Rapid hot-carrier cooling is a major loss channel in solar cells. Thermodynamic calculations reveal a 66% solar conversion efficiency for single junction cells (under 1 sun illumination) if these hot carriers are harvested before cooling to the lattice temperature. A reduced hot-carrier cooling rate for efficient extraction is a key enabler to this disruptive technology. Recently, halide perovskites emerge as promising candidates with favorable hot-carrier properties: slow hot-carrier cooling lifetimes several orders of magnitude longer than conventional solar cell absorbers, long-range hot-carrier transport (up to ≈600 nm), and highly efficient hot-carrier extraction (up to ≈83%). This review presents the developmental milestones, distills the complex photophysical findings, and highlights the challenges and opportunities in this emerging field. A developmental toolbox for engineering the slow hot-carrier cooling properties in halide perovskites and prospects for perovskite hot-carrier solar cells are also discussed.
Collapse
Affiliation(s)
- Mingjie Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qiang Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
39
|
Mehdipour H, Smith BA, Rezakhani AT, Tafreshi SS, de Leeuw NH, Prezhdo OV, Moshfegh AZ, Akimov AV. Dependence of electron transfer dynamics on the number of graphene layers in π-stacked 2D materials: insights from ab initio nonadiabatic molecular dynamics. Phys Chem Chem Phys 2019; 21:23198-23208. [PMID: 31612886 DOI: 10.1039/c9cp04100a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent time-resolved transient absorption studies demonstrated that the rate of photoinduced interfacial charge transfer (CT) from Zn-phthalocyanine (ZnPc) to single-layer graphene (SLG) is faster than to double-layer graphene (DLG), in contrast to the expectation from Fermi's golden rule. We present the first time-domain non-adiabatic molecular dynamics (NA-MD) study of the electron injection process from photoexcited ZnPc molecules into SLG and DLG substrates. Our calculations suggest that CT occurs faster in the ZnPc/SLG system than in the ZnPc/DLG system, with 580 fs and 810 fs being the fastest components of the observed CT timescales, respectively. The computed timescales are in close agreement with those reported in the experiment. The computed CT timescales are determined largely by the magnitudes of the non-adiabatic couplings (NAC), which we find to be 4 meV and 2 meV, for the ZnPc/SLG and ZnPc/DLG systems, respectively. The transitions are driven mainly by the ZnPc out-of-plane bending mode at 1100 cm-1 and an overtone of fundamental modes in graphene at 2450 cm-1. We find that dephasing occurs on the timescale of 20 fs and is similar in both systems, so decoherence does not notably change the qualitative trends in the CT timescales. We highlight the importance of proper energy level alignment for capturing the qualitative trends in the CT dynamics observed in experiment. In addition, we illustrate several methodological points that are important for accurately modeling nonadiabatic dynamics in the ZnPc/FLG systems, such as the choice of surface hopping methodology, the use of phase corrections, NAC scaling, and the inclusion of Hubbard terms in the density functional and molecular dynamics calculations.
