1
|
Vismarra F, Fernández-Villoria F, Mocci D, González-Vázquez J, Wu Y, Colaizzi L, Holzmeier F, Delgado J, Santos J, Bañares L, Carlini L, Castrovilli MC, Bolognesi P, Richter R, Avaldi L, Palacios A, Lucchini M, Reduzzi M, Borrego-Varillas R, Martín N, Martín F, Nisoli M. Few-femtosecond electron transfer dynamics in photoionized donor-π-acceptor molecules. Nat Chem 2024:10.1038/s41557-024-01620-y. [PMID: 39322782 DOI: 10.1038/s41557-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
The exposure of molecules to attosecond extreme-ultraviolet (XUV) pulses offers a unique opportunity to study the early stages of coupled electron-nuclear dynamics in which the role played by the different degrees of freedom is beyond standard chemical intuition. We investigate, both experimentally and theoretically, the first steps of charge-transfer processes initiated by prompt ionization in prototype donor-π-acceptor molecules, namely nitroanilines. Time-resolved measurement of this process is performed by combining attosecond XUV-pump/few-femtosecond infrared-probe spectroscopy with advanced many-body quantum chemistry calculations. We show that a concerted nuclear and electronic motion drives electron transfer from the donor group on a sub-10-fs timescale. This is followed by a sub-30-fs relaxation process due to the probing of the continuously spreading nuclear wave packet in the excited electronic states of the molecular cation. These findings shed light on the role played by electron-nuclear coupling in donor-π-acceptor systems in response to photoionization.
Collapse
Grants
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA182 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
Collapse
Affiliation(s)
- Federico Vismarra
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | - Francisco Fernández-Villoria
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniele Mocci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | - Yingxuan Wu
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | | | | | - Jorge Delgado
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Santos
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Bañares
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Carlini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | | | - Paola Bolognesi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | - Robert Richter
- Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Lorenzo Avaldi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | - Alicia Palacios
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - Matteo Lucchini
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | | | | | - Nazario Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain.
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauro Nisoli
- Department of Physics, Politecnico di Milano, Milan, Italy.
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy.
| |
Collapse
|
2
|
Rodríguez-Cuenca E, Picón A, Oberli S, Kuleff AI, Vendrell O. Core-Hole Coherent Spectroscopy in Molecules. PHYSICAL REVIEW LETTERS 2024; 132:263202. [PMID: 38996324 DOI: 10.1103/physrevlett.132.263202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We study the ultrafast dynamics initiated by a coherent superposition of core-excited states of nitrous oxide molecule. Using high-level ab initio methods, we show that the decoherence caused by the electronic decay and the nuclear dynamics is substantially slower than the induced ultrafast quantum beatings, allowing the system to undergo several oscillations before it dephases. We propose a proof-of-concept experiment using the harmonic up-conversion scheme available at x-ray free-electron laser facilities to trace the evolution of the created core-excited-state coherence through a time-resolved x-ray photoelectron spectroscopy.
Collapse
|
3
|
Hamer KA, Folorunso AS, Lopata K, Schafer KJ, Gaarde MB, Mauger F. Tracking Charge Migration with Frequency-Matched Strobo-Spectroscopy. J Phys Chem A 2024; 128:20-27. [PMID: 38165105 PMCID: PMC10788909 DOI: 10.1021/acs.jpca.3c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We present frequency-matched strobo-spectroscopy (FMSS) of charge migration (CM) in bromobutadiyne, simulated with time-dependent density functional theory. CM + FMSS is a pump-probe scheme that uses a frequency-matched high harmonic generation (HHG)-driving laser as an independent probe step, following the creation of a localized hole on the bromine atom that induces CM dynamics. We show that the delay-dependent harmonic yield tracks the phase of the CM dynamics through its sensitivity to the amount of electron density on the bromine end of the molecule. FMSS takes advantage of the intrinsic attosecond time resolution of the HHG process in which different harmonics are emitted at different times and thus probe different locations of the electron hole. Finally, we show that the CM-induced modulation of the HHG signal is dominated by the recombination step of the HHG process, with a negligible contribution from the ionization step.
Collapse
Affiliation(s)
- Kyle A. Hamer
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Aderonke S. Folorunso
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth J. Schafer
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Mette B. Gaarde
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - François Mauger
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Pranjal P, González-Vázquez J, Bello RY, Martín F. Resonant Photoionization of CO 2 up to the Fourth Ionization Threshold. J Phys Chem A 2024; 128:182-190. [PMID: 38118433 PMCID: PMC10788902 DOI: 10.1021/acs.jpca.3c06947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
We present a comprehensive theoretical study of valence-shell photoionization of the CO2 molecule by using the XCHEM methodology. This method makes use of a fully correlated molecular electronic continuum at a level comparable to that provided by state-of-the-art quantum chemistry packages in bound-state calculations. The calculated total and angularly resolved photoionization cross sections are presented and discussed, with particular emphasis on the series of autoionizing resonances that appear between the first and the fourth ionization thresholds. Ten series of Rydberg autoionizing states are identified, including some not previously reported in the literature, and their energy positions and widths are provided. This is relevant in the context of ongoing experimental and theoretical efforts aimed at observing in real-time (attosecond time scale) the autoionization dynamics in molecules.
Collapse
Affiliation(s)
- Prateek Pranjal
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia),
Cantoblanco, 28049 Madrid, Spain
| | - Jesús González-Vázquez
- Departamento
de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Roger Y. Bello
- Departamento
de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia),
Cantoblanco, 28049 Madrid, Spain
- Departamento
de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Belles E, Rabilloud F, Kuleff AI, Despré V. Size Effect in Correlation-Driven Charge Migration in Correlation Bands of Alkyne Chains. J Phys Chem A 2024; 128:163-169. [PMID: 38150589 DOI: 10.1021/acs.jpca.3c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Correlation-driven charge migration initiated by inner-valence ionization leading to the population of the correlation bands of alkyne chains containing between 4 and 12 carbon atoms is explored through ab initio simulations. Scaling laws are observed, both for the time scale of the charge migration and for the slope of the density of states of the correlation bands. These can be used for predicting the relaxation time scale in much larger systems from the same molecular family and for finding promising candidates for the development of an attochemistry scheme taking advantages of the specificity of the dynamics in the correlation bands of molecules.
