1
|
van Bree RAB, Gerrits N, Kroes GJ. Dissociative chemisorption of O 2 on Al(111): dynamics on a potential energy surface computed with a non-self-consistent screened hybrid density functional approach. Faraday Discuss 2024; 251:361-381. [PMID: 38787655 DOI: 10.1039/d3fd00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Density functional theory (DFT) at the generalized gradient approximation (GGA) level is often considered the best compromise between feasibility and accuracy for reactions of molecules on metal surfaces. Recent work, however, strongly suggests that density functionals (DFs) based on GGA exchange are not able to describe molecule-metal surface reactions for which the work function of the metal surface minus the electron affinity of the molecule is less than 7 eV. Systems for which this is true exhibit an increased charge transfer from the metal to the molecule at the transition state, increasing the delocalisation of the electron density. This enlarged delocalisation can cause GGA-DFT to underestimate energy values relative to the gas-phase and thus underestimate the barrier height, similar to what has been observed for several gas-phase reactions. An example of such a molecule-metal surface system is O2 + Al(111). Following a similar strategy as for gas-phase reactions, previous work showed results of increased accuracy when using a screened hybrid DF for O2 + Al(111). However, even screened hybrid DFs are computationally expensive to use for metal surfaces. To resolve this, we test a non-self-consistent field (NSCF) screened hybrid DF approach. This approach computes screened hybrid DFT energies based on self-consistent-field (SCF) GGA electronic densities. Here, we explore the accuracy of the NSCF screened hybrid DF approach by implementing the NSCF HSE03-1/3x@RPBE DF for O2 + Al(111). We compute and analyse molecular beam sticking probabilities as well as a set of sticking probabilities for rotationally aligned O2. Our results show that the NSCF approach results in reaction probability curves that reproduce SCF results with near-chemical accuracy, suggesting that the NSCF approach can be used advantageously for exploratory purposes. An analysis of the potential energy surface and the barriers gives insight into the cause of the disagreement between the SCF and NSCF reaction probabilities and into the changes needed in theoretical modelling to further improve the description of the O2 + Al(111) system. Finally, the hole model yields fair agreement with dynamics results for the reaction probability curve, but results in an increased slope of the reaction probability curve compared to the molecular dynamics, with a shift to lower or higher energies depending on whether the vibrational energy of the molecule is included in the initial energy of the molecule or not.
Collapse
Affiliation(s)
- Robert A B van Bree
- Leiden Institute of Chemisty, Leiden University, Gorlaeus Labaratories, P.O. Box 9502 2300 RA, Leiden, The Netherlands.
| | - Nick Gerrits
- Leiden Institute of Chemisty, Leiden University, Gorlaeus Labaratories, P.O. Box 9502 2300 RA, Leiden, The Netherlands.
| | - Geert-Jan Kroes
- Leiden Institute of Chemisty, Leiden University, Gorlaeus Labaratories, P.O. Box 9502 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
2
|
Sah MK, Naskar K, Adhikari S, Smits B, Meyer J, Somers MF. On the quantum dynamical treatment of surface vibrational modes for reactive scattering of H2 from Cu(111) at 925 K. J Chem Phys 2024; 161:014306. [PMID: 38953445 DOI: 10.1063/5.0217639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
We construct the effective Hartree potential for H2 on Cu(111) as introduced in our earlier work [Dutta et al., J. Chem. Phys. 154, 104103 (2021), and Dutta et al., J. Chem. Phys. 157, 194112 (2022)] starting from the same gas-metal interaction potential obtained for 0 K. Unlike in that work, we now explicitly account for surface expansion at 925 K and investigate different models to describe the surface vibrational modes: (i) a cluster model yielding harmonic normal modes at 0 K and (ii) slab models resulting in phonons at 0 and 925 K according to the quasi-harmonic approximation-all consistently calculated at the density functional theory level with the same exchange-correlation potential. While performing dynamical calculations for the H2(v = 0, j = 0)-Cu(111) system employing Hartree potential constructed with 925 K phonons and surface temperature, (i) the calculated chemisorption probabilities are the highest compared to the other approaches over the energy domain and (ii) the threshold for the reaction probability is the lowest, in close agreement with the experiment. Although the survival probabilities (v' = 0) depict the expected trend (lower in magnitude), the excitation probabilities (v' = 1) display a higher magnitude since the 925 K phonons and surface temperature are more effective for the excitation process compared to the phonons/normal modes obtained from the other approaches investigated to describe the surface.
