1
|
Lorenzo ER, Karki B, White KE, Burns KH, Elles CG. Tunable FSRS measurements with reduced background signals: Using an etalon filter to generate picosecond pump pulses in the 460-650 nm range. J Chem Phys 2024; 161:224201. [PMID: 39651813 DOI: 10.1063/5.0237444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser's fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon. Here, we show that a single etalon filter (15 cm-1 bandwidth; 172 cm-1 free spectral range) provides an efficient and tunable option for generating Raman pump pulses over a wide range of wavelengths when used in combination with an optical parametric amplifier and a second harmonic generation (SHG) crystal that has an appropriate phase-matching bandwidth for partial spectral compression before the etalon. Tuning the SHG wavelength to match individual transmission lines of the etalon filter gives asymmetric picosecond pump pulses over a range of 460-650 nm. Importantly, the SHG crystal length determines the temporal rise time of the filtered pulse, which is an important property for reducing background and increasing Raman signals compared with symmetric pulses having the same total energy. We examine the wavelength-dependent trade-off between spectral narrowing via SHG and the asymmetric pulse shape after transmission through the etalon. This approach provides a relatively simple and efficient method to generate tunable pump pulses with the optimum temporal profile for resonance-enhanced FSRS measurements across the visible region of the spectrum.
Collapse
Affiliation(s)
- Emmaline R Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Birendra Karki
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Katie E White
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
2
|
Sui Y, Scida AM, Li B, Chen C, Fu Y, Fang Y, Greaney PA, Osborn Popp TM, Jiang DE, Fang C, Ji X. The Influence of Ions on the Electrochemical Stability of Aqueous Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202401555. [PMID: 38494454 DOI: 10.1002/anie.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules-those not engaged in hydration shells or hydrogen-bonding networks-leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O-H bond strengths of water. These insights will help the design of aqueous systems.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Alexis M Scida
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Yanke Fu
- Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, United States
| | - Yanzhao Fang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - P Alex Greaney
- Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, United States
| | - Thomas M Osborn Popp
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| |
Collapse
|
3
|
Lynch P, Das A, Alam S, Rich CC, Frontiera RR. Mastering Femtosecond Stimulated Raman Spectroscopy: A Practical Guide. ACS PHYSICAL CHEMISTRY AU 2024; 4:1-18. [PMID: 38283786 PMCID: PMC10811773 DOI: 10.1021/acsphyschemau.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) is a powerful nonlinear spectroscopic technique that probes changes in molecular and material structure with high temporal and spectral resolution. With proper spectral interpretation, this is equivalent to mapping out reactive pathways on highly anharmonic excited-state potential energy surfaces with femtosecond to picosecond time resolution. FSRS has been used to examine structural dynamics in a wide range of samples, including photoactive proteins, photovoltaic materials, plasmonic nanostructures, polymers, and a range of others, with experiments performed in multiple groups around the world. As the FSRS technique grows in popularity and is increasingly implemented in user facilities, there is a need for a widespread understanding of the methodology and best practices. In this review, we present a practical guide to FSRS, including discussions of instrumentation, as well as data acquisition and analysis. First, we describe common methods of generating the three pulses required for FSRS: the probe, Raman pump, and actinic pump, including a discussion of the parameters to consider when selecting a beam generation method. We then outline approaches for effective and efficient FSRS data acquisition. We discuss common data analysis techniques for FSRS, as well as more advanced analyses aimed at extracting small signals on a large background. We conclude with a discussion of some of the new directions for FSRS research, including spectromicroscopy. Overall, this review provides researchers with a practical handbook for FSRS as a technique with the aim of encouraging many scientists and engineers to use it in their research.
Collapse
Affiliation(s)
- Pauline
G. Lynch
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aritra Das
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shahzad Alam
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher C. Rich
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
5
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
6
|
Cheng QY, Wang T, Hu J, Chen HY, Xu JJ. In Situ Probing the Short-Lived Intermediates in Visible-Light Heterogeneous Photocatalysis by Mass Spectrometry. Anal Chem 2023; 95:14150-14157. [PMID: 37665645 DOI: 10.1021/acs.analchem.3c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Visible-light-mediated heterogeneous photocatalysis has recently emerged as an environmentally friendly and energy-sustainable alternative for organic transformations. Despite the advancements in developing wide varieties of photocatalysts during the past decades, the accurate probing and identification of the photogenerated species, especially the short-lived radical intermediates, are still challenging. In this work, we reported a hybrid ion emitter that integrated with a pico-liter heterogeneous photocatalytic reactor, which was fabricated by depositing the photocatalyst (e.g., TiO2) into the front tip of a quartz micropipette. Benefited from the dual-function feature of the hybrid micropipette (i.e., a clog-free tip-confined pico-liter reactor for heterogeneous photocatalysis and an ion emitter for nanoelectrospray ionization), sensitized photoredox reactions at the catalyst-solution interface can be triggered upon visible-light irradiation using a cheap LED laser (453 nm), and the newly produced transient radical intermediates can be rapidly transformed into gaseous ions for mass spectrometric identification. Using this novel low-delay coupling device, photogenerated intermediates, including the cationic radicals produced during the photooxidation of anilines and the anionic radicals produced during the photoreduction of quinones, were successfully captured by mass spectrometry. We believe that our hybrid photochemical microreactor/ion emitter has provided a new and powerful tool for exploring the complicated heterogeneous photochemical processes, especially their ultrafast initial transformations.