Collapse
Affiliation(s)
- Enguerran Belles
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Franck Rabilloud
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Victor Despré
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| |
Collapse
|
6
|
Calegari F, Martin F. Open questions in attochemistry. Commun Chem 2023; 6:184. [PMID: 37666969 PMCID: PMC10477171 DOI: 10.1038/s42004-023-00989-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Affiliation(s)
- Francesca Calegari
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049, Madrid, Spain.
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Tolu D, Guillaumont D, de la Lande A. Irradiation of Plutonium Tributyl Phosphate Complexes by Ionizing Alpha Particles: A Computational Study. J Phys Chem A 2023; 127:7045-7057. [PMID: 37606197 DOI: 10.1021/acs.jpca.3c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The PUREX solvent extraction process, widely used for recovering uranium and plutonium from spent nuclear fuel, utilizes an organic solvent composed of tributyl phosphate (TBP). The emission of ionizing particles such as alpha particles, resulting from the decay of plutonium, makes the organic solvent vulnerable to degradation. Here, we study the ultrashort time alpha irradiation of tributylphosphate (TBP) and Pu(NO3)4(TBP)2 complex formed in the PUREX process. Electron dynamics is propagated by Real-Time-Dependent Auxiliary Density Functional Theory (RT-TD-ADFT). We investigate the use of previously proposed absorption boundary conditions (ABC) in the molecular orbital space to treat secondary electron emission. Basis set and exchange correlation functional effects with ABC are reported as well as a detailed analysis of the ABC parametrization. Preliminary results on the water molecule and then on TBP show that the phenomenological nature of the ABC parameters necessitates selecting appropriate values for each system under study. Irradiation of free and complexed TBP shows an influence of the ligands on the variation of atomic charges on the femtosecond time scale. An accumulation of atomic charges in the alkyl chains of TBP is observed in the case where the nitrate groups are predominantly irradiated. In addition, we find that the Pu atom regains its electric charge very rapidly after being hit by the projectile, with the coordination sphere serving as an electron reservoir to preserve its formal redox state. This study paves the road toward a full understanding of the degradation of organic extracants employed in the nuclear industry.
Collapse
Affiliation(s)
- Damien Tolu
- CEA, DES, ISEC, DMRC, Université Montpellier, Marcoule, 30207 Bagnols sur Cèze, France
- Institut de Chimie Physique, CNRS, Université Paris Saclay, 15 Avenue Jean Perrin, Paris, 91405, France
| | - Dominique Guillaumont
- CEA, DES, ISEC, DMRC, Université Montpellier, Marcoule, 30207 Bagnols sur Cèze, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS, Université Paris Saclay, 15 Avenue Jean Perrin, Paris, 91405, France
| |
Collapse
|
8
|
Folorunso AS, Mauger F, Hamer KA, Jayasinghe DD, Wahyutama IS, Ragains JR, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Attochemistry Regulation of Charge Migration. J Phys Chem A 2023; 127:1894-1900. [PMID: 36791088 PMCID: PMC9986869 DOI: 10.1021/acs.jpca.3c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-C6H4-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → C6H4 delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
9
|
Stewart GA, Hoerner P, Debrah DA, Lee SK, Schlegel HB, Li W. Attosecond Imaging of Electronic Wave Packets. PHYSICAL REVIEW LETTERS 2023; 130:083202. [PMID: 36898109 DOI: 10.1103/physrevlett.130.083202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 06/18/2023]
Abstract
An electronic wave packet has significant spatial evolution besides its temporal evolution, due to the delocalized nature of composing electronic states. The spatial evolution was not previously accessible to experimental investigations at the attosecond timescale. A phase-resolved two-electron-angular-streaking method is developed to image the shape of the hole density of an ultrafast spin-orbit wave packet in the krypton cation. Furthermore, the motion of an even faster wave packet in the xenon cation is captured for the first time: An electronic hole is refilled 1.2 fs after it is produced, and the hole filling is observed on the opposite side where the hole is born.
Collapse
Affiliation(s)
- Gabriel A Stewart
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Paul Hoerner
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Duke A Debrah
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Suk Kyoung Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Wen Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
10
|
Yong H, Keefer D, Mukamel S. Novel Ultrafast Molecular Imaging Based on the Combination of X-ray and Electron Diffraction. J Phys Chem A 2023; 127:835-841. [PMID: 36650121 DOI: 10.1021/acs.jpca.2c08024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent development of X-ray free-electron lasers and megaelectronvolt radio-frequency electron guns have made ultrafast X-ray and electron diffraction measurements possible, thereby capturing chemical dynamics with atomic-spatial and femtosecond-temporal resolutions. We present a unified formulation of standard homodyne-detected and heterodyne-detected signals for both techniques. Noting that X-rays scatter from molecular electrons while electrons scatter from both molecular electrons and nuclei, we show how the two diffraction signals can be combined to reveal novel chemical information that is unavailable by solely using each technique alone. By subtracting the homodyne-detected X-ray and electron diffraction signals, a mixed electronic-nuclear interference in electron diffraction can be identified with a self-heterodyne nature for the direct imaging of attosecond electron dynamics where the scattering off molecular nuclei serves as a local oscillator for the scattering off molecular electrons. By subtracting heterodyne-detected X-ray and electron diffraction, the purely nuclear charge density can be singled out.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| |
Collapse
|
11
|
Gelfand N, Remacle F, Levine RD. Ultrafast charge migration in the laser induced dynamics of LiH validated by a computation-free isotope effect. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Yong H, Sun S, Gu B, Mukamel S. Attosecond Charge Migration in Molecules Imaged by Combined X-ray and Electron Diffraction. J Am Chem Soc 2022; 144:20710-20716. [DOI: 10.1021/jacs.2c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shichao Sun
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Bing Gu
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California92697, United States
| |
Collapse
|
13
|
Li Q, Xu X, Wu Y, Zou D, Yin Y, Yu T. Generation of single circularly polarized attosecond pulses from near-critical density plasma irradiated by a two-color co-rotating circularly polarized laser. OPTICS EXPRESS 2022; 30:40063-40074. [PMID: 36298945 DOI: 10.1364/oe.472982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a new method is proposed to efficiently generate a single intense attosecond pulse with circular polarization (CP) through the interaction of an intense driving laser with a near-critical density plasma target. The driving laser is composed of two co-rotating CP lasers with similar frequencies but different pulse widths. When the matching condition is satisfied, the combined field is modulated to a short intense pulse followed by a weak tail. The resulting laser falling edge becomes steeper than the initial sub-pulses, which induces a quick one-time oscillation of the target surface. Meanwhile, the tail guarantees the energy to be compressed simultaneously in both polarization directions to the same extent, so that a single CP attosecond pulse can be produced efficiently and robustly via our method, which has been confirmed through extensive numerical simulations. In addition, our method makes it possible to generate a single CP attosecond pulse even for multi-cycle pulses that are already available for existing laser systems. This provides a novel way to advance the investigation of chiral-sensitive light-matter interactions in attosecond scales.