Collapse
Affiliation(s)
- Mantu Kumar Sah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Bauke Smits
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Lewis TWR, Sweeny BC, Viggiano AA, Shuman NS, Ard SG. Temperature-Dependent Kinetics for the Reactions of Fe n- ( n = 2-17) and Fe xNi y- ( x + y = 3-9) with O 2: Comparison of Pure and Mixed Metal Clusters with Relevance to Meteor Radio Afterglows and Surface Oxidation. J Phys Chem A 2024; 128:439-448. [PMID: 38175962 DOI: 10.1021/acs.jpca.3c07368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Rate constants and product branching fractions were measured from 300-600 K for Fen- + O2 (n = 2-17) and for 300-500 K for FexNiy- + O2 (x + y = 3-9) using a selected-ion flow tube (SIFT) apparatus. Rate constants for 46 species are reported. All rate constants increased with increasing temperature, and several were in excess of the Langevin-Gioumousis-Stevenson (LGS) capture rate at elevated temperatures. As with previously studied transition metal anion oxidation reactions, the collision limit is treated as the sum of the LGS limit along with a hard-sphere contribution, allowing for determination of activation energies. These values are compared to each other along with previous results for Nin-. Measured rate constants for all three series (Fen-, Nin-, and FexNy-) vary over a relatively narrow range (1-5 × 10-10 cm3 s-1 at 300 K) being at least 15% of the collision rate constant. All reaction rate constants increase with temperature, described by small activation energies of 0.5-4 kJ mol-1. The data are consistent with an anticorrelation between the electron binding energy and rate constant, previously noted in other systems. The Fen- reaction produces a larger population of higher energy electrons than do the Nin- reactions, with FexNiy- producing an intermediate amount. The results suggest that the overall rate constant is limited by a small energetic barrier located at a large internuclear distance where electrostatic forces dominate, causing the potentials to be similar across systems, while the product formation is determined by the shorter-range, valence portion of the potential, which varies widely between systems.
Collapse
Affiliation(s)
- Tucker W R Lewis
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Brendan C Sweeny
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
4
|
Powell A, Gerrits N, Tchakoua T, Somers MF, Busnengo HF, Meyer J, Kroes GJ, Doblhoff-Dier K. Best-of-Both-Worlds Predictive Approach to Dissociative Chemisorption on Metals. J Phys Chem Lett 2024; 15:307-315. [PMID: 38169287 PMCID: PMC10788952 DOI: 10.1021/acs.jpclett.3c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Predictive capability, accuracy, and affordability are essential features of a theory that is capable of describing dissociative chemisorption on a metal surface. This type of reaction is important for heterogeneous catalysis. Here we present an approach in which we use diffusion Monte Carlo (DMC) to pin the minimum barrier height and construct a density functional that reproduces this value. This predictive approach allows the construction of a potential energy surface at the cost of density functional theory while retaining near DMC accuracy. Scrutinizing effects of energy dissipation and quantum tunneling, dynamics calculations suggest the approach to be of near chemical accuracy, reproducing molecular beam sticking experiments for the showcase H2 + Al(110) system to ∼1.4 kcal/mol.
Collapse
Affiliation(s)
- Andrew
D. Powell
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Theophile Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Mark F. Somers
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Heriberto F. Busnengo
- Instituto
de Física Rosario (IFIR), CONICET-UNR, 2000 Rosario, Argentina
- Facultad
de Ciencias Exatas, Ingeniería y
Agrimensura, UNR, 2000 Rosario, Argentina
| | - Jörg Meyer
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Katharina Doblhoff-Dier
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Tchakoua T, Jansen T, van Nies Y, van den Elshout RFA, van Boxmeer BAB, Poort SP, Ackermans MG, Beltrão GS, Hildebrand SA, Beekman SEJ, van der Drift T, Kaart S, Šantić A, Spuijbroek EE, Gerrits N, Somers MF, Kroes GJ. Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles. J Phys Chem A 2023; 127:10481-10498. [PMID: 38051300 PMCID: PMC10726370 DOI: 10.1021/acs.jpca.3c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy.