Collapse
Affiliation(s)
- Qiu-Yue Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Tang L, Xu Y, Zhang W, Sui Y, Scida A, Tachibana SR, Garaga M, Sandstrom SK, Chiu NC, Stylianou KC, Greenbaum SG, Greaney PA, Fang C, Ji X. Strengthening Aqueous Electrolytes without Strengthening Water. Angew Chem Int Ed Engl 2023; 62:e202307212. [PMID: 37407432 DOI: 10.1002/anie.202307212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions-25 wt.% LiCl and 62 wt.% H3 PO4 -cooled to -78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl- , ice-like water clusters form, and H⋅⋅⋅Cl- bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules' O-H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O-H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH- and H+ , the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2 O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Yunkai Xu
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Weiyi Zhang
- Materials Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Alexis Scida
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Sean R Tachibana
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Mounesha Garaga
- Hunter College, City University of New York, New York, NY, 10065, USA
| | - Sean K Sandstrom
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Nan-Chieh Chiu
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Kyriakos C Stylianou
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Steve G Greenbaum
- Hunter College, City University of New York, New York, NY, 10065, USA
| | - Peter Alex Greaney
- Materials Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
8
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
9
|
Chen C, Zhang H, Zhang J, Ai HW, Fang C. Structural origin and rational development of bright red noncanonical variants of green fluorescent protein. Phys Chem Chem Phys 2023; 25:15624-15634. [PMID: 37211909 PMCID: PMC10330862 DOI: 10.1039/d3cp01315d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique "double-donor" chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Hao Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Jing Zhang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
10
|
Xie J, Wang Z, Zhu R, Jiang J, Weng TC, Ren Y, Han S, Huang Y, Liu W. Investigation of Excited-State Intramolecular Proton Transfer and Structural Dynamics in Bis-Benzimidazole Derivative (BBM). Int J Mol Sci 2023; 24:ijms24119438. [PMID: 37298391 DOI: 10.3390/ijms24119438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The bis-benzimidazole derivative (BBM) molecule, consisting of two 2-(2'-hydroxyphenyl) benzimidazole (HBI) halves, has been synthesized and successfully utilized as a ratiometric fluorescence sensor for the sensitive detection of Cu2+ based on enol-keto excited-state intramolecular proton transfer (ESIPT). In this study, we strategically implement femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, aided by quantum chemical calculations to investigate the detailed primary photodynamics of the BBM molecule. The results demonstrate that the ESIPT from BBM-enol* to BBM-keto* was observed in only one of the HBI halves with a time constant of 300 fs; after that, the rotation of the dihedral angle between the two HBI halves generated a planarized BBM-keto* isomer in 3 ps, leading to a dynamic redshift of BBM-keto* emission.
Collapse
Affiliation(s)
- Junhan Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhua Han
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
11
|
Solaris J, Krueger TD, Chen C, Fang C. Photogrammetry of Ultrafast Excited-State Intramolecular Proton Transfer Pathways in the Fungal Pigment Draconin Red. Molecules 2023; 28:3506. [PMID: 37110741 PMCID: PMC10144053 DOI: 10.3390/molecules28083506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of -COH rocking and -C=C, -C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck-Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique "W"-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump-probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics.
Collapse
|
12
|
Krueger TD, Tang L, Fang C. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing. BIOSENSORS 2023; 13:bios13020218. [PMID: 36831983 PMCID: PMC9954042 DOI: 10.3390/bios13020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/14/2023]
Abstract
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.
Collapse
|
13
|
Bailey-Darland S, Krueger TD, Fang C. Ultrafast Spectroscopies of Nitrophenols and Nitrophenolates in Solution: From Electronic Dynamics and Vibrational Structures to Photochemical and Environmental Implications. Molecules 2023; 28:601. [PMID: 36677656 PMCID: PMC9866910 DOI: 10.3390/molecules28020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting ortho-, meta-, and para-substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP-), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional "nanomachines" that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor-acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the meta-substituted compound 3NP or 3NP- exhibits the strongest charge-transfer character with FSRS signatures (e.g., C-N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the ortho-substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications.
Collapse
|
14
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
15
|
Ren M, Liu X, Zhang L, Lin X, Wu W, Chen Z. Compact and accurate ab initio valence bond wave functions for electron transfer: the classic but challenging covalent-ionic interaction in LiF. J Chem Phys 2022; 157:084106. [DOI: 10.1063/5.0097614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper combines the valence bond block diabatization approach (VBBDA) with the idea of orbital breathing. With highly compact wave functions, the breathing orbital valence bond (BOVB) method is applied to investigate several atomic and molecular properties including the electron affinity of F, the adiabatic and diabatic potential energy curves and the dipole moment curves of the two lowest-lying 1Σ+ states, the electronic coupling curve and the crossing distance of the two diabatic states, and the spectroscopic constants of the ground states for LiF. The configuration selection scheme proposed in this work is quite general, requiring only the selection of several de-excitation and excitation orbitals in a sense like the restricted active space self-consistent field method. Practically, this is also the first time that BOVB results are extrapolated to complete basis set limit. Armed with the chemical intuition provided by VB theory, the classic but challenging covalent-ionic interaction in the title molecule is not only conceptually interpreted but is also accurately computed.