Collapse
|
14
|
Dey D, Kuleff AI, Worth GA. Quantum Interference Paves the Way for Long-Lived Electronic Coherences. PHYSICAL REVIEW LETTERS 2022; 129:173203. [PMID: 36332247 DOI: 10.1103/physrevlett.129.173203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon.
Collapse
Affiliation(s)
- Diptesh Dey
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
15
|
Schwickert D, Ruberti M, Kolorenč P, Usenko S, Przystawik A, Baev K, Baev I, Braune M, Bocklage L, Czwalinna MK, Deinert S, Düsterer S, Hans A, Hartmann G, Haunhorst C, Kuhlmann M, Palutke S, Röhlsberger R, Rönsch-Schulenburg J, Schmidt P, Toleikis S, Viefhaus J, Martins M, Knie A, Kip D, Averbukh V, Marangos JP, Laarmann T. Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time. SCIENCE ADVANCES 2022; 8:eabn6848. [PMID: 35648864 PMCID: PMC9159702 DOI: 10.1126/sciadv.abn6848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Here, we use x-rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by photoelectron emission from sequential double photoionization. Sinusoidal temporal modulation of the detected signal at early times (0 to 25 fs) is observed in both measurements. Advanced ab initio many-electron simulations allow us to explain the first 25 fs of the detected coherent quantum evolution in terms of the electronic coherence. In the kinematically complete x-ray absorption measurement, we monitor its dynamics for a period of 175 fs and observe an evolving modulation that may implicate the coupling of electronic to vibronic coherence at longer time scales. Our experiment provides a direct support for the existence of long-lived electronic coherence in photoionized biomolecules.
Collapse
Affiliation(s)
- David Schwickert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marco Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Přemysl Kolorenč
- Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Praha 8, Czech Republic
| | - Sergey Usenko
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andreas Przystawik
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Karolin Baev
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ivan Baev
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Braune
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Lars Bocklage
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Sascha Deinert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andreas Hans
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Gregor Hartmann
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Christian Haunhorst
- Faculty of Electrical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Marion Kuhlmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Steffen Palutke
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ralf Röhlsberger
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Helmholtz Centre for Heavy Ion Research (GSI), Planckstr. 1, 64291 Darmstadt, Germany
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | | | - Philipp Schmidt
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jens Viefhaus
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael Martins
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - André Knie
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Detlef Kip
- Faculty of Electrical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Vitali Averbukh
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Jon P. Marangos
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Tim Laarmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
16
|
Attosecond stable dispersion-free delay line for easy ultrafast metrology. Sci Rep 2022; 12:8525. [PMID: 35595769 PMCID: PMC9122952 DOI: 10.1038/s41598-022-12348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
We demonstrate a dispersion-free wavefront splitting attosecond resolved interferometric delay line for easy ultrafast metrology of broadband femtosecond pulses. Using a pair of knife-edge prisms, we symmetrically split and later recombine the two wavefronts with a few tens of attosecond resolution and stability and employ a single-pixel analysis of interference fringes with good contrast using a phone camera without any iris or nonlinear detector. Our all-reflective delay line is theoretically analyzed and experimentally validated by measuring 1st and 2nd order autocorrelations and the SHG-FROG trace of a NIR femtosecond pulse. Our setup is compact, offers attosecond stability with flexibility for independent beam-shaping of the two arms. Furthermore, we suggest that our compact and in-line setup can be employed for attosecond resolved pump-probe experiments of matter with few-cycle pulses.
Collapse
|
17
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
18
|
Scheidegger A, Vaníček J, Golubev NV. Search for long-lasting electronic coherence using on-the-fly ab initio semiclassical dynamics. J Chem Phys 2022; 156:034104. [DOI: 10.1063/5.0076609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alan Scheidegger
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nikolay V. Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Bin Mohd Yusof MS, Siow JX, Yang N, Chan WX, Loh ZH. Spectroscopic observation and ultrafast coherent vibrational dynamics of the aqueous phenylalanine radical. Phys Chem Chem Phys 2022; 24:2800-2812. [PMID: 35048090 DOI: 10.1039/d1cp04326a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phenylalanine radical (Phe˙) has been proposed to mediate biological electron transport (ET) and exhibit long-lived electronic coherences following attosecond photoionization. However, the coupling of ultrafast structural reorganization to the oxidation/ionization of biomolecules such as phenylalanine remains unexplored. Moreover, studies of ET involving Phe˙ are hindered by its hitherto unobserved electronic spectrum. Here, we report the spectroscopic observation and coherent vibrational dynamics of aqueous Phe˙, prepared by sub-6 fs photodetachment of phenylalaninate anions. Sub-picosecond transient absorption spectroscopy reveals the ultraviolet absorption signature of Phe˙. Ultrafast structural reorganization drives coherent vibrational motion involving nine fundamental frequencies and one overtone. DFT calculations rationalize the absence of the decarboxylation reaction, a photodegradation pathway previously identified for Phe˙. Our findings guide the interpretation of future attosecond experiments aimed at elucidating coherent electron motion in photoionized aqueous biomolecules and pave way for the spectroscopic identification of Phe˙ in studies of biological ET.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Jing Xuan Siow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Ningchen Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Wei Xin Chan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
20
|
Khalili F, Vafaee M, Shokri B. Attosecond charge migration following oxygen K-shell ionization in DNA bases and base pairs. Phys Chem Chem Phys 2021; 23:23005-23013. [PMID: 34611693 DOI: 10.1039/d1cp02920g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core ionization of DNA begins a cascade of events which could lead to cellular inactivation or death. The created core-hole following an impulse inner-shell ionization of molecules naturally decays in the auger timescale. We simulated charge migration (CM) phenomena following an impulsive core ionization of individual DNA bases at the oxygen K-edge which occurs before Auger decay of the oxygen. Our approach is based on real-time time dependent density functional theory (RT-TDDFT). It is shown that the pronounced hole fluctuation observed around bonds of the initial core-hole results in various valence orbital migrations. Also, the same photo-core-ionized dynamics is studied for the related base pairs. We investigate the role of base pairing and H-bonding interactions in the attosecond CM dynamics. In particular, the creation of a core-hole in the oxygen involved in H-bonding leads to an enhancement of charge migration relative to the respective single bases. Importantly, the hole oscillation of the adenine-thymine base pair upon creation of a core-hole at the oxygen, which does not contribute to the donor-acceptor interactions (not H-bonded), decreases compared to the single thymine base. Understanding the detailed dynamics of the localized core-hole initiating CM process would open the way for chemically controlling DNA damage/repair in the future.