Collapse
Affiliation(s)
- Théophile Tchakoua
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tim Jansen
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Youri van Nies
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | - Bart A B van Boxmeer
- Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Saskia P Poort
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Michelle G Ackermans
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gabriel Spiller Beltrão
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Stefan A Hildebrand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Steijn E J Beekman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thijs van der Drift
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sam Kaart
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Anthonie Šantić
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Esmee E Spuijbroek
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Nick Gerrits
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Zhao Z, Wang Y, Yang X, Quan J, Krüger BC, Stoicescu P, Nieman R, Auerbach DJ, Wodtke AM, Guo H, Park GB. Spin-dependent reactivity and spin-flipping dynamics in oxygen atom scattering from graphite. Nat Chem 2023; 15:1006-1011. [PMID: 37217785 PMCID: PMC10322699 DOI: 10.1038/s41557-023-01204-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
The formation of two-electron chemical bonds requires the alignment of spins. Hence, it is well established for gas-phase reactions that changing a molecule's electronic spin state can dramatically alter its reactivity. For reactions occurring at surfaces, which are of great interest during, among other processes, heterogeneous catalysis, there is an absence of definitive state-to-state experiments capable of observing spin conservation and therefore the role of electronic spin in surface chemistry remains controversial. Here we use an incoming/outgoing correlation ion imaging technique to perform scattering experiments for O(3P) and O(1D) atoms colliding with a graphite surface, in which the initial spin-state distribution is controlled and the final spin states determined. We demonstrate that O(1D) is more reactive with graphite than O(3P). We also identify electronically nonadiabatic pathways whereby incident O(1D) is quenched to O(3P), which departs from the surface. With the help of molecular dynamics simulations carried out on high-dimensional machine-learning-assisted first-principles potential energy surfaces, we obtain a mechanistic understanding for this system: spin-forbidden transitions do occur, but with low probabilities.
Collapse
Affiliation(s)
- Zibo Zhao
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
| | - Yingqi Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Ximei Yang
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
| | - Jiamei Quan
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
| | - Bastian C Krüger
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
| | - Paula Stoicescu
- Georg-August-Universität Göttingen, Institut für physikalische Chemie, Göttingen, Germany
| | - Reed Nieman
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Daniel J Auerbach
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
| | - Alec M Wodtke
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
- Georg-August-Universität Göttingen, Institut für physikalische Chemie, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, University of Goettingen, Göttingen, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA.
| | - G Barratt Park
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
7
|
Chen J, Subotnik J. Nonadiabatic Potential Energy Surfaces for a Molecule on a Surface as Found by Constrained Complete Active Space Theory. J Phys Chem Lett 2023:5665-5673. [PMID: 37311218 DOI: 10.1021/acs.jpclett.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to study electron-transfer mediated chemical processes on a metal surface, one requires not one but two potential energy surfaces (one ground state and one excited state) as in Marcus theory. In this letter, we report that a novel, dynamically weighted, state-averaged constrained CASSCF(2,2) (DW-SA-cCASSCF(2,2)) can produce such surfaces for the Anderson impurity model. Both ground and excited state potentials are smooth, they incorporate states with a charge transfer character, and the accuracy of the ground state surface can be verified for some model problems by renormalization group theory. Future development of gradients and nonadiabatic derivative couplings should allow for the study of nonadiabatic dynamics for molecules near metal surfaces.
Collapse
Affiliation(s)
- Junhan Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
9
|
Tchakoua T, Gerrits N, Smeets EWF, Kroes GJ. SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. J Chem Theory Comput 2022; 19:245-270. [PMID: 36529979 PMCID: PMC9835835 DOI: 10.1021/acs.jctc.2c00824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.
Collapse
Affiliation(s)
- T. Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - N. Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,PLASMANT,
Department of Chemistry, University of Antwerp, BE-2610Antwerp, Belgium
| | - E. W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,ALTEN
Nederland, Technology, Fascinatio Boulevard 582, 2909 VACapelle a/d IJssel, The Netherlands
| | - G.-J. Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,E-mail: . Phone: +31 71 527 4396
| |
Collapse
|
10
|
Zhang Y, Box CL, Schäfer T, Kandratsenka A, Wodtke AM, Maurer RJ, Jiang B. Stereodynamics of adiabatic and non-adiabatic energy transfer in a molecule surface encounter. Phys Chem Chem Phys 2022; 24:19753-19760. [PMID: 35971747 DOI: 10.1039/d2cp03312g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular energy transfer and reactions at solid surfaces depend on the molecular orientation relative to the surface. While such steric effects have been largely understood in electronically adiabatic processes, the orientation-dependent energy transfer in NO scattering from Au(111) was complicated by electron-mediated nonadiabatic effects, thus lacking a clear interpretation and posing a great challenge for theories. Herein, we investigate the stereodynamics of adiabatic and nonadiabatic energy transfer via molecular dynamics simulations of NO(v = 3) scattering from Au(111) using realistic initial orientation distributions based on accurate neural network fitted adiabatic potential energy surface and electronic friction tensor. Our results reproduce the observed stronger vibrational relaxation for N-first orientation and enhanced rotational rainbow for O-first orientation, and demonstrate how adiabatic anisotropic interactions steer molecules into the more attractive N-first orientation to experience more significant energy transfer. Remaining disagreements with experiment suggest the direction for further developments of nonadiabatic theories for gas-surface scattering.
