1
|
Moghaddam M, Godeffroy L, Jasielec JJ, Kostopoulos N, Noël JM, Piquemal JY, Lemineur JF, Peljo P, Kanoufi F. Scanning Electrochemical Microscopy Meets Optical Microscopy: Probing the Local Paths of Charge Transfer Operando in Booster-Microparticles for Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309607. [PMID: 38757541 DOI: 10.1002/smll.202309607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
| | | | - Jerzy J Jasielec
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
- Department of Physical Chemistry and Modelling, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | | | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | | | | | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
| | | |
Collapse
|
2
|
Wang J, Koenig GM. Direct Lithium Extraction Using Intercalation Materials. Chemistry 2024; 30:e202302776. [PMID: 37819870 DOI: 10.1002/chem.202302776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Worldwide lithium demand has surged in recent years due to increased production of Li-ion batteries for electric vehicles and stationary storage. Li supply and production will need to increase such that the transition towards increased electrification in the energy sector does not become cost prohibitive. Many countries have taken policy steps such as listing Li as a critical mineral. Current commercial Li mining is mostly from dedicated mine sources, including ores, clays, and brines. The conventional ways to extract Li+ from those resources are through chemical processing and includes steps of calcination, leaching, precipitation, and purification. The environmental and economic sustainability of conventional Li processing has recently received increased scrutiny. Routes such as direct Li+ extraction may provide advantages relative to conventional Li+ extraction technologies, and one possible route to direct Li+ extraction includes leveraging intercalation materials. Intercalation material processing has recently demonstrated high selectivity towards Li+ as opposed to other cations. Reviews and reports of direct Li+ extraction with intercalation materials are limited, even as this technology has started to show promise in smaller-scale demonstrations. This paper will review selective Li+ extraction via intercalation materials, including both electrochemical and chemical methods to drive Li+ in and out, and efforts to characterize the Li+ insertion/deinsertion processes.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA, 22904-4741, USA
| | - Gary M Koenig
- Department of Chemical Engineering, University of Virginia, 385 McCormick Road, Charlottesville, VA, 22904-4741, USA
| |
Collapse
|
3
|
Hatakeyama-Sato K, Oyaizu K. Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices. Chem Rev 2023; 123:11336-11391. [PMID: 37695670 DOI: 10.1021/acs.chemrev.3c00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.
Collapse
Affiliation(s)
- Kan Hatakeyama-Sato
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
4
|
Hatakeyama-Sato K, Sadakuni K, Kitagawa K, Oyaizu K. Thianthrene polymers as 4 V-class organic mediators for redox targeting reaction with LiMn 2O 4 in flow batteries. Sci Rep 2023; 13:5711. [PMID: 37029257 PMCID: PMC10082199 DOI: 10.1038/s41598-023-32506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Redox targeting reaction is an emerging idea for boosting the energy density of redox-flow batteries: mobile redox mediators transport electrical charges in the cells, whereas large-density electrode-active materials are fixed in tanks. This study reports 4 V-class organic polymer mediators using thianthrene derivatives as redox units. The higher potentials than conventional organic mediators (up to 3.8 V) enable charging LiMn2O4 as an inorganic cathode offering a large theoretical volumetric capacity of 500 Ah/L. Soluble or nanoparticle polymer design is beneficial for suppressing crossover reactions (ca. 3% after 300 h), simultaneously contributing to mediation reactions. The successful mediation cycles observed by repeated charging/discharging steps indicate the future capability of designing particle-based redox targeting systems with porous separators, benefiting from higher energy density and lower cost.