Collapse
Affiliation(s)
- Mingxing Ren
- College of Chemistry and Chemical Engineering, Xiamen University, China
| | | | - Lina Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, China
| | | | - Wei Wu
- Chemistry, Xiamen University, China
| | | |
Collapse
|
16
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
17
|
Lee S, Jen M, Lee G, Jang T, Pang Y. Intramolecular charge transfer of a push-pull chromophore with restricted internal rotation of an electron donor. Phys Chem Chem Phys 2022; 24:5794-5802. [PMID: 35195633 DOI: 10.1039/d1cp05541k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intramolecular charge transfer (ICT) of 4-(dicyanomethylene)-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)vinyl]-4H-pyran (LD688) in DMSO solution was investigated by femtosecond stimulated Raman spectroscopy (FSRS) with 403 nm excitation. The molecular structure of LD688 is similar to that of a well-known push-pull chromophore, 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), except that the internal rotation of the electron-donating dimethylamino group is restricted with the introduction of the julolidine moiety. Upon photo-excitation, LD688 shows an ultrafast (1.0 ps) ICT followed by the vibrational relaxation (3-8 ps) in the charge-transfer (CT) state. Two distinct Raman spectra of LD688 in the locally excited (LE) and CT state of the S1 state were retrieved from FSRS measurements. Based on the time-dependent density functional theory (TDDFT) simulations, a "twisted" julolidine geometry of LD688 was proposed for the ICT state, which was further confirmed in comparison to the spectral changes of several push-pull chromophores with the π-conjugated backbone of stilbene, biphenyl, styrylpyran, styrylpyridinium, and styrene in terms of the skeletal vibrational modes of ν19b,py, νCC,ph, and νCN.
Collapse
Affiliation(s)
- Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Myungsam Jen
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Gisang Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Kim KI, Tang L, Muratli JM, Fang C, Ji X. A Graphite∥PTCDI Aqueous Dual-Ion Battery. CHEMSUSCHEM 2022; 15:e202102394. [PMID: 35132831 DOI: 10.1002/cssc.202102394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
A full cell chemistry of aqueous dual-ion battery (DIB) was reported, comprising the graphite cathode and 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) as the anode. This DIB employed a mixture aqueous electrolyte: 5 m tributylmethylammonium (TBMA) chloride plus 5 m MgCl2 , where [MgCl3 ]- and TBMA+ serve as the charge carriers for cathode and anode of the DIB, respectively. This novel full cell exhibited a specific capacity of around 41 mAh g-1 based on the total active mass of both electrodes with an average operation voltage of 1.45 V and stable cycling for 400 cycles.
Collapse
Affiliation(s)
- Keun-Il Kim
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Jesse M Muratli
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| |
Collapse
|
19
|
Dobryakov AL, Krohn OA, Quick M, Ioffe I, Kovalenko SA. Positive and Negative Signal and Line-Shape in Stimulated Raman Spectroscopy: Resonance Femtosecond Raman Spectra of Diphenylbutadiene. J Chem Phys 2022; 156:084304. [DOI: 10.1063/5.0075116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Tang L, Fang C. Fluorescence Modulation by Ultrafast Chromophore Twisting Events: Developing a Powerful Toolset for Fluorescent-Protein-Based Imaging. J Phys Chem B 2021; 125:13610-13623. [PMID: 34883016 DOI: 10.1021/acs.jpcb.1c08570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advancement of modern life sciences has benefited tremendously from the discovery and development of fluorescent proteins (FPs), widely expressed in live cells to track a myriad of cellular events. The chromophores of various FPs can undergo many ultrafast photophysical and/or photochemical processes in the electronic excited state and emit fluorescence with different colors. However, the chromophore becomes essentially nonfluorescent in solution environment due to its intrinsic twisting capability upon photoexcitation. To study "microscopic" torsional events and their effects on "macroscopic" fluorescence, we have developed an integrated ultrafast characterization platform involving femtosecond transient absorption (fs-TA) and wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS). A wide range of naturally occurring, circularly permuted, non-canonical amino-acid-decorated FPs and FP-based optical highlighters with photochromicity, photoconversion, and/or photoswitching capabilities have been recently investigated in great detail. Twisting conformational motions were elucidated to exist in all of these systems but to various extents. The associated different ultrafast pathways can be monitored via frequency changes of characteristic Raman bands during primary events and functional processes. The mapped electronic and structural dynamics information is crucial and has shown great potential and initial success for the rational design of proteins and other photoreceptors with novel functions and fluorescence properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
21
|
Krueger TD, Fang C. Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy. Chemistry 2021; 27:17736-17750. [PMID: 34545971 DOI: 10.1002/chem.202102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Recent advances in sustainable optoelectronics including photovoltaics, light-emitting diodes, transistors, and semiconductors have been enabled by π-conjugated organic molecules. A fundamental understanding of light-matter interactions involving these materials can be realized by time-resolved electronic and vibrational spectroscopies. In this Minireview, the photoinduced mechanisms including charge/energy transfer, electronic (de)localization, and excited-state proton transfer are correlated with functional properties encompassing optical absorption, fluorescence quantum yield, conductivity, and photostability. Four naturally derived molecules (xylindein, dimethylxylindein, alizarin, indigo) with ultrafast spectral insights showcase efficient energy dissipation involving H-bonding networks and proton motions, which yield high photostability. Rational design principles derived from such investigations could increase the efficiency for light harvesting, triplet formation, and photosensitivity for improved and versatile optoelectronic performance.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
22
|
Shenje L, Qu Y, Popik V, Ullrich S. Femtosecond photodecarbonylation of photo-ODIBO studied by stimulated Raman spectroscopy and density functional theory. Phys Chem Chem Phys 2021; 23:25637-25648. [PMID: 34783336 DOI: 10.1039/d1cp03512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-oxa-dibenzocyclooctyne (Photo-ODIBO) undergoes photodecarbonylation under UV excitation to its bright S2 state, forming a highly reactive cyclooctyne, ODIBO. Following 321 nm excitation with sub-50 fs actinic pulses, the excited state evolution and cyclopropenone bond cleavage with CO release were characterized using femtosecond stimulated Raman spectroscopy and time-dependent density functional theory Raman calculations. Analysis of the photo-ODIBO S2 CO Raman band revealed multi-exponential intensity, peak splitting and frequency-shift dynamics. This suggests a stepwise cleavage of the two C-C bonds in the cyclopropenone structure that is completed within <300 fs after excitation. Evidence of intramolecular vibrational relaxation on the S2 state, concurrent with photodecarbonylation, with dynamics matching previous electronic transient absorption spectroscopy, was also observed. This confirms an excited state, as opposed to ground state, photodecarbonylation mechanism resulting in a vibronically excited photoproduct, ODIBO.