Collapse
Affiliation(s)
- Fatemeh Khalili
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran 19839, Iran.
| | - Mohsen Vafaee
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran.
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran 19839, Iran. .,Laser-Plasma Research Institute, Shahid Beheshti University, Velenjak, Tehran 19839, Iran
| |
Collapse
|
21
|
Yong H, Cavaletto SM, Mukamel S. Ultrafast Valence-Electron Dynamics in Oxazole Monitored by X-ray Diffraction Following a Stimulated X-ray Raman Excitation. J Phys Chem Lett 2021; 12:9800-9806. [PMID: 34606289 DOI: 10.1021/acs.jpclett.1c02740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct imaging of the ultrafast quantum motion of valence electrons in molecules is essential for understanding many elementary chemical and physical processes. We present a simulation study of valence-electron dynamics of oxazole. A valence-state electronic wavepacket is prepared with an attosecond soft X-ray pulse through a stimulated resonant X-ray Raman process and then probed with time-resolved off-resonant single-molecule X-ray diffraction. We find that the time dependent diffraction signal originates solely from the electronic coherences and can be detected by existing experimental techniques. We thus provide a feasible way of imaging electron dynamics in molecules. Moreover, the created electronic coherences and subsequent electron dynamics can be manipulated by the resonant X-ray Raman excitation tuned to different core-excited states.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
22
|
Abstract
In this paper, we discuss coupled-trajectory schemes for molecular-dynamics simulations of excited-state processes. New coupled-trajectory strategies to capture decoherence effects, revival of coherence and nonadiabatic interferences in long-time dynamics are proposed, and compared to independent-trajectory schemes. The working framework is provided by the exact factorization of the electron-nuclear wave function, and it exploits ideas emanating from various surface-hopping schemes. The new coupled-trajectory algorithms are tested on a one-dimensional two-state system using different model parameters which allow one to induce different dynamics. The benchmark is provided by the numerically exact solution of the time-dependent Schrödinger equation.
Collapse
Affiliation(s)
- Carlotta Pieroni
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France.,Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
23
|
Rousseau P, González-Vázquez J, Piekarski DG, Kopyra J, Domaracka A, Alcamí M, Adoui L, Huber BA, Díaz-Tendero S, Martín F. Timing of charge migration in betaine by impact of fast atomic ions. SCIENCE ADVANCES 2021; 7:eabg9080. [PMID: 34597129 PMCID: PMC10938492 DOI: 10.1126/sciadv.abg9080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The way molecules break after ion bombardment is intimately related to the early electron dynamics generated in the system, in particular, charge (or electron) migration. We exploit the natural positive-negative charge splitting in the zwitterionic molecule betaine to selectively induce double electron removal from its negatively charged side by impact of fast O6+ ions. The loss of two electrons in this localized region of the molecular skeleton triggers a competition between direct Coulomb explosion and charge migration that is examined to obtain temporal information from ion-ion coincident measurements and nonadiabatic molecular dynamics calculations. We find a charge migration time, from one end of the molecule to the other, of approximately 20 to 40 femtoseconds. This migration time is longer than that observed in molecules irradiated by ultrashort light pulses and is the consequence of charge migration being driven by adiabatic nuclear dynamics in the ground state of the molecular dication.
Collapse
Affiliation(s)
- Patrick Rousseau
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Jesús González-Vázquez
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Dariusz G. Piekarski
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Alicja Domaracka
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Manuel Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Cantoblanco, 28049 Madrid, Spain
| | - Lamri Adoui
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Bernd A. Huber
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
24
|
de la Lande A, Denisov S, Mostafavi M. The mystery of sub-picosecond charge transfer following irradiation of hydrated uridine monophosphate. Phys Chem Chem Phys 2021; 23:21148-21162. [PMID: 34528029 DOI: 10.1039/d0cp06482c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The early mechanisms by which ionizing rays damage biological structures by so-called direct effects are largely elusive. In a recent picosecond pulse radiolysis study of concentrated uridine monophosphate solutions [J. Ma, S. A. Denisov, J.-L. Marignier, P. Pernot, A. Adhikary, S. Seki and M. Mostafavi, J. Phys. Chem. Lett., 2018, 9, 5105], unexpected results were found regarding the oxidation of the nucleobase. The signature of the oxidized nucleobase could not be detected 5 ps after the electron pulse, but only the oxidized phosphate, raising intriguing questions about the identity of charge-transfer mechanisms that could explain the absence of U+. We address here this question by means of advanced first-principles atomistic simulations of solvated uridine monophosphate, combining Density Functional Theory (DFT) with polarizable embedding schemes. We contrast three very distinct mechanisms of charge transfer covering the atto-, femto- and pico-second timescales. We first investigate the ionization mechanism and subsequent hole/charge migrations on a timescale of attoseconds to a few femtoseconds under the frozen nuclei approximation. We then consider a nuclear-driven phosphate-to-oxidized-nucleobase electron transfer, showing that it is an uncompetitive reaction channel on the sub-picosecond timescale, despite its high exothermicity and significant electronic coupling. Finally, we show that non-adiabatic charge transfer is enabled by femtosecond nuclear relaxation after ionization. We show that electronic decoherence and the electronic coupling strength are the key parameters that determine the hopping probabilities. Our results provide important insight into the interplay between electronics and nuclear motions in the early stages of the multiscale responses of biological matter subjected to ionizing radiation.