Collapse
Affiliation(s)
- Yaolong Zhang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Connor L Box
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Tim Schäfer
- Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Alexander Kandratsenka
- Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Bin Jiang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
11
|
Tsikritea A, Diprose JA, Softley TP, Heazlewood BR. Capture Theory Models: An overview of their development, experimental verification, and applications to ion-molecule reactions. J Chem Phys 2022; 157:060901. [DOI: 10.1063/5.0098552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since Arrhenius first proposed an equation to account for the behaviour of thermally activated reactions in 1889, significant progress has been made in our understanding of chemical reactivity. A number of capture theory models have been developed over the past several decades to predict the rate coefficients for reactions between ions and molecules-ranging from the Langevin equation (for reactions between ions and non-polar molecules) to more recent fully quantum theories (for reactions at ultra-cold temperatures). A number of different capture theory methods are discussed, with the key assumptions underpinning each approach clearly set out. The strengths and limitations of these capture theory methods are examined through detailed comparisons between low-temperature experimental measurements and capture theory predictions. Guidance is provided on the selection of an appropriate capture theory method for a given class of ion-molecule reaction and set of experimental conditions-identifying when a capture-based model is likely to provide an accurate prediction. Finally, the impact of capture theories on fields such as astrochemical modelling is noted, with some potential future directions of capture-based approaches outlined.
Collapse
Affiliation(s)
| | - Jake A Diprose
- University of Liverpool Department of Physics, United Kingdom
| | | | | |
Collapse
|
12
|
Töpfer K, Upadhyay M, Meuwly M. Quantitative molecular simulations. Phys Chem Chem Phys 2022; 24:12767-12786. [PMID: 35593769 PMCID: PMC9158373 DOI: 10.1039/d2cp01211a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
13
|
Poutsma JC, Moeller W, Poutsma JL, Sweeny BC, Ard SG, Viggiano AA, Shuman NS. Structures and Electron Affinities of Aluminum Hydride Clusters Al nH ( n = 3-13). J Phys Chem A 2022; 126:1648-1659. [PMID: 35245062 DOI: 10.1021/acs.jpca.1c10431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-energy structures and electron affinities (EAs) for aluminum hydride clusters AlnH (n = 3-13) have been calculated using ab initio and density functional calculations. Geometries were optimized at the PBE0/def-2-TZVPP level of theory, which has been shown to match the currently accepted lowest-energy structures for the all-aluminum clusters Aln and their anions. Neutral hydride clusters with n = 4, 7, and 9-12 are predicted to adopt terminal structures with the hydrogen atom bound to only one aluminum atom and with only minor alterations of the aluminum atom arrangement from that of the all-aluminum cluster. Clusters with n = 3 and 13 are predicted to adopt "face-centered" geometries, and the n = 6 cluster is predicted to prefer an isomer with the hydrogen atom bridging two aluminum atoms, also with little or no distortion to the aluminum atom arrangement from the all-aluminum cluster. Addition of a hydrogen atom to clusters with n = 5 and 8 is predicted to distort the aluminum atom arrangement significantly from that of the corresponding all-aluminum cluster. In the anionic clusters, terminal clusters are preferred for all cluster sizes except for n = 6 that prefers a face-centered arrangement. Minor distortions in the aluminum scaffolding for Al11 and Al12 were found, while all other anionic clusters adopt structures with little or no deviation in the aluminum atom arrangement from the corresponding all-aluminum cluster. Raw adiabatic electron affinities were computed using CCSD(T)/aug-cc-pVTZ single-point energies for the anionic and neutral hydride clusters at their respective DFT geometries. Isodesmic electron affinities for the hydride clusters were computed relative to their all-aluminum counterparts and show an even-odd alternation with cluster size. Derived EAs alternate in magnitude between even- and odd-numbered clusters, with the even-numbered clusters having relatively larger EAs.