Collapse
Affiliation(s)
- Hamid Mehdipour
- Department of Physics, Sharif University of Technology, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith B, Akimov AV. A comparative analysis of surface hopping acceptance and decoherence algorithms within the neglect of back-reaction approximation. J Chem Phys 2019; 151:124107. [DOI: 10.1063/1.5122770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | - Alexey V. Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| |
Collapse
|
41
|
Abstract
Intraband relaxation in polycrystalline films of hybrid perovskites methylammonium lead tribromide and methylammonium lead triiodide are studied by transient absorption spectroscopy from 80 K to >350 K. This temperature range spans the transitions of these materials from the high-temperature cubic phases, intermediate tetragonal phases, and low-temperature orthorhombic phases. The organic cation undergoes a distinct transition from an ordered lattice in the orthorhombic phase to a plastic crystal in cubic and tetragonal phases, which reportedly influences many optoelectronic properties. The much larger exciton binding energy of orthorhombic MAPbI3 (compared to cubic or tetragonal phases) or MAPbBr3 substantially changes the transient spectral responses of the materials by reducing the number of free carriers. However, for these measurements at low fluences, both MAPbBr3 and MAPbI3 exhibit subpicosecond intraband relaxation over the entire temperature range studied. Intraband relaxation becomes somewhat faster at higher temperatures, but freezing of organic cations are not accompanied by a discontinuity of the intraband relaxation time. These results suggest that configurational freedom of organic cations does not screen carriers from electron-phonon coupling.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|
42
|
Wu JR, Thakur D, Chiang SE, Chandel A, Wang JS, Chiu KC, Chang SH. The Way to Pursue Truly High-Performance Perovskite Solar Cells. NANOMATERIALS 2019; 9:nano9091269. [PMID: 31492035 PMCID: PMC6781066 DOI: 10.3390/nano9091269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/22/2022]
Abstract
The power conversion efficiency (PCE) of single-junction solar cells was theoretically predicted to be limited by the Shockley–Queisser limit due to the intrinsic potential loss of the photo-excited electrons in the light absorbing materials. Up to now, the optimized GaAs solar cell has the highest PCE of 29.1%, which is close to the theoretical limit of ~33%. To pursue the perfect photovoltaic performance, it is necessary to extend the lifetimes of the photo-excited carriers (hot electrons and hot holes) and to collect the hot carriers without potential loss. Thanks to the long-lived hot carriers in perovskite crystal materials, it is possible to completely convert the photon energy to electrical power when the hot electrons and hot holes can freely transport in the quantized energy levels of the electron transport layer and hole transport layer, respectively. In order to achieve the ideal PCE, the interactions between photo-excited carriers and phonons in perovskite solar cells has to be completely understood.
Collapse
Affiliation(s)
- Jia-Ren Wu
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
| | - Diksha Thakur
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
| | - Shou-En Chiang
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
| | - Anjali Chandel
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
| | - Jyh-Shyang Wang
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
- Center for Nano Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
| | - Kuan-Cheng Chiu
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
- Center for Nano Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
| | - Sheng Hsiung Chang
- Department of Physics, Chung Yuan Christian University, Taoyuan32023, Taiwan.
- Center for Nano Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
| |
Collapse
|
43
|
Fu Y, Hautzinger MP, Luo Z, Wang F, Pan D, Aristov MM, Guzei IA, Pan A, Zhu X, Jin S. Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction. ACS CENTRAL SCIENCE 2019; 5:1377-1386. [PMID: 31482120 PMCID: PMC6716133 DOI: 10.1021/acscentsci.9b00367] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 05/18/2023]
Abstract
The stability and formation of a perovskite structure is dictated by the Goldschmidt tolerance factor as a general geometric guideline. The tolerance factor has limited the choice of cations (A) in 3D lead iodide perovskites (APbI3), an intriguing class of semiconductors for high-performance photovoltaics and optoelectronics. Here, we show the tolerance factor requirement is relaxed in 2D Ruddlesden-Popper (RP) perovskites, enabling the incorporation of a variety of larger cations beyond the methylammonium (MA), formamidinium, and cesium ions in the lead iodide perovskite cages for the first time. This is unequivocally confirmed with the single-crystal X-ray structure of newly synthesized guanidinium (GA)-based (n-C6H13NH3)2(GA)Pb2I7, which exhibits significantly enlarged and distorted perovskite cage containing sterically constrained GA cation. Structural comparison with (n-C6H13NH3)2(MA)Pb2I7 reveals that the structural stabilization originates from the mitigation of strain accumulation and self-adjustable strain-balancing in 2D RP structures. Furthermore, spectroscopic studies show a large A cation significantly influences carrier dynamics and exciton-phonon interactions through modulating the inorganic sublattice. These results enrich the diverse families of perovskite materials, provide new insights into the mechanistic role of A-site cations on their physical properties, and have implications to solar device studies using engineered perovskite thin films incorporating such large organic cations.