Collapse
Affiliation(s)
- Aurélien de la Lande
- Institut de Chimie Physique, CNRS, Université Paris Saclay (UMR 8000), 15 Avenue Jean Perrin, 91405, France.
| | - Sergey Denisov
- Institut de Chimie Physique, CNRS, Université Paris Saclay (UMR 8000), 15 Avenue Jean Perrin, 91405, France.
| | - Mehran Mostafavi
- Institut de Chimie Physique, CNRS, Université Paris Saclay (UMR 8000), 15 Avenue Jean Perrin, 91405, France.
| |
Collapse
|
25
|
Golubev NV, Vaníček J, Kuleff AI. Core-Valence Attosecond Transient Absorption Spectroscopy of Polyatomic Molecules. PHYSICAL REVIEW LETTERS 2021; 127:123001. [PMID: 34597071 DOI: 10.1103/physrevlett.127.123001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Tracing ultrafast processes induced by interaction of light with matter is often very challenging. In molecular systems, the initially created electronic coherence becomes damped by the slow nuclear rearrangement on a femtosecond timescale which makes real-time observations of electron dynamics in molecules particularly difficult. In this work, we report an extension of the theory underlying the attosecond transient absorption spectroscopy (ATAS) for the case of molecules, including a full account for the coupled electron-nuclear dynamics in the initially created wave packet, and apply it to probe the oscillations of the positive charge created after outer-valence ionization of the propiolic acid molecule. By taking advantage of element-specific core-to-valence transitions induced by x-ray radiation, we show that the resolution of ATAS makes it possible to trace the dynamics of electron density with atomic spatial resolution.
Collapse
Affiliation(s)
- Nikolay V Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexander I Kuleff
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany and ELI-ALPS, Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| |
Collapse
|
26
|
Armstrong GSJ, Khokhlova MA, Labeye M, Maxwell AS, Pisanty E, Ruberti M. Dialogue on analytical and ab initio methods in attoscience. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2021; 75:209. [PMID: 34720730 PMCID: PMC8550504 DOI: 10.1140/epjd/s10053-021-00207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the 'Quantum Battles in Attoscience' cecam virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience-covering both analytical and numerical methods-and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in 'analytical' techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community.
Collapse
Affiliation(s)
- Gregory S. J. Armstrong
- Centre for Theoretical Atomic, Molecular, and Optical Physics, Queen’s University Belfast, Belfast, BT7 1NN UK
| | - Margarita A. Khokhlova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Marie Labeye
- CNRS, PASTEUR, Département de chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France
| | - Andrew S. Maxwell
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT UK
| | - Emilio Pisanty
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Marco Ruberti
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
27
|
Delgado J, Lara-Astiaso M, González-Vázquez J, Decleva P, Palacios A, Martín F. Molecular fragmentation as a way to reveal early electron dynamics induced by attosecond pulses. Faraday Discuss 2021; 228:349-377. [PMID: 33571330 DOI: 10.1039/d0fd00121j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a theoretical study of the electron and nuclear dynamics that would arise in an attosecond two-color XUV-pump/XUV-probe experiment in glycine. In this scheme, the broadband pump pulse suddenly ionizes the molecule and creates an electronic wave packet that subsequently evolves under the influence of the nuclear motion until it is finally probed by the second XUV pulse. To describe the different steps of such an experiment, we have combined a multi-reference static-exchange scattering method with a trajectory surface hopping approach. We show that by changing the central frequency of the pump pulse, i.e., by engineering the initial electronic wave packet with the pump pulse, one can drive the cation dynamics into a specific fragmentation pathway. Reminiscence of this early electron dynamics can be observed in specific fragmentation channels (not all of them) as a function of the pump-probe delay and in time-resolved photoelectron spectra at specific photoelectron energies. The optimum conditions to visualize the initial electronic coherence in photoelectron and photo-ion spectra depend very much on the characteristics of the pump pulse as well as on the electronic structure of the molecule under study.
Collapse
Affiliation(s)
- Jorge Delgado
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
| | - Manuel Lara-Astiaso
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jesús González-Vázquez
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Piero Decleva
- CNR IOM, Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste, 34127 Trieste, Italy
| | - Alicia Palacios
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain and Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
28
|
Ruberti M. Quantum electronic coherences by attosecond transient absorption spectroscopy: ab initio B-spline RCS-ADC study. Faraday Discuss 2021; 228:286-311. [PMID: 33575690 DOI: 10.1039/d0fd00104j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here I present a fully ab initio time-resolved study of X-ray attosecond transient absorption spectroscopy (ATAS) in a prototypical polyatomic molecule, pyrazine, and demonstrate the possibility of retrieving the many-electron quantum ionic coherences arising in attosecond molecular photoionisation and pre-determining the subsequent charge-directed photochemical reactivity. Advanced first-principles many-electron simulations are performed, within a hybrid XUV pump/X-ray probe setup, to describe the interaction of pyrazine with both XUV pump and X-ray probe pulses, and study the triggered correlated many-electron dynamics. The calculations are carried out by means of the recently-developed ab initio method for many-electron dynamics in polyatomic molecules, the time-dependent (TD) B-spline Restricted Correlation Space-Algebraic Diagrammatic Construction (RCS-ADC). RCS-ADC simulates molecular ionisation from first principles, combining the accurate description of electron correlation of quantum chemistry with the full account of the continuum dynamics of the photoelectron. Complete theoretical characterisation of the atto-ionised many-electron state and photo-induced attosecond charge dynamics is achieved by calculating the reduced ionic density matrix (R-IDM) of the bipartite ion-photoelectron system, with full inclusion of the correlated shakeup states. Deviations from the sudden approximation picture of photoionisation, in the low-photon-energy limit, are presented. The effect of the multi-channel interaction between the parent-ion and the emitted photoelectron on the onset of the quantum electronic coherences is analysed. Moreover, I show how the Schmidt decomposition of the R-IDM unravels the many-electron dynamics triggered by the pump, allowing for the identification of the key channels involved. Finally, I calculate the X-ray attosecond transient absorption spectra of XUV-ionised pyrazine. The results unveil the mapping of the ATAS measurement onto the quantum electronic coherences, and related non-zero R-IDM matrix elements, produced upon ionisation by the XUV pump laser pulse.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
29
|
Månsson EP, Latini S, Covito F, Wanie V, Galli M, Perfetto E, Stefanucci G, Hübener H, De Giovannini U, Castrovilli MC, Trabattoni A, Frassetto F, Poletto L, Greenwood JB, Légaré F, Nisoli M, Rubio A, Calegari F. Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine. Commun Chem 2021; 4:73. [PMID: 36697766 PMCID: PMC9814501 DOI: 10.1038/s42004-021-00510-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse. We find that the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.