Collapse
Affiliation(s)
| | - Karin Sadakuni
- Department of Applied Chemistry, Waseda University, Tokyo, 169-8555, Japan
| | - Kan Kitagawa
- Advanced Research and Innovation Center, DENSO CORPORATION, Aichi, 470-0111, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
5
|
Semi‐solid flow battery and redox-mediated flow battery: two strategies to implement the use of solid electroactive materials in high-energy redox-flow batteries. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhang F, Gao M, Huang S, Zhang H, Wang X, Liu L, Han M, Wang Q. Redox Targeting of Energy Materials for Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104562. [PMID: 34595770 DOI: 10.1002/adma.202104562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The redox-targeting (RT) process or redox-mediated process, which provides great operation flexibility in circumventing the constraints intrinsically posed by the conventional electrochemical systems, is intriguing for various energy storage and conversion applications. Implementation of the RT reactions in redox-flow cells, which involves a close-loop electrochemical-chemical cycle between an electrolyte-borne redox mediator and an energy storage or conversion material, not only boosts the energy density of flow battery system, but also offers a versatile research platform applied to a wide variety of chemistries for different applications. Here, the recent progress of RT-based energy storage and conversion systems is summarized and great versatility of RT processes for various energy-related applications is demonstrated, particularly for large-scale energy storage, spatially decoupled water electrolysis, electrolytic N2 reduction, thermal-to-electrical conversion, spent battery material recycling, and more. The working principle, materials aspects, and factors dictating the operation are highlighted to reveal the critical roles of RT reactions for each application. In addition, the challenges lying ahead for deployment are stated and recommendations for addressing these constraints are provided. It is anticipated that the RT concept of energy materials will provide important implications and eventually offer a credible solution for advanced large-scale energy storage and conversion.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mengqi Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Shiqiang Huang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Hang Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Xun Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Lijun Liu
- Clean Energy Research Centre, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Ming Han
- Clean Energy Research Centre, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
7
|
Gupta D, Zhang Y, Nie Z, Wang J, Koenig Jr GM. Chemical redox of lithium-ion solid electroactive material in a packed bed flow reactor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Moghaddam M, Sepp S, Wiberg C, Bertei A, Rucci A, Peljo P. Thermodynamics, Charge Transfer and Practical Considerations of Solid Boosters in Redox Flow Batteries. Molecules 2021; 26:2111. [PMID: 33917004 PMCID: PMC8067695 DOI: 10.3390/molecules26082111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
| | - Silver Sepp
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Cedrik Wiberg
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
| | - Antonio Bertei
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy;
| | - Alexis Rucci
- Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden;
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland; (M.M.); (S.S.); (C.W.)
| |
Collapse
|
9
|
Dang N, Etienne M, Walcarius A, Liu L. Scanning Gel Electrochemical Microscopy (SGECM): Lateral Physical Resolution by Current and Shear Force Feedback. Anal Chem 2020; 92:6415-6422. [PMID: 32233427 DOI: 10.1021/acs.analchem.9b05538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning gel electrochemical microscopy (SGECM) is a novel technique measuring local electrochemistry based on a gel probe. The gel probe, which is fabricated by electrodeposition of hydrogel on a microdisk electrode, immobilizes the electrolyte, and constitutes a two-electrode system upon contact with the sample. The contact area determines the lateral physical resolution of the measurement, and considering the soft nature of the gel it is essential to be well analyzed. In this work, the lateral physical resolution of SGECM is quantitatively studied from two aspects: (1) marking single sampling points by locally oxidizing Ag to AgCl and measuring their size; (2) line scan over reference samples with periodic topography and composition. The gel probe is approached to the sample by either current or shear force feedback, and the physical resolution of them is compared. For the optimal gel probe based on 25 μm diameter Pt disk electrode of Rg ≈ 2, the lateral physical resolution of SGECM at contact position is ca. 50 μm for current feedback and ca. 63 μm for shear force feedback. More importantly, the lateral physical resolution of SGECM can be flexibly tuned in the range of 14-78 μm by pulling or pressing the gel probe after touching the sample. In general, current feedback is more sensitive to gel-sample contact than shear force feedback. But the latter is more versatile, which is also applicable to nonconductive samples.
Collapse
Affiliation(s)
- Ning Dang
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| | - Mathieu Etienne
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| | - Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| | - Liang Liu
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| |
Collapse
|
10
|
Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chem Rev 2020; 120:6558-6625. [PMID: 32090540 DOI: 10.1021/acs.chemrev.9b00545] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonaqueous lithium-air batteries have garnered considerable research interest over the past decade due to their extremely high theoretical energy densities and potentially low cost. Significant advances have been achieved both in the mechanistic understanding of the cell reactions and in the development of effective strategies to help realize a practical energy storage device. By drawing attention to reports published mainly within the past 8 years, this review provides an updated mechanistic picture of the lithium peroxide based cell reactions and highlights key remaining challenges, including those due to the parasitic processes occurring at the reaction product-electrolyte, product-cathode, electrolyte-cathode, and electrolyte-anode interfaces. We introduce the fundamental principles and critically evaluate the effectiveness of the different strategies that have been proposed to mitigate the various issues of this chemistry, which include the use of solid catalysts, redox mediators, solvating additives for oxygen reaction intermediates, gas separation membranes, etc. Recently established cell chemistries based on the superoxide, hydroxide, and oxide phases are also summarized and discussed.