Collapse
Affiliation(s)
- Yongping Fu
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew P. Hautzinger
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ziyu Luo
- Key
Laboratory for Micro-Nano Physics and Technology of Hunan Province,
College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feifan Wang
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dongxu Pan
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael M. Aristov
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anlian Pan
- Key
Laboratory for Micro-Nano Physics and Technology of Hunan Province,
College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaoyang Zhu
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- E-mail: (S.J.)
| |
Collapse
|
44
|
Mondal N, De A, Das S, Paul S, Samanta A. Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites. NANOSCALE 2019; 11:9796-9818. [PMID: 31070653 DOI: 10.1039/c9nr01745c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Perovskite nanocrystals (NCs), especially those based on cesium lead halides, have emerged in recent years as highly promising materials for efficient solar cells and photonic applications. The key to realization of full potential of these materials lies however in the molecular level understanding of the processes triggered by light. Herein we highlight the knowledge gained from photophysical investigations on these NCs of various sizes and compositions employing primarily the femtosecond pump-probe technique. We show how spectral and temporal characterization of the photo-induced transients provide insight into the mechanism and dynamics of relaxation of hot and thermalized charge carriers through their recombination and trapping. We discuss how the multiple excitons including the charged ones (trions), generated using high pump fluence or photon energy, recombine through the Auger-assisted process. We discussed the harvesting of hot carriers prior to their cooling and band-edge carriers from these perovskite NCs to wide band-gap metal oxides, metal chalcogenide NCs and molecular acceptors. How perovskites can influence the charge carrier dynamics in composites of organic and inorganic semiconductors is also discussed.
Collapse
Affiliation(s)
- Navendu Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E-mail:
| | - Apurba De
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E-mail:
| | - Somnath Das
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E-mail:
| | - Sumanta Paul
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E-mail:
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E-mail:
| |
Collapse
|
45
|
Forde A, Inerbaev T, Hobbie EK, Kilin DS. Excited-State Dynamics of a CsPbBr3 Nanocrystal Terminated with Binary Ligands: Sparse Density of States with Giant Spin–Orbit Coupling Suppresses Carrier Cooling. J Am Chem Soc 2019; 141:4388-4397. [DOI: 10.1021/jacs.8b13385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Talgat Inerbaev
- Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090, Russia
- National University of Science and Technology MISIS, 4 Leninskiy pr., Moscow 119049, Russian Federation
- L. N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | | | | |
Collapse
|
46
|
Chen J, Messing ME, Zheng K, Pullerits T. Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals. J Am Chem Soc 2019; 141:3532-3540. [DOI: 10.1021/jacs.8b11867] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Junsheng Chen
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Maria E. Messing
- Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Kaibo Zheng
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tonu Pullerits
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
47
|
Pradhan E, Sato K, Akimov AV. Non-adiabatic molecular dynamics with ΔSCF excited states. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:484002. [PMID: 30407924 DOI: 10.1088/1361-648x/aae864] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Accurate modelling of nonadiabatic transitions and electron-phonon interactions in extended systems is essential for understanding the charge and energy transfer in photovoltaic and photocatalytic materials. The extensive computational costs of the advanced excited state methods have stimulated the development of many approximations to study the nonadiabatic molecular dynamics (NA-MD) in solid-state and molecular materials. In this work, we present a novel ▵SCF-NA-MD methodology that aims to account for electron-hole interactions and electron-phonon back-reaction critical in modelling photoinduced nuclear dynamics. The excited states dynamics is described using the delta self-consistent field (▵SCF) technique within the density functional formalism and the trajectory surface hopping. The technique is implemented in the open-source Libra-X package freely available on the Internet (https://github.com/Quantum-Dynamics-Hub/Libra-X). This work illustrates the general utility of the developed ▵SCF-NA-MD methodology by characterizing the excited state energies and lifetimes, reorganization energies, photoisomerization quantum yields, and by providing the mechanistic details of reactive processes in a number of organic molecules.