Collapse
Affiliation(s)
- Learnmore Shenje
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| | - Yingqi Qu
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Susanne Ullrich
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
23
|
Boulanger SA, Chen C, Myasnyanko IN, Sokolov AI, Baranov MS, Fang C. Excited-State Dynamics of a meta-Dimethylamino Locked GFP Chromophore as a Fluorescence Turn-on Water Sensor †. Photochem Photobiol 2021; 98:311-324. [PMID: 34714942 DOI: 10.1111/php.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Strategic incorporation of a meta-dimethylamino (-NMe2 ) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m-NMe2 -LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ˜200-fold decrease in fluorescence quantum yield of m-NMe2 -LpHBDI in alcohols (e.g., MeOH, EtOH and 2-PrOH) supports this GFP-derived compound as a fluorescence turn-on water sensor, with large fluorescence intensity differences between H2 O and ROH emissions in various H2 O/ROH binary mixtures. A combination of steady-state electronic spectroscopy, femtosecond transient absorption, ground-state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen-bonding chain between a solvent -OH group and the chromophore phenolic ring -NMe2 and -OH functional groups, wherein fluorescence differences arise from an extended hydrogen-bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge-transfer state. The absence of a meta-NMe2 group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without the meta-NMe2 group or with both meta-NMe2 and para-OH groups locked in a six-membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.
Collapse
Affiliation(s)
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR
| |
Collapse
|
24
|
Xu W, Wei L, Wang Z, Zhu R, Jiang J, Liu H, Du J, Weng TC, Zhang YB, Huang Y, Liu W. Tracking Ultrafast Fluorescence Switch-On and Color-Tuned Dynamics in Acceptor-Donor-Acceptor Chromophore. J Phys Chem B 2021; 125:10796-10804. [PMID: 34524821 DOI: 10.1021/acs.jpcb.1c05936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how the conformational change of conjugated molecules with acceptor-donor-acceptor (A-D-A) architecture affects their physical and optoelectronic properties is critical for determining their ultimate performance in organic electronic devices. Here, we utilized femtosecond transient absorption, time-resolved upconversion photoluminescence spectroscopy, and tunable femtosecond-stimulated Raman spectroscopy, aided by quantum chemical calculations, to systematically investigate the excited state structural dynamics of the intramolecular charge transfer of the tetramethoxy anthracene-based fluorophore 2,3,6,7-tetramethoxy 9,10-dibenzaldehydeanthracene (AnDA) and its derivative 2,3,6,7-tetramethoxy 9,10-diphenylanthracene (TMDPAn) in chloroform. In the AnDA molecule, the tetramethoxy anthracene and benzaldehyde moieties exhibit a strong ability to donate and withdraw electrons. Upon photoexcitation, AnDA shows intriguing ultrafast fluorescence switch-on and red shift dynamics on charge transfer states, and the temporal evolution of AnDA recorded by ultrafast spectroscopy reveals a dynamic picture of two-step intramolecular charge transfer assisted by ultrafast conformational changes and solvation processes. Removing the aldehyde group from TMDPAn significantly decreases the electron pulling capacity of the phenyl unit and disables charge transfer characteristics.
Collapse
Affiliation(s)
- Wenqi Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.,STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, People's Republic of China
| | - Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zhengxin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.,STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, People's Republic of China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Huiyan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.,STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, People's Republic of China
| |
Collapse
|
25
|
Kuramochi H, Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J Am Chem Soc 2021; 143:9699-9717. [PMID: 34096295 PMCID: PMC9344463 DOI: 10.1021/jacs.1c02545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In traditional Raman spectroscopy,
narrow-band light is irradiated
on a sample, and its inelastic scattering, i.e., Raman scattering,
is detected. The energy difference between the Raman scattering and
the incident light corresponds to the vibrational energy of the molecule,
providing the Raman spectrum that contains rich information about
the molecular-level properties of the materials. On the other hand,
by using ultrashort optical pulses, it is possible to induce Raman-active
coherent nuclear motion of the molecule and to observe the molecular
vibration in real time. Moreover, this time-domain Raman measurement
can be combined with femtosecond photoexcitation, triggering chemical
changes, which enables tracking ultrafast structural dynamics in a
form of “time-resolved” time-domain Raman spectroscopy,
also known as time-resolved impulsive stimulated Raman spectroscopy.
With the advent of stable, ultrashort laser pulse sources, time-resolved
impulsive stimulated Raman spectroscopy now realizes high sensitivity
and a wide detection frequency window from THz to 3000 cm–1, and has seen success in unveiling the molecular mechanisms underlying
the efficient functions of complex molecular systems. In this Perspective,
we overview the present status of time-domain Raman spectroscopy,
particularly focusing on its application to the study of femtosecond
structural dynamics. We first explain the principle and a brief history
of time-domain Raman spectroscopy and then describe the apparatus
and recent applications to the femtosecond dynamics of complex molecular
systems, including proteins, molecular assemblies, and functional
materials. We also discuss future directions for time-domain Raman
spectroscopy, which has reached a status allowing a wide range of
applications.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
26
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
27
|
Zhang W, Xu W, Zhang G, Kong J, Niu X, Chan JMW, Liu W, Xia A. Direct Tracking Excited-State Intramolecular Charge Redistribution of Acceptor-Donor-Acceptor Molecule by Means of Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:4456-4464. [PMID: 33902280 DOI: 10.1021/acs.jpcb.1c01742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symmetric quadrupolar molecules generally exhibit apolar ground states and dipolar excited states in a polar environment, which is explained by the excited state evolution from initial charge delocalization over all molecules to localization on one branch of the molecules after a femtosecond pulse excitation. However, direct observation of excited-state charge redistribution (delocalization/localization) is hardly accessible. Here, the intramolecular charge delocalization/localization character of a newly synthesized acceptor-donor-acceptor molecule (ADA) has been intensively investigated by femtosecond stimulated Raman scattering (FSRS) together with femtosecond transient absorption (fs-TA) spectroscopy. By tracking the excited state Raman spectra of the specific alkynyl (-C≡C-) bonds at each branch of ADA, we found that the nature of the relaxed S1 state is strongly governed by solvent polarity: symmetric delocalized intramolecular charge transfer (ICT) characters occurred in apolar solvent, whereas the asymmetric localized ICT characters appeared in polar solvent because of solvation. The solvation dynamics of ADA extracted from fs-TA is consistent with the time constants obtained by FSRS, but the FSRS clearly tracks the excited state intramolecular charge transfer delocalization/localization.