Collapse
Affiliation(s)
- Erik P. Månsson
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy
| | - Simone Latini
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Fabio Covito
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Vincent Wanie
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,INRS-EMT, Varennes, QC Canada
| | - Mara Galli
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.4643.50000 0004 1937 0327Department of Physics, Politecnico di Milano, Milano, Italy
| | - Enrico Perfetto
- grid.472712.5CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Monterotondo Scalo, Italy ,grid.6530.00000 0001 2300 0941Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
| | - Gianluca Stefanucci
- grid.6530.00000 0001 2300 0941Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ,grid.470219.9INFN, Sezione di Roma Tor Vergata, Roma, Italy
| | - Hannes Hübener
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Umberto De Giovannini
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany ,grid.10776.370000 0004 1762 5517Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
| | - Mattea C. Castrovilli
- Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,Institute for the Structure of Matter CNR-ISM, Monterotondo Scalo, Italy
| | - Andrea Trabattoni
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabio Frassetto
- Institute for Photonics and Nanotechnologies CNR-IFN, Padova, Italy
| | - Luca Poletto
- Institute for Photonics and Nanotechnologies CNR-IFN, Padova, Italy
| | - Jason B. Greenwood
- grid.4777.30000 0004 0374 7521Centre for Plasma Physics, School of Maths and Physics, Queen’s University Belfast, Belfast, UK
| | | | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,grid.4643.50000 0004 1937 0327Department of Physics, Politecnico di Milano, Milano, Italy
| | - Angel Rubio
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany ,Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York, NY USA
| | - Francesca Calegari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,grid.9026.d0000 0001 2287 2617Institut fur Experimentalphysik, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
30
|
Bello RY, Martín F, Palacios A. Attosecond laser control of photoelectron angular distributions in XUV-induced ionization of H 2. Faraday Discuss 2021; 228:378-393. [PMID: 33566038 DOI: 10.1039/d0fd00114g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate how attosecond XUV pump/IR probe schemes can be used to exert control on the ionization dynamics of the hydrogen molecule. The aim is to play with all available experimental parameters in the problem, namely the XUV pump-IR probe delay, the energy and emission direction of the produced photo-ions, as well as combinations of them, to uncover control strategies that can lead to preferential electron ejection directions. We do so by accurately solving the time-dependent Schrödinger equation, with inclusion of both electronic and nuclear motions, as well as the coupling between them. We show that both the IR pulse and the nuclear motion can be used to break the molecular inversion symmetry, thus leading to asymmetric molecular-frame photoelectron angular distributions. The preferential electron emission direction can thus be tuned by varying the pump-probe delay, by choosing specific ranges of proton kinetic energies, or both. We expect that similar control strategies could be used in more complex molecules containing light nuclei.
Collapse
Affiliation(s)
- Roger Y Bello
- Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720, USA
| | | | | |
Collapse
|
31
|
Omar KA, Hasnaoui K, de la Lande A. First-Principles Simulations of Biological Molecules Subjected to Ionizing Radiation. Annu Rev Phys Chem 2021; 72:445-465. [PMID: 33878897 DOI: 10.1146/annurev-physchem-101419-013639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ionizing rays cause damage to genomes, proteins, and signaling pathways that normally regulate cell activity, with harmful consequences such as accelerated aging, tumors, and cancers but also with beneficial effects in the context of radiotherapies. While the great pace of research in the twentieth century led to the identification of the molecular mechanisms for chemical lesions on the building blocks of biomacromolecules, the last two decades have brought renewed questions, for example, regarding the formation of clustered damage or the rich chemistry involving the secondary electrons produced by radiolysis. Radiation chemistry is now meeting attosecond science, providing extraordinary opportunities to unravel the very first stages of biological matter radiolysis. This review provides an overview of the recent progress made in this direction, focusing mainly on the atto- to femto- to picosecond timescales. We review promising applications of time-dependent density functional theory in this context.
Collapse
Affiliation(s)
- Karwan Ali Omar
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France; .,Department of Chemistry, College of Education, University of Sulaimani, 41005 Kurdistan, Iraq
| | - Karim Hasnaoui
- High Performance Computing User Support Team, Institut du Développement et des Ressources en Informatique Scientifique (IDRIS), 91403 Orsay, France.,Maison de la Simulation, CNRS, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France;
| |
Collapse
|
32
|
Folorunso AS, Bruner A, Mauger F, Hamer KA, Hernandez S, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Molecular Modes of Attosecond Charge Migration. PHYSICAL REVIEW LETTERS 2021; 126:133002. [PMID: 33861123 DOI: 10.1103/physrevlett.126.133002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
First-principles calculations are employed to elucidate the modes of attosecond charge migration (CM) in halogenated hydrocarbon chains. We use constrained density functional theory (DFT) to emulate the creation of a localized hole on the halogen and follow the subsequent dynamics via time-dependent DFT. We find low-frequency CM modes (∼1 eV) that propagate across the molecule and study their dependence on length, bond order, and halogenation. We observe that the CM speed (∼4 Å/fs) is largely independent of molecule length, but is lower for triple-bonded versus double-bonded molecules. Additionally, as the halogen mass increases, the hole travels in a more particlelike manner as it moves across the molecule. These heuristics will be useful in identifying molecules and optimal CM detection methods for future experiments, especially for halogenated hydrocarbons which are promising targets for ionization-triggered CM.