Collapse
Affiliation(s)
- Ekadashi Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, United States of America
| | | | | |
Collapse
|
48
|
Hopper T, Gorodetsky A, Frost JM, Müller C, Lovrincic R, Bakulin AA. Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. ACS ENERGY LETTERS 2018; 3:2199-2205. [PMID: 30450410 PMCID: PMC6231231 DOI: 10.1021/acsenergylett.8b01227] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/21/2018] [Indexed: 05/06/2023]
Abstract
The rapid relaxation of above-band-gap "hot" carriers (HCs) imposes the key efficiency limit in lead-halide perovskite (LHP) solar cells. Recent studies have indicated that HC cooling in these systems may be sensitive to materials composition, as well as the energy and density of excited states. However, the key parameters underpinning the cooling mechanism are currently under debate. Here we use a sequence of ultrafast optical pulses (visible pump-infrared push-infrared probe) to directly compare the intraband cooling dynamics in five common LHPs: FAPbI3, FAPbBr3, MAPbI3, MAPbBr3, and CsPbBr3. We observe ∼100-900 fs cooling times, with slower cooling at higher HC densities. This effect is strongest in the all-inorganic Cs-based system, compared to the hybrid analogues with organic cations. These observations, together with band structure calculations, allow us to quantify the origin of the "hot-phonon bottleneck" in LHPs and assert the thermodynamic contribution of a symmetry-breaking organic cation toward rapid HC cooling.
Collapse
Affiliation(s)
- Thomas
R. Hopper
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrei Gorodetsky
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jarvist M. Frost
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Christian Müller
- Institute
for High-Frequency Technology, Technische
Universität Braunschweig, Schleinitzstrasse 22, 38106 Braunschweig, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
| | - Robert Lovrincic
- Institute
for High-Frequency Technology, Technische
Universität Braunschweig, Schleinitzstrasse 22, 38106 Braunschweig, Germany
- InnovationLab, Speyerer Strasse 4, 69115 Heidelberg, Germany
| | - Artem A. Bakulin
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
- E-mail:
| |
Collapse
|
49
|
Hedley GJ, Quarti C, Harwell J, Prezhdo OV, Beljonne D, Samuel IDW. Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Sci Rep 2018; 8:8115. [PMID: 29802309 PMCID: PMC5970208 DOI: 10.1038/s41598-018-26207-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022] Open
Abstract
Understanding the initial ultrafast excited state dynamics of methylammonium lead iodide (MAPI) perovskite is of vital importance to enable its fullest utilisation in optoelectronic devices and the design of improved materials. Here we have combined advanced measurements of the ultrafast photoluminescence from MAPI films up to 0.6 eV above the relaxed excited state with cutting-edge advanced non-adiabatic quantum dynamics simulations, to provide a powerful unique insight into the earliest time behaviour in MAPI. Our joint experimental-theoretical approach highlights that the cooling of holes from deep in the valence band to the valence band edge is fast, occurring on a 100–500 fs timescale. Cooling of electrons from high in the conduction band to the conduction band edge, however, is much slower, on the order of 1–10 ps. Density of states calculations indicate that excited states with holes deep in the valence band are greatly favoured upon photoexcitation, and this matches well with the fast (100–500 fs) formation time for the relaxed excited state observed in our ultrafast PL measurements. Consequently we are able to provide a complete observation of the initial excited state evolution in this important prototypical material.
Collapse
Affiliation(s)
- Gordon J Hedley
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, Department of Chemistry, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Jonathon Harwell
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, California, 90089, Los Angeles, United States
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Department of Chemistry, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.
| |
Collapse
|
50
|
Baloch AAB, Hossain MI, Tabet N, Alharbi FH. Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH 3NH 3PbI 3) Solar Cells. J Phys Chem Lett 2018; 9:426-434. [PMID: 29343067 DOI: 10.1021/acs.jpclett.7b03343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Ahmer A B Baloch
- College of Science and Engineering, Hamad Bin Khalifa University , Doha, Qatar
| | - M I Hossain
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - N Tabet
- College of Science and Engineering, Hamad Bin Khalifa University , Doha, Qatar
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - F H Alharbi
- College of Science and Engineering, Hamad Bin Khalifa University , Doha, Qatar
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| |
Collapse
|