Collapse
Affiliation(s)
- Wei Zhang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Wenqi Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Guoxian Zhang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Julian M W Chan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Andong Xia
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China
| |
Collapse
|
28
|
Noh S, Kim J, Kim G, Park C, Jang H, Lee M, Lee T. Recent Advances in CRP Biosensor Based on Electrical, Electrochemical and Optical Methods. SENSORS 2021; 21:s21093024. [PMID: 33925825 PMCID: PMC8123455 DOI: 10.3390/s21093024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
C-reactive protein (CRP) is an acute-phase reactive protein that appears in the bloodstream in response to inflammatory cytokines such as interleukin-6 produced by adipocytes and macrophages during the acute phase of the inflammatory/infectious process. CRP measurement is widely used as a representative acute and chronic inflammatory disease marker. With the development of diagnostic techniques measuring CRP more precisely than before, CRP is being used not only as a traditional biomarker but also as a biomarker for various diseases. The existing commercialized CRP assays are dominated by enzyme-linked immunosorbent assay (ELISA). ELISA has high selectivity and sensitivity, but its limitations include requiring complex analytic processes, long analysis times, and professional manpower. To overcome these problems, nanobiotechnology is able to provide alternative diagnostic tools. By introducing the nanobio hybrid material to the CRP biosensors, CRP can be measured more quickly and accurately, and highly sensitive biosensors can be used as portable devices. In this review, we discuss the recent advancements in electrochemical, electricity, and spectroscopy-based CRP biosensors composed of biomaterial and nanomaterial hybrids.
Collapse
Affiliation(s)
- Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea;
| | - Minho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
29
|
Tachibana SR, Tang L, Chen C, Zhu L, Takeda Y, Fushimi K, Seevers TK, Narikawa R, Sato M, Fang C. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119379. [PMID: 33401182 DOI: 10.1016/j.saa.2020.119379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.
Collapse
Affiliation(s)
- Sean R Tachibana
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Yuka Takeda
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Travis K Seevers
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo, 153-8902 Tokyo, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States.
| |
Collapse
|
30
|
Krueger TD, Giesbers G, Van Court RC, Zhu L, Kim R, Beaudry CM, Robinson SC, Ostroverkhova O, Fang C. Ultrafast Dynamics and Photoresponse of a Fungi-Derived Pigment Xylindein from Solution to Thin Films. Chemistry 2021; 27:5627-5631. [PMID: 33543812 DOI: 10.1021/acs.jpcc.0c09627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Indexed: 05/22/2023]
Abstract
Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π-π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Gregory Giesbers
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Ray C Van Court
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Ryan Kim
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Christopher M Beaudry
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Seri C Robinson
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Oksana Ostroverkhova
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
31
|
Xu Y, Wu X, Jiang H, Tang L, Koga KY, Fang C, Lu J, Ji X. A Non-aqueous H 3 PO 4 Electrolyte Enables Stable Cycling of Proton Electrodes. Angew Chem Int Ed Engl 2020; 59:22007-22011. [PMID: 32805079 DOI: 10.1002/anie.202010554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 01/03/2023]
Abstract
A non-aqueous proton electrolyte is devised by dissolving H3 PO4 into acetonitrile. The electrolyte exhibits unique vibrational signatures from stimulated Raman spectroscopy. Such an electrolyte exhibits unique characteristics compared to aqueous acidic electrolytes: 1) higher (de)protonation potential for a lower desolvation energy of protons, 2) better cycling stability by dissolution suppression, and 3) higher Coulombic efficiency owing to the lack of oxygen evolution reaction. Two non-aqueous proton full cells exhibit better cycling stability, higher Coulombic efficiency, and less self-discharge compared to the aqueous counterpart.
Collapse
Affiliation(s)
- Yunkai Xu
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Xianyong Wu
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Heng Jiang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Kenneth Y Koga
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
32
|
Hong MJ, Zhu L, Chen C, Tang L, Lin YH, Li W, Johnson R, Chattopadhyay S, Snaith HJ, Fang C, Labram JG. Time-Resolved Changes in Dielectric Constant of Metal Halide Perovskites under Illumination. J Am Chem Soc 2020; 142:19799-19803. [PMID: 33186029 DOI: 10.1021/jacs.0c07307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite their impressive performance as a solar absorber, much remains unknown on the fundamental properties of metal halide perovskites (MHPs). Their polar nature in particular is an intense area of study, and the relative permittivity (εr) is a parameter widely used to quantify polarization over a range of different time scales. In this report, we have exploited frequency-dependent time-resolved microwave conductivity (TRMC) to study how εr values of a range of MHPs change as a function of time, upon optical illumination. Further characterization of charge carriers and polarizability are conducted by femtosecond transient absorption and stimulated Raman spectroscopy. We find that changes in εr are roughly proportional to photogenerated carrier density but decay with a shorter time constant than conductance, suggesting that the presence of charge carriers alone does not determine polarization.