Collapse
Affiliation(s)
- Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China.,Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - J Padmanabhan Vivek
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Evan Wenbo Zhao
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jiang Lei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
| | - Nuria Garcia-Araez
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Clare P Grey
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
11
|
Chen Y, Yu Q, Xu G, Zhao G, Li J, Hong Z, Lin Y, Dong CL, Huang Z. In Situ Observation of the Insulator-To-Metal Transition and Nonequilibrium Phase Transition for Li 1-xCoO 2 Films with Preferred (003) Orientation Nanorods. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33043-33053. [PMID: 31419106 DOI: 10.1021/acsami.9b11140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is notoriously difficult to distinguish the stoichiometric LiCoO2 (LCO) with a O3-I structure from its lithium defective O3-II phase because of their similar crystal symmetry. Interestingly, moreover, the O3-II phase shows metallic conductivity, whereas the O3-I phase is an electronic insulator. How to effectively reveal the intrinsic mechanism of the conductivity difference and nonequilibrium phase transition induced by the lithium deintercalation is of vital importance for its practical application and development. Based on the developed technology of in situ peak force tunneling atomic force microscopy (PF-TUNA) in liquids, the phase transition from O3-I to O3-II and consequent insulator-to-metal transition of LCO thin-film electrodes with preferred (003) orientation nanorods designed and prepared via magnetron sputtering were observed under an organic electrolyte for the first time in this work. Then, studying the post-mortem LCO thin-film electrode by using ex situ time-dependent XRD and conductive atomic force microscopy, we find the phase relaxation of LCO electrodes after the nonequilibrium deintercalation, further proving the differences of the electronic conductivity and work function between the O3-I and O3-II phases. Moreover, X-ray absorption spectroscopy results indicate that the oxidation of Co ions and the increasing of O 2p-Co 3d hybridization in the O3-II phase lead to electrical conductivity improvement in Li1-xCoO2. Simultaneously, it is found that the nonequilibrium deintercalation at a high charging rate can result in phase-transition hysteresis and the O3-I/O3-II coexistence at the charging end, which is explained well by an ionic blockade model with an antiphase boundary. At last, this work strongly suggests that PF-TUNA can be used to reveal the unconventional phenomena on the solid/liquid interfaces.
Collapse
Affiliation(s)
- Yue Chen
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy , Fuzhou 350117 , China
| | - Qing Yu
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy , Fuzhou 350117 , China
| | - Guigui Xu
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy , Fuzhou 350117 , China
| | - Guiying Zhao
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices , Xiamen 361005 , China
| | - Jiaxin Li
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices , Xiamen 361005 , China
| | - Zhensheng Hong
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy , Fuzhou 350117 , China
| | - Yingbin Lin
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy , Fuzhou 350117 , China
| | - Chung-Li Dong
- Department of Physics , Tamkang University , 151 Yingzhuan Road , Tamsui 25137 , Taiwan
| | - Zhigao Huang
- College of Physics and Energy , Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials , Fuzhou 350117 , China
- Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices , Xiamen 361005 , China
| |
Collapse
|
12
|
Zhao W, Song W, Cheong LZ, Wang D, Li H, Besenbacher F, Huang F, Shen C. Beyond imaging: Applications of atomic force microscopy for the study of Lithium-ion batteries. Ultramicroscopy 2019; 204:34-48. [DOI: 10.1016/j.ultramic.2019.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/19/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022]
|
13
|
Hui J, Gossage ZT, Sarbapalli D, Hernández-Burgos K, Rodríguez-López J. Advanced Electrochemical Analysis for Energy Storage Interfaces. Anal Chem 2018; 91:60-83. [PMID: 30428255 DOI: 10.1021/acs.analchem.8b05115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jingshu Hui
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Zachary T Gossage
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Dipobrato Sarbapalli
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 West Green Street , Urbana , Illinois 61801 , United States
| | - Kenneth Hernández-Burgos
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Joaquín Rodríguez-López
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
14
|
Yan R, Wang Q. Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802406. [PMID: 30118550 DOI: 10.1002/adma.201802406] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Redox-targeting reactions of battery materials by redox molecules are extensively studied for energy storage since the first report in 2006. Implementation of the "redox-targeting" concept in redox flow batteries presents not only an innovative idea of battery design that considerably boosts the energy density of flow-battery system, but also an intriguing research platform applied to a wide variety of chemistries for different applications. Here, a critical overview of the recent progress in redox-targeting-based flow batteries is presented and the development of the technology in the various aspects from mechanistic understanding of the reaction kinetics to system optimization is highlighted. The limitations presently lying ahead for the widespread applications of "redox targeting" are also identified and recommendations for addressing the constraints are given. The adequate development of the redox-targeting concept should provide a credible solution for advanced large-scale energy storage in the near future.
Collapse
Affiliation(s)
- Ruiting Yan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|