Collapse
Affiliation(s)
- Aderonke S Folorunso
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Adam Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - François Mauger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kyle A Hamer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samuel Hernandez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
33
|
Gope K, Livshits E, Bittner DM, Baer R, Strasser D. Absence of Triplets in Single-Photon Double Ionization of Methanol. J Phys Chem Lett 2020; 11:8108-8113. [PMID: 32897727 PMCID: PMC7595352 DOI: 10.1021/acs.jpclett.0c02445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 05/21/2023]
Abstract
Despite the abundance of data concerning single-photon double ionization of methanol, the spin state of the emitted electron pair has never been determined. Here we present the first evidence that identifies the emitted electron pair spin as overwhelmingly singlet when the dication forms in low-energy configurations. The experimental data show that while the yield of the CH2O+ + H3+ Coulomb explosion channel is abundant, the metastable methanol dication is largely absent. According to high-level ab initio simulations, these facts indicate that photoionization promptly forms singlet dication states, where they quickly decompose through various channels, with significant H3+ yields on the low-lying states. In contrast, if we assume that the initial dication is formed in one of the low-lying triplet states, the ab initio simulations exhibit a metastable dication, contradicting the experimental findings. Comparing the average simulated branching ratios with the experimental data suggests a >3 order of magnitude enhancement of the singlet:triplet ratio compared with their respective 1:3 multiplicities.
Collapse
Affiliation(s)
- Krishnendu Gope
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ester Livshits
- Fritz
Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dror M. Bittner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Roi Baer
- Fritz
Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Strasser
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Golubev NV, Begušić T, Vaníček J. On-the-Fly Ab Initio Semiclassical Evaluation of Electronic Coherences in Polyatomic Molecules Reveals a Simple Mechanism of Decoherence. PHYSICAL REVIEW LETTERS 2020; 125:083001. [PMID: 32909765 DOI: 10.1103/physrevlett.125.083001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Irradiation of a molecular system by an intense laser field can trigger dynamics of both electronic and nuclear subsystems. The lighter electrons usually move on much faster, attosecond timescale but the slow nuclear rearrangement damps ultrafast electronic oscillations, leading to the decoherence of the electronic dynamics within a few femtoseconds. We show that a simple, single-trajectory semiclassical scheme can evaluate the electronic coherence time in polyatomic molecules accurately by demonstrating an excellent agreement with full-dimensional quantum calculations. In contrast to numerical quantum methods, the semiclassical one reveals the physical mechanism of decoherence beyond the general blame on nuclear motion. In the propiolic acid, the rate of decoherence and the large deviation from the static frequency of electronic oscillations are quantitatively described with just two semiclassical parameters-the phase space distance and signed area between the trajectories moving on two electronic surfaces. Because it evaluates the electronic structure on the fly, the semiclassical technique avoids the "curse of dimensionality" and should be useful for preselecting molecules for experimental studies.
Collapse
Affiliation(s)
- Nikolay V Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Chen M, Lopata K. First-Principles Simulations of X-ray Transient Absorption for Probing Attosecond Electron Dynamics. J Chem Theory Comput 2020; 16:4470-4478. [PMID: 32470295 PMCID: PMC7467644 DOI: 10.1021/acs.jctc.0c00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray transient absorption spectroscopy (XTAS) is a promising technique for measuring electron dynamics in molecules and solids with attosecond time resolutions. In XTAS, the elemental specificity and spatial locality of core-to-valence X-ray absorption is exploited to relate modulations in the time-resolved absorption spectra to local electron density variations around particular atoms. However, interpreting these absorption modulations and frequency shifts as a function of the time delay in terms of dynamics can be challenging. In this paper, we present a first-principles study of attosecond XTAS in a selection of simple molecules based on real-time time-dependent density functional theory (RT-TDDFT) with constrained DFT to emulate the state of the system following the interaction with a ultraviolet pump laser. In general, there is a decrease in the optical density and a blue shift in the frequency with increasing electron density around the absorbing atom. In carbon monoxide (CO), modulations in the O K-edge occur at the frequency of the valence electron dynamics, while for dioxygen (O2) they occur at twice the frequency, due to the indistinguishability of the oxygen atoms. In 4-aminophenol (H2NC6H4OH), likewise, there is a decrease in the optical density and a blue shift in the frequency for the oxygen and nitrogen K-edges with increasing charge density on the O and N, respectively. Similar effects are observed in the nitrogen K-edge for a long-range charge-transfer excitation in a benzene (C6H6)-tetracyanoethylene (C6N4; TCNE) dimer but with weaker modulations due to the delocalization of the charge across the entire TCNE molecule. Additionally, in all cases, there are pre-edge features corresponding to core transitions to depopulated orbitals. These potentially offer a background-free signal that only appears in pumped molecules.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
36
|
Zhang YX, Rykovanov S, Shi M, Zhong CL, He XT, Qiao B, Zepf M. Giant Isolated Attosecond Pulses from Two-Color Laser-Plasma Interactions. PHYSICAL REVIEW LETTERS 2020; 124:114802. [PMID: 32242678 DOI: 10.1103/physrevlett.124.114802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 12/03/2019] [Accepted: 01/07/2020] [Indexed: 06/11/2023]
Abstract
A new regime in the interaction of a two-color (ω,2ω) laser with a nanometer-scale foil is identified, resulting in the emission of extremely intense, isolated attosecond pulses-even in the case of multicycle lasers. For foils irradiated by lasers exceeding the blow-out field strength (i.e., capable of fully separating electrons from the ion background), the addition of a second harmonic field results in the stabilization of the foil up to the blow-out intensity. This is then followed by a sharp transition to transparency that essentially occurs in a single optical cycle. During the transition cycle, a dense, nanometer-scale electron bunch is accelerated to relativistic velocities and emits a single, strong attosecond pulse with a peak intensity approaching that of the laser field.
