1
|
Durairaj P, Mukkonathil D, Sarkar S. Heavy Atom at Bay of Perylene Significantly Improves Intersystem Crossing. J Phys Chem A 2024; 128:10193-10201. [PMID: 39560921 DOI: 10.1021/acs.jpca.4c05420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We studied the photophysical properties of substituted perylenes using time-dependent density functional theory (TDDFT) with Tamm-Dancoff Approximation (TDA). The TDA-TDDFT method allowed us to examine how luminescence activity alters by substituting halogens at different positions (bay, ortho, and peri) of perylenes. Substituting larger halogens like chlorine and bromine at the bay position significantly affects the planarity of the π-system in perylenes. Interestingly, bay-bromoperylene (P-bBr) showed pronounced spin-orbit coupling (SOC) between singlet and triplet excited states. The heavy atom effect (HAE) functioned efficiently with a distorted π-system and substantially enhanced the SOC in P-bBr. Therefore, a rapid intersystem crossing (ISC) is responsible for turning off the fluorescence of P-bBr. In contrast, bromine substitution other than the bay position (i.e., ortho- and peri-bromoperylenes (P-oBr and P-pBr), which maintained planarity), or substituting lighter elements like a methyl group (similar in size to Br) at the bay position of perylene did not substantially improve the SOC. Thus, the ISC is insufficient to quench the fluorescence in these systems. Additionally, substituting multiple bromines in perylene with at least one in the bay position (i.e., P-boBr2, P-bpBr2, and P-bopBr3) further improved the SOC, leading to much faster ISC (1011 s-1) in P-bopBr3. While multiple bromine substitutions other than the bay position (i.e., P-opBr2) exhibited low ISC due to the planar π-system. So, the heavy bromine at the bay position of perylene causes significant enhancement of the ISC.
Collapse
Affiliation(s)
- Pandiselvi Durairaj
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Durga Mukkonathil
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Sunandan Sarkar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
2
|
Ahmed R, Manna AK. Tailoring Light-Harvesting in Zn-Porphyrin and Carbon Fullerene based Donor-Acceptor Complex through Ethynyl-Extended Donor π-Conjugation. Chemphyschem 2024; 25:e202400434. [PMID: 38847266 DOI: 10.1002/cphc.202400434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Indexed: 07/25/2024]
Abstract
Organic photovoltaic efficiency though currently limited for practical applications, can be improved by means of various molecular-level modifications. Herein the role of extended donor π ${\pi }$ -conjugation through ethynyl-bridged meso-phenyl/pyridyl on the photoinduced charge-transfer kinetics is studied in noncovalently bound Zn-Porphyrin and carbon-fullerene based donor-acceptor complex using time-dependent optimally tuned range-separated hybrid combined with the kinetic rate theory in polar solvent. Noncovalent dispersive interaction is identified to primarily govern the complex stability. Ethynyl-extended π ${\pi }$ -conjugation results in red-shifted donor-localized Q-band with substantially increased dipole oscillator strength and smaller exciton binding energy, suggesting greater light-harvesting efficiency. However, the low-lying charge-transfer state below to the Q-band is relatively less affected by the ethynyl-extended π ${\pi }$ -conjugation, yielding reduced driving forces for the charge-transfer. Detailed kinetics analysis reveals similar order of charge-transfer rate constants (~1012 s-1) for all donor-acceptor composites studied. Importantly, enhanced light-absorption, smaller exciton binding energy and similar charge-transfer rates together with reduced charge-recombination make these complexes suitable for efficient photoinduced charge-separation. These findings will be helpful to molecularly design the advanced organic donor-acceptor blends for energy efficient photovoltaic applications.