Collapse
Affiliation(s)
- Min Ji Hong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Yen-Hung Lin
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Wen Li
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Rose Johnson
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shirsopratim Chattopadhyay
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - John G Labram
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
33
|
Abstract
The smart utilization of photons is paid global attention from the viewpoint of renewable energy and information technology. However, it is still impossible to store photons as batteries and condensers do for electrons. All the present technologies utilize (the energy of) photons in situ, such as solar panels, or in spontaneous relaxation processes, such as photoluminescence. If we can store the energy of photons over an arbitrary period and utilize them on demand, not only we will make an innovative progress in energy management, but we will also be able to replace a part of electrons by photons in the information technology for more efficient performance. In this article, we review a prototype of such a material including the current status of related research as well as where we are heading for.
Collapse
|
34
|
Xu Y, Wu X, Jiang H, Tang L, Koga KY, Fang C, Lu J, Ji X. A Non‐aqueous H
3
PO
4
Electrolyte Enables Stable Cycling of Proton Electrodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunkai Xu
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Xianyong Wu
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Heng Jiang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Longteng Tang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Kenneth Y. Koga
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Chong Fang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Jun Lu
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Xiulei Ji
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| |
Collapse
|
35
|
Boulanger SA, Zhu L, Tang L, Saha S, Keszler DA, Fang C. Photoinduced Charge Transfer and Bimetallic Bond Dissociation of a Bi-W Complex in Solution. J Phys Chem Lett 2020; 11:7575-7582. [PMID: 32818381 DOI: 10.1021/acs.jpclett.0c02380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organometallic complexes including metal carbonyls have been widely utilized in academic and industrial settings for purposes ranging from teaching basic catalytic reactions to developing state-of-the-art electronic circuits. Characterization of these materials can be obtained via steady-state measurements; however, the intermediate photochemical events remain unclear, hindering effective and rational molecular engineering methods for new materials. We employed femtosecond transient absorption (fs-TA) and ground-state femtosecond stimulated Raman spectroscopy (FSRS) on triphenylbismuth-tungsten pentacarbonyl complex, a solution precursor for bimetallic oxide thin films. Upon 280 nm excitation into a charge-transfer band, an ultrafast bimetallic bond dissociation occurs within ∼140 fs. The subpicosecond nondiffusive solvation events are followed by ∼10 ps (15 ps) methanol (ethanol) complexation of the nascent tungsten pentacarbonyl intermediate, which mainly undergoes vibrational relaxation after crossing into a hot ground state. The trans ligand to axial CO is revealed to play a key role in the electronic and vibrational structure and dynamics of the complex. These findings could power rational design of bimetallic and functional solution precursors for the light-driven nanopatterning of thin films.
Collapse
Affiliation(s)
- Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Sumit Saha
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Douglas A Keszler
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
36
|
Oscar BG, Zhu L, Wolfendeen H, Rozanov ND, Chang A, Stout KT, Sandwisch JW, Porter JJ, Mehl RA, Fang C. Dissecting Optical Response and Molecular Structure of Fluorescent Proteins With Non-canonical Chromophores. Front Mol Biosci 2020; 7:131. [PMID: 32733917 PMCID: PMC7358599 DOI: 10.3389/fmolb.2020.00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tracking the structural dynamics of fluorescent protein chromophores holds the key to unlocking the fluorescence mechanisms in real time and enabling rational design principles of these powerful and versatile bioimaging probes. By combining recent chemical biology and ultrafast spectroscopy advances, we prepared the superfolder green fluorescent protein (sfGFP) and its non-canonical amino acid (ncAA) derivatives with a single chlorine, bromine, and nitro substituent at the ortho site to the phenolate oxygen of the embedded chromophore, and characterized them using an integrated toolset of femtosecond transient absorption and tunable femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations of the vibrational normal modes. A dominant vibrational cooling time constant of ~4 and 11 ps is revealed in Cl-GFP and Br-GFP, respectively, facilitating a ~30 and 12% increase of the fluorescent quantum yield vs. the parent sfGFP. Similar time constants were also retrieved from the transient absorption spectra, substantiating the correlated electronic and vibrational motions on the intrinsic molecular timescales. Key carbon-halogen stretching motions coupled with phenolate ring motions of the deprotonated chromophores at ca. 908 and 890 cm-1 in Cl-GFP and Br-GFP exhibit enhanced activities in the electronic excited state and blue-shift during a distinct vibrational cooling process on the ps timescale. The retrieved structural dynamics change due to targeted site-specific halogenation of the chromophore thus provides an effective means to design new GFP derivatives and enrich the bioimaging probe toolset for life and medical sciences.