Collapse
Affiliation(s)
- John C Poutsma
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - William Moeller
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Jennifer L Poutsma
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Brendan C Sweeny
- Institute for Scientific Research, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
14
|
Lončarić I, Alducin M, Juaristi JI. O2 on Ag(110): A puzzle for exchange-correlation functionals. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Zhou X, Zhang Y, Yin R, Hu C, Jiang B. Neural Network Representations for Studying
Gas‐Surface
Reaction Dynamics: Beyond the
Born‐Oppenheimer
Static Surface Approximation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Rongrong Yin
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Ce Hu
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
16
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
17
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
18
|
Ard SG, Viggiano AA, Shuman NS. Old School Techniques with Modern Capabilities: Kinetics Determination of Dynamical Information Such as Barriers, Multiple Entrance Channel Complexes, Product States, Spin Crossings, and Size Effects in Metallic Ion–Molecule Reactions. J Phys Chem A 2021; 125:3503-3527. [DOI: 10.1021/acs.jpca.0c11395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shaun G. Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
19
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
20
|
Fallaque JG, Ramos M, Busnengo HF, Martín F, Díaz C. Normal and off-normal incidence dissociative dynamics of O 2(v,J) on ultrathin Cu films grown on Ru(0001). Phys Chem Chem Phys 2021; 23:7768-7776. [PMID: 33000830 DOI: 10.1039/d0cp03979a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dissociative adsorption of molecular oxygen on metal surfaces has long been controversial, mostly due to the spin-triplet nature of its ground state, to possible non-adiabatic effects, such as an abrupt charge transfer from the metal to the molecule, or even to the role played by the surface electronic state. Here, we have studied the dissociative adsorption of O2 on CuML/Ru(0001) at normal and off-normal incidence, from thermal to super-thermal energies, using quasi-classical dynamics, in the framework of the generalized Langevin oscillator model, and density functional theory based on a multidimensional potential energy surface. Our simulations reveal a rather intriguing behavior of dissociative adsorption probabilities, which exhibit normal energy scaling at incidence energies below the reaction barriers and total energy scaling above, irrespective of the reaction channel, either direct dissociation, trapping dissociation, or molecular adsorption. We directly compare our results with existing scanning tunneling spectroscopy and microscopy measurements. From this comparison, we infer that the observed experimental behavior at thermal energies may be due to ligand and strain effects, as already found for super-thermal incidence energies.
Collapse
Affiliation(s)
- J G Fallaque
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Sweeny BC, McDonald DC, Shuman NS, Viggiano AA, Troe J, Ard SG. Gas-Phase Anionic Metal Clusters are Model Systems for Surface Oxidation: Kinetics of the Reactions of Mn- with O 2 (M = V, Cr, Co, Ni; n = 1-15). J Phys Chem A 2021; 125:2069-2076. [PMID: 33683120 DOI: 10.1021/acs.jpca.0c10103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reactions of anionic metal clusters Mn- with O2 (M = V (n = 1-15), Cr (n = 1-15), Co (n = 1-12), and Ni (n = 1-14)) are investigated from 300 to 600 K using a selected-ion flow tube. All rate constants show a positive temperature dependence, well described by an Arrhenius equation. Rate constants exceed (or are extrapolated to exceed at higher temperatures) the Langevin-Gioumousis-Stevenson capture rate constant. Application of a capture model accounting for the finite size of the clusters reproduces the size-dependent trends in reactivity. The assumption that reactivity is further controlled by an energetic barrier early in the reaction coordinate is consistent with the experimental observations. An observed correlation of the derived barrier heights on the electron binding energy of Mn- suggests the barrier may be formed at an avoided crossing between electronic states correlating to Mn- + O2 and Mn + O2- reactants, analogous to that previously proposed for Aln- + O2 systems. The mechanism is analogous to that for reactions of O2 with neutral metal surfaces, indicating that gas-phase reactions of anionic metal clusters can be an appropriate model systems for surface oxidation.