Collapse
Affiliation(s)
- Raka Ahmed
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P-517619, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P-517619, India
| |
Collapse
|
3
|
Tedy AM, Manna AK. Nature and energetics of low-lying excited singlets/triplets and intersystem crossing rates in selone analogs of perylenediimide: A theoretical perspective. J Chem Phys 2024; 160:114306. [PMID: 38497472 DOI: 10.1063/5.0200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The structural rigidity and chemical diversity of the highly fluorescent perylenediimide (PDI) provide wide opportunities for developing triplet photosensitizers with sufficiently increased energy efficiency. Remarkably high intersystem crossing (ISC) rates with a complete fluorescence turn-off reported recently for several thione analogs of PDI due to substantially large spin-orbit coupling garners huge attention to develop other potential analogs. Here, several selone analogs of PDI, denoted as mSe-PDIs (m = 1-4) with varied Se content and positions, are investigated to provide a comprehensive and comparative picture down the group-16 using density functional theory (DFT) and time-dependent DFT implementing optimally tuned range-separated hybrid in toluene dielectric. All mSe-PDIs are confirmed to be dynamically stable and also thermodynamically feasible to synthesize from their oxygen and thione congeners. The first excited-state singlet (S1) of mSe-PDI with relatively low Se-content (m = 1, 2) is of nπ* character with an expected fluorescence turn-off. Whereas, the ππ* nature of the S1 for 3Se-PDI and 4Se-PDI suggests a possible fluorescence turn-on in the absence of any other active nonradiative deactivation pathways. However, ∼4-6 orders greater ISC rates (∼1012-1014 s-1) than the fluorescence ones (∼108 s-1) for all mSe-PDIs signify highly efficient triplet harvest. Importantly, significantly higher ISC rates for these mSe-PDIs than their thione congeners render them efficient triplet photosensitizers.
Collapse
Affiliation(s)
- Annette Mariya Tedy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| |
Collapse
|
4
|
Tedy AM, Manna AK. Does the Intersystem Crossing Rate of β-Iodinated Phosphorus Corrole Depend on Iodine Numbers and/or Positions? J Phys Chem A 2023; 127:10118-10127. [PMID: 38011309 DOI: 10.1021/acs.jpca.3c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The heavy-atom effect is known to enhance the intersystem crossing (ISC) in organic molecular systems. Effects of iodine numbers and positions on the ISC rate of a few meso-difluorophenyl substituted β-iodinated phosphorus corroles (PCs) with axially ligated fluorine atoms (mI-FPC; m = 1-4) are studied using a time-dependent optimally tuned range-separated hybrid. Solvent effects are accounted for through a polarizable continuum model with a toluene dielectric. Calculations suggest similar thermodynamic stability for all mI-FPCs and also reproduce the experimentally measured 0-0 energies for some of the freebase phosphorus corrole (FPC) systems studied here. Importantly, our results reveal that all mI-FPCs display 10 times larger ISC rate (∼109 s-1) than the fluorescence rate (∼108 s-1), and the higher ISC rate stems from the improved spin-orbit coupling (SOC) introduced by lighter heteroatoms like central P and biaxial F rather than the I heavy-atom effect. However, an enhanced SOC is found with increasing I content for El-Sayed forbidden ISC channels. Research findings reported in this study unveil the impact of light heteroatoms and heavy atoms in promoting ISC in several iodinated PCs, which help in designing visible-light-driven efficient triplet photosensitizers.
Collapse
Affiliation(s)
- Annette Mariya Tedy
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| |
Collapse
|
5
|
Understanding pH Tailored Photophysical Properties of a $${\varvec{\pi}}$$-Conjugated Aryl Hydrazone-Derived Dye for Sensing Application. J CHEM SCI 2023. [DOI: 10.1007/s12039-022-02129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Evariste S, Harrison AM, Sarkar S, Rheingold AL, Dunietz BD, Heinicke JW, Delgado Rosario E, Yoon S, Teets TS, Protasiewicz JD. Luminescent 1 H-1,3-benzazaphospholes. RSC Adv 2022; 13:594-601. [PMID: 36605673 PMCID: PMC9773327 DOI: 10.1039/d2ra07226b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
2-R-1H-1,3-Benzazaphospholes (R-BAPs) are an interesting class of σ2P heterocycles containing P[double bond, length as m-dash]C bonds. While closely related 2-R-1,3-benzoxaphospholes (R-BOPs) have been shown to be highly photoluminescent materials depending on specific R substituents, photoluminescence of R-BAPs has been previously limited to an example having a fused carbazole ring system. Here we detail the synthesis and structural characterization of a new R-BAP (3c, R = 2,2'-dithiophene), and compare its photoluminescence against two previously reported R-BAPs (3a, R, R' = Me and 3b, R = 2-thiophene). The significant fluorescence displayed by the thiophene derivatives 3b (φ = 0.53) and 3c (φ = 0.12) stands in contrast to the weakly emissive methyl substituted analogue 3a (φ = 0.08). Comparative computational investigations of 3a-c offer insights into the interplay between structure-function relationships affecting excited state relaxation processes.