Collapse
Affiliation(s)
- Breland G. Oscar
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Hayati Wolfendeen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Nikita D. Rozanov
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Alvin Chang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Kenneth T. Stout
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Jason W. Sandwisch
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Joseph J. Porter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
37
|
Chen C, Fang C. Devising Efficient Red-Shifting Strategies for Bioimaging: A Generalizable Donor-Acceptor Fluorophore Prototype. Chem Asian J 2020; 15:1514-1523. [PMID: 32216076 DOI: 10.1002/asia.202000175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Indexed: 11/06/2022]
Abstract
Long emission wavelengths, high fluorescence quantum yields (FQYs), and large Stokes shifts are highly desirable features for fluorescent probes in biological imaging. However, the current development of many fluorescent probes remains largely trial-and-error and lacks efficiency. Moreover, to achieve far-red/near-infrared emission, a significant extension in the π -conjugation is usually adopted but accompanied by other drawbacks such as fluorescence loss. In this review, we discuss an effective red-shifting strategy built upon the green fluorescent protein chromophore, which enables a synergistic tuning of both the electronic ground and excited states. This approach could shorten the path toward redder emission in comparison to the conventional intramolecular charge transfer (ICT) strategy. We envision that this spectroscopy and computation-aided strategy may advance the noncanonical fluorescent protein design and be generalized to various fluorophore scaffolds for redder emission while preserving other superior properties such as high FQYs.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
38
|
Krueger TD, Boulanger SA, Zhu L, Tang L, Fang C. Discovering a rotational barrier within a charge-transfer state of a photoexcited chromophore in solution. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024901. [PMID: 32161777 PMCID: PMC7056454 DOI: 10.1063/1.5143441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/15/2023]
Abstract
Methylation occurs in a myriad of systems with protective and regulatory functions. 8-methoxypyrene-1,3,6-trisulfonate (MPTS), a methoxy derivative of a photoacid, serves as a model system to study effects of methylation on the excited state potential energy landscape. A suite of spectroscopic techniques including transient absorption, wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS), and fluorescence quantum yield measurements via steady-state electronic spectroscopy reveal the energy dissipation pathways of MPTS following photoexcitation. Various solvents enable a systematic characterization of the H-bonding interaction, viscosity, and dynamic solvation that influence the ensuing relaxation pathways. The formation of a charge-transfer state out of the Franck-Condon region occurs on the femtosecond-to-picosecond solvation timescale before encountering a rotational barrier. The rotational relaxation correlates with the H-bond donating strength of solvent, while the rotational time constant lengthens as solvent viscosity increases. Time-resolved excited-state FSRS, aided by quantum calculations, provides crucial structural dynamics knowledge and reveals the sulfonate groups playing a dominant role during solvation. Several prominent vibrational motions of the pyrene ring backbone help maneuver the population toward the more fluorescent state. These ultrafast correlated electronic and nuclear motions ultimately govern the fate of the photoexcited chromophore in solution. Overall, MPTS in water displays the highest probability to fluoresce, while the aprotic and more viscous dimethyl sulfoxide enhances the nonradiative pathways. These mechanistic insights may apply robustly to other photoexcited chromophores that do not undergo excited-state proton transfer or remain trapped in a broad electronic state and also provide design principles to control molecular optical responses with site-specific atomic substitution.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Sean A. Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| |
Collapse
|
39
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
40
|
Chen C, Zhu L, Boulanger SA, Baleeva NS, Myasnyanko IN, Baranov MS, Fang C. Ultrafast excited-state proton transfer dynamics in dihalogenated non-fluorescent and fluorescent GFP chromophores. J Chem Phys 2020; 152:021101. [PMID: 31941340 DOI: 10.1063/1.5138666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Green fluorescent protein (GFP) has enabled a myriad of bioimaging advances due to its photophysical and photochemical properties. To deepen the mechanistic understanding of such light-induced processes, novel derivatives of GFP chromophore p-HBDI were engineered by fluorination or bromination of the phenolic moiety into superphotoacids, which efficiently undergo excited-state proton transfer (ESPT) in aqueous solution within the short lifetime of the excited state, as opposed to p-HBDI where efficient ESPT is not observed. In addition, we tuned the excited-state lifetime from picoseconds to nanoseconds by conformational locking of the p-HBDI backbone, essentially transforming the nonfluorescent chromophores into highly fluorescent ones. The unlocked superphotoacids undergo a barrierless ESPT without much solvent activity, whereas the locked counterparts exhibit two distinct solvent-involved ESPT pathways. Comparative analysis of femtosecond transient absorption spectra of these unlocked and locked superphotoacids reveals that the ESPT rates adopt an "inverted" kinetic behavior as the thermodynamic driving force increases upon locking the backbone. Further experimental and theoretical investigations are expected to shed more light on the interplay between the modified electronic structure (mainly by dihalogenation) and nuclear motions (by conformational locking) of the functionalized GFP derivatives (e.g., fluorescence on and off).