Collapse
Affiliation(s)
- Brendan C Sweeny
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - David C McDonald
- NRC postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Juergen Troe
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
22
|
Jin Z, Subotnik JE. Nonadiabatic Dynamics at Metal Surfaces: Fewest Switches Surface Hopping with Electronic Relaxation. J Chem Theory Comput 2021; 17:614-626. [PMID: 33512137 DOI: 10.1021/acs.jctc.0c00997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new scheme is proposed for modeling molecular nonadiabatic dynamics near metal surfaces. The charge-transfer character of such dynamics is exploited to construct an efficient reduced representation for the electronic structure. In this representation, the fewest switches surface hopping (FSSH) approach can be naturally modified to include electronic relaxation (ER). The resulting FSSH-ER method is valid across a wide range of coupling strengths as supported by tests applied to the Anderson-Holstein model for electron transfer. Future work will combine this scheme with ab initio electronic structure calculations.
Collapse
Affiliation(s)
- Zuxin Jin
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph E Subotnik
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
23
|
Gerrits N, Smeets EWF, Vuckovic S, Powell AD, Doblhoff-Dier K, Kroes GJ. Density Functional Theory for Molecule-Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not. J Phys Chem Lett 2020; 11:10552-10560. [PMID: 33295770 PMCID: PMC7751010 DOI: 10.1021/acs.jpclett.0c02452] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule-metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule's electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.
Collapse
Affiliation(s)
- Nick Gerrits
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Egidius W. F. Smeets
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Stefan Vuckovic
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrew D. Powell
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Katharina Doblhoff-Dier
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
24
|
Powell AD, Kroes GJ, Doblhoff-Dier K. Quantum Monte Carlo calculations on dissociative chemisorption of H2 + Al(110): Minimum barrier heights and their comparison to DFT values. J Chem Phys 2020; 153:224701. [DOI: 10.1063/5.0022919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew D. Powell
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Katharina Doblhoff-Dier
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
25
|
Jiang B, Li J, Guo H. High-Fidelity Potential Energy Surfaces for Gas-Phase and Gas-Surface Scattering Processes from Machine Learning. J Phys Chem Lett 2020; 11:5120-5131. [PMID: 32517472 DOI: 10.1021/acs.jpclett.0c00989] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this Perspective, we review recent advances in constructing high-fidelity potential energy surfaces (PESs) from discrete ab initio points, using machine learning tools. Such PESs, albeit with substantial initial investments, provide significantly higher efficiency than direct dynamics methods and/or high accuracy at a level that is not affordable by on-the-fly approaches. These PESs not only are a necessity for quantum dynamical studies because of delocalization of wave packets but also enable the study of low-probability and long-time events in (quasi-)classical treatments. Our focus here is on inelastic and reactive scattering processes, which are more challenging than bound systems because of the involvement of continua. Relevant applications and developments for dynamical processes in both the gas phase and at gas-surface interfaces are discussed.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
26
|
Sweeny BC, McDonald DC, Poutsma JC, Ard SG, Viggiano AA, Shuman NS. Redefining the Mechanism of O 2 Etching of Al n- Superatoms: An Early Barrier Controls Reactivity, Analogous to Surface Oxidation. J Phys Chem Lett 2020; 11:217-220. [PMID: 31820996 DOI: 10.1021/acs.jpclett.9b03450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
New insights into aluminum anion cluster reactivity with O2 were obtained through temperature-dependent kinetics measurements. Overall reactivity is controlled by a barrier at an avoided crossing where charge is transferred from the cluster to the O2, mechanistically similar to what occurs as O2 approaches a bulk Al surface. Contrary to prior interpretations, spin conservation does not inhibit the reaction of clusters with an odd number of Al atoms. In fact, the only spin constraint in these systems is on the reactivity of even clusters due to repulsive surfaces, not previously recognized. Although the superatom nature of Al13- is manifest in its high electron binding energy (EBE), the mechanism of its reactivity is not special; it reacts with O2 as if it were a small piece of bulk Al. These experiments highlight the sensitivity of Al cluster reactivity with O2 to temperature and EBE, uncovering routes to industrial scale use of aluminum superatom-based materials.