Collapse
Affiliation(s)
- Sloane Evariste
- Department of Chemistry, Case Western Reserve UniversityClevelandOhio 44106USA
| | | | - Sunandan Sarkar
- Department of Chemistry, National Institute of Technology TiruchirappalliTiruchirappalliTamil Nadu 620015India
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of CaliforniaLa JollaSan DiegoCalifornia 92093USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State UniversityKentOhio 44242USA
| | - Joachim W. Heinicke
- Institut für Biochemie, Anorganische Chemie, Ernst-Moritz-Arndt-Universität GreifswaldFelix-Hausdorff-Str. 4, D-17489GreisfwaldGermany
| | | | - Sungwoon Yoon
- Department of Chemistry, University of Houston3585 Cullen Blvd. Room 112HoustonTX 77204-5003USA
| | - Thomas S. Teets
- Department of Chemistry, University of Houston3585 Cullen Blvd. Room 112HoustonTX 77204-5003USA
| | | |
Collapse
|
7
|
Ahmed R, Manna AK. Tailoring intersystem crossing of perylenediimide through chalcogen-substitution at bay-position: A theoretical perspective. J Chem Phys 2022; 157:214301. [PMID: 36511549 DOI: 10.1063/5.0126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Molecular-scale design strategies for promoting intersystem crossing (ISC) in small organic molecules are ubiquitous in developing efficient metal-free triplet photosensitizers with high triplet quantum yield (ΦT). Air-stable and highly fluorescent perylenediimide (PDI) in its pristine form displays very small ISC compared to the fluorescence due to the large singlet-triplet gap (ΔES-T) and negligibly small spin-orbit coupling (SOC) between the lowest singlet (S1) and triplet state (T1). However, its ΦT can be tuned by different chemical and mechanical means that are capable of either directly lowering the ΔES-T and increasing SOC or introducing intermediate low-lying triplet states (Tn, n = 2, 3, …) between S1 and T1. To this end, herein, a few chalcogen (X = O, S, Se) bay-substituted PDIs (PDI-X2) are computationally modeled aiming at introducing geometrical-strain at the PDI core and also mixing nπ* orbital character to ππ* in the lowest singlet and triplet excited states, which altogether may reduce ΔES-T and also improve the SOC. Our quantum-chemical calculations based on optimally tuned range-separated hybrid reveal the presence of intermediate triplet states (Tn, n = 2, 3) in between S1 and T1 for all three PDI-X2 studied in dichloromethane. More importantly, PDI-X2 shows a significantly improved ISC rate than the pristine PDI due to the combined effects stemming from the smaller ΔES-T and the larger SOC. The calculated ISC rates follow the order as PDI-O2 < PDI-S2 < PDI-Se2. These research findings will be helpful in designing PDI based triplet photosensitizers for biomedical, sensing, and photonic applications.
Collapse
Affiliation(s)
- Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati A.P 517619, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati A.P 517619, India
| |
Collapse
|
8
|
Ahmed R, Manna AK. Origins of Molecular-Twist-Triggered Intersystem Crossing in Functional Perylenediimides: Singlet–Triplet Gap versus Spin–Orbit Coupling. J Phys Chem A 2022; 126:6594-6603. [DOI: 10.1021/acs.jpca.2c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India
| |
Collapse
|
9
|
Ahmed R, Manna AK. Understanding High Fluorescence Quantum Yield and Simultaneous Large Stokes Shift in Phenyl Bridged Donor-π-Acceptor Dyads with Varied Bridge Lengths in Polar Solvents. J Phys Chem A 2022; 126:4221-4229. [PMID: 35737581 DOI: 10.1021/acs.jpca.2c02950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photophysical properties of electron donor-π-acceptor (D-π-A) dyads for a given pair of D and A highly depend on the π-bridge type and length and also on the solvent polarity. In this work, first-principles calculations with optimally tuned range-separated hybrids are implemented to explore and understand the optical absorption and emission properties of recently synthesized novel D-π-A dyads with 1,2-diphenylphenanthroimidazole (PPI) as D and 1,2,4-triazolopyridine (TP) as A with varied phenyl π-bridge lengths (denoted as PPI-Pn-TP, n = 0-2 considered here) in solvents of different dielectrics. All three D-π-A dyads display almost an unaltered low-lying optical peak position and a red-shifted emission with increasing solvent polarity, corroborating well with the reported experimental observations. The observed emission shift was attributed to the stabilization of an intramolecular charge-transfer (ICT) state by the polar solvent. Contrastingly, our calculations reveal no ICT; rather the shift is essentially originated from the substantial excited-state relaxation involving primarily rotation of the PPI phenyl ring directly linked to the π-bridge, leading to an almost planarized emissive state. Further, the greater frontier molecular orbital delocalization-driven high fluorescence rate together with increased structural rigidity of the emissive state rationalize the observed high fluorescence quantum yield. The present research findings not only are helpful to better understand the reported experimental observations but also show routes to molecularly design functional D-π-A molecules for advanced optoelectronic, sensing, and biomedical applications.