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| |
Collapse
|
41
|
Krueger TD, Tang L, Zhu L, Breen IL, Wachter RM, Fang C. Dual Illumination Enhances Transformation of an Engineered Green-to-Red Photoconvertible Fluorescent Protein. Angew Chem Int Ed Engl 2020; 59:1644-1652. [PMID: 31692171 DOI: 10.1002/anie.201911379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 01/13/2023]
Abstract
The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Isabella L Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Rebekka M Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
42
|
Krueger TD, Tang L, Zhu L, Breen IL, Wachter RM, Fang C. Dual Illumination Enhances Transformation of an Engineered Green‐to‐Red Photoconvertible Fluorescent Protein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - Longteng Tang
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - Liangdong Zhu
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - Isabella L. Breen
- School of Molecular Sciences Center for Bioenergy and Photosynthesis Biodesign Center for Applied Structural Discovery Arizona State University Tempe AZ 85287 USA
| | - Rebekka M. Wachter
- School of Molecular Sciences Center for Bioenergy and Photosynthesis Biodesign Center for Applied Structural Discovery Arizona State University Tempe AZ 85287 USA
| | - Chong Fang
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| |
Collapse
|
43
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
44
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
45
|
Tang L, Zhu L, Ener ME, Gao H, Wang Y, Groves JT, Spiro TG, Fang C. Photoinduced charge flow inside an iron porphyrazine complex. Chem Commun (Camb) 2019; 55:13606-13609. [PMID: 31657387 PMCID: PMC11076153 DOI: 10.1039/c9cc06193b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Tracking inorganic photochemistry with high resolution poses considerable challenges. Here, sub-picosecond electronic and structural motions and MLCT/d-d intersystem crossing in a cationic iron-porphyrazine are probed using ultrafast transient absorption, stimulated Raman spectroscopy, and quantum calculations. By delineating photoinduced energy relaxation, strategies for extending the lifetime of MLCT state are discussed.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Maraia E Ener
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Hongxin Gao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Yanli Wang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
46
|
Jen M, Jeon K, Lee S, Hwang S, Chung WJ, Pang Y. Ultrafast intramolecular proton transfer reactions and solvation dynamics of DMSO. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064901. [PMID: 31867409 PMCID: PMC6920016 DOI: 10.1063/1.5129446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/21/2019] [Indexed: 05/27/2023]
Abstract
Ultrafast intramolecular proton transfers of 1,2-dihydroxyanthraquinone (alizarin-h2) and its deuterated product (alizarin-d2) in dimethyl sulfoxide (DMSO) have been investigated by femtosecond stimulated Raman spectroscopy. The population dynamics in the solute vibrational mode of νC=O and the coherent oscillations observed in all of the skeletal vibrational modes νC=O and νC=C clearly showed the ultrafast excited-state intramolecular proton transfer dynamics of 110 and 170 fs for alizarin-h2 and alizarin-d2, respectively. Interestingly, we have observed that the solvent vibrational modes νS=O and νCSC may also represent ultrafast structural dynamics at the frequencies for its "free" or "aggregated" species. From the kinetic analysis of the νS=O and νCSC modes of DMSO, the ultrafast changes in the solvation or intermolecular interactions between DMSO molecules initiated by the structural changes of solute molecules have been thoroughly investigated. We propose that the solvent vibrational modes νS=O and νCSC of DMSO can be used as a "sensor" for ultrafast chemical reactions accompanying the structural changes and subsequent solute-solvent interactions.
Collapse
Affiliation(s)
| | | | - Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sunjoo Hwang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| |
Collapse
|
47
|
Hong JJ, Zhu L, Chen C, Tang L, Jiang H, Jin B, Gallagher TC, Guo Q, Fang C, Ji X. A Dual Plating Battery with the Iodine/[ZnI
x
(OH
2
)
4−
x
]
2−
x
Cathode. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jessica J. Hong
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Liangdong Zhu
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Cheng Chen
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Longteng Tang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Heng Jiang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Bei Jin
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | | | - Qiubo Guo
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Chong Fang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Xiulei Ji
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| |
Collapse
|
48
|
Hong JJ, Zhu L, Chen C, Tang L, Jiang H, Jin B, Gallagher TC, Guo Q, Fang C, Ji X. A Dual Plating Battery with the Iodine/[ZnI x (OH 2 ) 4-x ] 2-x Cathode. Angew Chem Int Ed Engl 2019; 58:15910-15915. [PMID: 31478325 DOI: 10.1002/anie.201909324] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 11/10/2022]
Abstract
Plating battery electrodes typically deliver higher specific capacity values than insertion or conversion electrodes because the ion charge carriers represent the sole electrode active mass, and a host electrode is unnecessary. However, reversible plating electrodes are rare for electronically insulating nonmetals. Now, a highly reversible iodine plating cathode is presented that operates on the redox couples of I2 /[ZnIx (OH2 )4-x ]2-x in a water-in-salt electrolyte. The iodine plating cathode with the theoretical capacity of 211 mAh g-1 plates on carbon fiber paper as the current collector, delivering a large areal capacity of 4 mAh cm-2 . Tunable femtosecond stimulated Raman spectroscopy coupled with DFT calculations elucidate a series of [ZnIx (OH2 )4-x ]2-x superhalide ions serving as iodide vehicles in the electrolyte, which eliminates most free iodide ions, thus preventing the consequent dissolution of the cathode-plated iodine as triiodides.
Collapse
Affiliation(s)
- Jessica J Hong
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Heng Jiang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Bei Jin
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Trenton C Gallagher
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Qiubo Guo
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
49
|
Tang L, Fang C. Nitration of Tyrosine Channels Photoenergy through a Conical Intersection in Water. J Phys Chem B 2019; 123:4915-4928. [PMID: 31094198 DOI: 10.1021/acs.jpcb.9b03464] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitration of tyrosine occurs under oxidative stress in vivo. The product, 3-nitrotyrosine (3NY), has a dramatically decreased quantum yield and can be used as a molecular ruler. In this study, femtosecond transient absorption spectroscopy and quantum calculations were implemented to elucidate the photoinduced relaxation processes of anionic 3NY in water. Upon 400 nm excitation into an excited electronic state with notable charge-transfer (CT) character, a barrierless nitro-twisting motion rapidly (<100 fs) guides the chromophore into an adjacent twisted intramolecular CT state, therein reaching a sloped S1/S0 conical intersection on the ∼100 fs time scale. Once in the hot ground state, excess energy is further released through vibrational cooling with biexponential time constants of ∼140 and 680 fs in water. Nitro back-twisting occurs on longer time scales (∼1.1 and 9 ps in water), returning the system to original ground state. Systematic evaluations of excited-state potential energies of anionic 3NY were performed by density functional theory (DFT) and time-dependent DFT calculations, showing that intersystem crossing (ISC) from the first singlet state (S1) to the first or second triplet state (T1 or T2) is unlikely. Inclusion of an explicit water molecule in calculations leads to improved mapping of the excited-state energy ordering of the second singlet state (S2) and T2, further diminishing ISC probability from S1 and favoring an ultrafast internal conversion to S0. These results provide deep insights into the highly efficient nonradiative decay of anionic 3NY in aqueous solution, with nitro-site-specific information that can help infer the characterization and potential optogenetic control of 3NY in protein environment.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| |
Collapse
|
50
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|