Collapse
Affiliation(s)
- Brendan C Sweeny
- NRC Postdoc at Air Force Research Laboratory , Space Vehicles Directorate , Kirtland Air Force Base , New Mexico 87117 , United States
| | - David C McDonald
- NRC Postdoc at Air Force Research Laboratory , Space Vehicles Directorate , Kirtland Air Force Base , New Mexico 87117 , United States
| | - John C Poutsma
- Department of Chemistry , The College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Shaun G Ard
- Air Force Research Laboratory , Space Vehicles Directorate , Kirtland Air Force Base , New Mexico 87117 , United States
| | - Albert A Viggiano
- Air Force Research Laboratory , Space Vehicles Directorate , Kirtland Air Force Base , New Mexico 87117 , United States
| | - Nicholas S Shuman
- Air Force Research Laboratory , Space Vehicles Directorate , Kirtland Air Force Base , New Mexico 87117 , United States
| |
Collapse
|
27
|
Zhu L, Zhang Y, Zhang L, Zhou X, Jiang B. Unified and transferable description of dynamics of H2 dissociative adsorption on multiple copper surfaces via machine learning. Phys Chem Chem Phys 2020; 22:13958-13964. [DOI: 10.1039/d0cp02291h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Schematic of the developed neural network potential energy surface enabling a unified and transferable description of dynamics of H2 dissociative adsorption on multiple copper surfaces.
Collapse
Affiliation(s)
- Lingjun Zhu
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
28
|
Affiliation(s)
- Mitsunori Kurahashi
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
29
|
Jiang B, Guo H. Dynamics in reactions on metal surfaces: A theoretical perspective. J Chem Phys 2019; 150:180901. [PMID: 31091904 DOI: 10.1063/1.5096869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in theoretical characterization of reaction dynamics on metal surfaces are reviewed. It is shown that the widely available density functional theory of metals and their interactions with molecules have enabled first principles theoretical models for treating surface reaction dynamics. The new theoretical tools include methods to construct high-dimensional adiabatic potential energy surfaces, to characterize nonadiabatic processes within the electronic friction models, and to describe dynamics both quantum mechanically and classically. Three prototypical surface reactions, namely, dissociative chemisorption, Eley-Rideal reactions, and recombinative desorption, are surveyed with a focus on some representative examples. While principles governing gas phase reaction dynamics may still be applicable, the presence of the surface introduces a higher level of complexity due to strong interaction between the molecular species and metal substrate. Furthermore, most of these reactive processes are impacted by energy exchange with surface phonons and/or electron-hole pair excitations. These theoretical studies help to interpret and rationalize experimental observations and, in some cases, guide experimental explorations. Knowledge acquired in these fundamental studies is expected to impact many practical problems in a wide range of interfacial processes.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
30
|
Füchsel G, Zhou X, Jiang B, Juaristi JI, Alducin M, Guo H, Kroes GJ. Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:2287-2299. [PMID: 30740194 PMCID: PMC6366682 DOI: 10.1021/acs.jpcc.8b10686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Indexed: 05/20/2023]
Abstract
The HCl + Au(111) system has recently become a benchmark for highly activated dissociative chemisorption, which presumably is strongly affected by electron-hole pair excitation. Previous dynamics calculations, which were based on density functional theory at the generalized gradient approximation level (GGA-DFT) for the molecule-surface interaction, have all overestimated measured reaction probabilities by at least an order of magnitude. Here, we perform ab initio molecular dynamics (AIMD) and AIMD with electronic friction (AIMDEF) calculations employing a density functional that includes the attractive van der Waals interaction. Our calculations model the simultaneous and possibly synergistic effects of surface temperature, surface atom motion, electron-hole pair excitation, the molecular beam conditions of the experiments, and the van der Waals interaction on the reactivity. We find that reaction probabilities computed with AIMDEF and the SRP32-vdW functional still overestimate the measured reaction probabilities, by a factor 18 for the highest incidence energy at which measurements were performed (≈2.5 eV). Even granting that the experiment could have underestimated the sticking probability by about a factor three, this still translates into a considerable overestimation of the reactivity by the current theory. Likewise, scaled transition probabilities for vibrational excitation from ν = 1, j = 1 to ν = 2 are overestimated by the AIMDEF theory, by factors 3-8 depending on the initial conditions modeled. Energy losses to the surface and translational energy losses are, however, in good agreement with experimental values.
Collapse
Affiliation(s)
- Gernot Füchsel
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Institut
für Chemie und Biochemie—Physikalische und Theoretische
Chemie, Freie Universität Berlin, Takustraße3, 14195 Berlin, Germany
- E-mail: (G.F.)
| | - Xueyao Zhou
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, School of Chemistry and Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J. Iñaki Juaristi
- Departamento
de Física de Materiales, Facultad
de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Maite Alducin
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: . Phone: +31 (0)71 527
4396 (G.-J.K.)
| |
Collapse
|