Collapse
Affiliation(s)
- Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
10
|
Enhancing fluorescence and lowering the optical gap through C P doping of a π-conjugated molecular backbone: A computational-based design approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Grimm AB, Wang K, Rheingold AL, Moore CE, Szieberth D, Nyulászi L, Protasiewicz JD. 2-Aryl-1,3-Benzoxaphospholes as Unwilling Participants for Catalytic Suzuki–Miyaura CC Coupling Reactions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra B. Grimm
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kai Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Dénes Szieberth
- Department of Inorganic Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group H-1521 Budapest, Hungary
| | - László Nyulászi
- Department of Inorganic Chemistry, Budapest University of Technology and Economics and MTA-BME Computation Driven Chemistry Research Group H-1521 Budapest, Hungary
| | - John D. Protasiewicz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Clausing ST, Morales Salazar D, Orthaber A. Preparation, photo- and electrochemical studies of a homoleptic imine-phosphaalkene Cu(I) complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Pfeifer G, Chahdoura F, Papke M, Weber M, Szűcs R, Geffroy B, Tondelier D, Nyulászi L, Hissler M, Müller C. Synthesis, Electronic Properties and OLED Devices of Chromophores Based on λ 5 -Phosphinines. Chemistry 2020; 26:10534-10543. [PMID: 32092780 PMCID: PMC7496645 DOI: 10.1002/chem.202000932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/18/2022]
Abstract
A new series of 2,4,6-triaryl-λ5 -phosphinines have been synthesized that contain different substituents both on the carbon backbone and the phosphorus atom of the six-membered heterocycle. Their optical and redox properties were studied in detail, supported by in-depth theoretical calculations. The modularity of the synthetic strategy allowed the establishment of structure-property relationships for this class of compounds and an OLED based on a blue phosphinine emitter could be developed for the first time.
Collapse
Affiliation(s)
- Gregor Pfeifer
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| | | | - Martin Papke
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| | - Manuela Weber
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| | - Rózsa Szűcs
- Department of Inorganic and Analytical Chemistry and MTA-BME Computation Driven Chemistry Research GroupBudapest University of Technology and EconomicsSzt. Gellért tér 41111BudapestHungary
| | - Bernard Geffroy
- LICSEN, NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-YvetteCEDEX 91191France
| | - Denis Tondelier
- LICSEN, NIMBE, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-YvetteCEDEX 91191France
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry and MTA-BME Computation Driven Chemistry Research GroupBudapest University of Technology and EconomicsSzt. Gellért tér 41111BudapestHungary
| | | | - Christian Müller
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstrasse 34/3614195BerlinGermany
| |
Collapse
|
14
|
Guo J, Mao C, Deng B, Ye L, Yin Y, Gao Y, Tu S. Azobisisobutyronitrile-Initiated Oxidative C-H Functionalization of Simple Alcohols with Diaryl(arylethynyl)phosphine Oxides: A Metal-Free Approach toward Hydroxymethyl Benzo[ b]phosphole Oxides and 6 H-Indeno[2,1- b]phosphindole 5-Oxide Derivatives. J Org Chem 2020; 85:6359-6371. [PMID: 32299209 DOI: 10.1021/acs.joc.0c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first metal-free and facile radical addition/cyclization of simple alcohols with diaryl(arylethynyl)phosphine oxides has been described with azobisisobutyronitrile as a radical initiator, affording an efficient and one-pot procedure to access a new class of hydroxymethyl benzo[b]phosphole oxides and 6H-indeno[2,1-b]phosphindole 5-oxides for potential application in organic materials via sequential C(sp3)-H/C(sp2)-H functionalization. The method employs easily accessible starting materials and is endowed with high regioselectivity and broad functional-group tolerance.
Collapse
Affiliation(s)
- Jiami Guo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Chenlu Mao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Bin Deng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Liyi Ye
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Song Tu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|