Collapse
Affiliation(s)
- Y X Zhang
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
- Helmholtz Institute Jena, 07743 Jena, Germany
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - S Rykovanov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | | | - C L Zhong
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
| | - X T He
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - B Qiao
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Zepf
- Helmholtz Institute Jena, 07743 Jena, Germany
- Institute of Optics and Quantum Electronics, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
37
|
Perfetto E, Trabattoni A, Calegari F, Nisoli M, Marini A, Stefanucci G. Ultrafast Quantum Interference in the Charge Migration of Tryptophan. J Phys Chem Lett 2020; 11:891-899. [PMID: 31944766 DOI: 10.1021/acs.jpclett.9b03517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extreme-ultraviolet-induced charge migration in biorelevant molecules is a fundamental step in the complex path leading to photodamage. In this work we propose a simple interpretation of the charge migration recently observed in an attosecond pump-probe experiment on the amino acid tryptophan. We find that the decay of the prominent low-frequency spectral structure with increasing pump-probe delay is due to a quantum beating between two geometrically distinct, almost degenerate charge oscillations. Quantum beating is ubiquitous in these systems, and at least on the few-to-tens of femtosecond time scales, it may dominate over decoherence the line intensities of time-resolved spectra. We also address the experimentally observed phase shift in the charge oscillations of two different amino acids, tryptophan and phenylalanine. Our results indicate that a beyond mean-field treatment of the electron dynamics is necessary to reproduce the correct behavior.
Collapse
Affiliation(s)
- E Perfetto
- Dipartimento di Fisica , Università di Roma Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
- CNR-ISM , Division of Ultrafast Processes in Materials (FLASHit) , Area della Ricerca di Roma 1, Via Salaria Km 29.3 , I-00016 Monterotondo Scalo , Italy
| | - A Trabattoni
- Center for Free-Electron Laser Science (CFEL) , DESY , 22607 Hamburg , Germany
| | - F Calegari
- Center for Free-Electron Laser Science (CFEL) , DESY , 22607 Hamburg , Germany
- Institute for Photonics and Nanotechnologies , IFN-CNR , 20133 Milano , Italy
- Institut fur Experimentalphysik , Universität Hamburg , D-22761 Hamburg , Germany
| | - M Nisoli
- Institute for Photonics and Nanotechnologies , IFN-CNR , 20133 Milano , Italy
- Dipartimento di Fisica , Politecnico di Milano , 20133 Milano , Italy
| | - A Marini
- CNR-ISM , Division of Ultrafast Processes in Materials (FLASHit) , Area della Ricerca di Roma 1, Via Salaria Km 29.3 , I-00016 Monterotondo Scalo , Italy
| | - G Stefanucci
- Dipartimento di Fisica , Università di Roma Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
- INFN , Sezione di Roma Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
38
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
39
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
|
41
|
Bazzi S, Santra R. Ultrafast Charge Transfer and Structural Dynamics Following Outer-Valence Ionization of a Halogen-Bonded Dimer. J Phys Chem A 2019; 123:7351-7360. [DOI: 10.1021/acs.jpca.9b00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophia Bazzi
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chausee 149, 22761 Hamburg, Germany
| |
Collapse
|
42
|
Ruberti M. Onset of ionic coherence and ultrafast charge dynamics in attosecond molecular ionisation. Phys Chem Chem Phys 2019; 21:17584-17604. [PMID: 31372608 DOI: 10.1039/c9cp03074c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here is presented a fully ab initio theoretical framework for simulating the correlated many-electron dynamics occurring during and emerging from molecular ionisation by attosecond laser pulses. This is based on the time-dependent (TD) version of the B-spline restricted correlation space (RCS)-algebraic diagrammatic construction (ADC) method, with the full description of the photoelectron and inclusion of electron correlation effects, such as shakeup processes and inter-channel couplings. The nature of the ultrafast charge dynamics in the molecular ion is elucidated by quantitatively predicting the degree of electronic coherence and eigenstate content of the prepared molecular cationic state, beyond the commonly used sudden approximation. The results presented here for the acetylene and ethylene molecules show that even in the high photon energy regime the simulated hole dynamics is quantitatively different from the prediction of the sudden approximation. Moreover, for high-bandwidth ionising pulse, the residual interaction between the cation, in highly-excited shake-up states, and the emitted slow photoelectron gives rise to a loss of coherence in the ionic system which can persist for the first few femtoseconds after ionisation.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
43
|
Marggi Poullain S, Klinker M, González-Vázquez J, Martín F. Resonant photoionization of O 2 up to the fourth ionization threshold. Phys Chem Chem Phys 2019; 21:16497-16504. [PMID: 31322631 DOI: 10.1039/c9cp02150g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a detailed theoretical study of valence-shell photoionization of the oxygen molecule by using the recently proposed XCHEM method. This method makes use of a hybrid Gaussian and B-spline basis in the framework of a close-coupling approach to describe electron correlation in the molecular electronic continuum at a level comparable to that provided by multi-reference configuration interaction methods in bound state calculations. The computed total and partial photoionization cross sections are presented and discussed, with emphasis on the series of autoionizing resonances that appear between the first and the fourth ionization thresholds, i.e., photon energies between 12 and 18 eV. More than fifty autoionizing states are identified, including series not previously reported in the literature, and their energy positions and widths are provided. The present results illustrate the potential of the XCHEM approach to accurately describe molecular autoionization, which is mostly due to electron correlation. This is relevant in view of current experimental efforts aimed at providing real-time (attosecond) imaging of autoionization dynamics in molecules.
Collapse
Affiliation(s)
- Sonia Marggi Poullain
- Departamento de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Markus Klinker
- Departamento de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jesús González-Vázquez
- Departamento de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Fernando Martín
- Departamento de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049, Madrid, Spain and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
44
|
Jia D, Manz J, Yang Y. De- and Recoherence of Charge Migration in Ionized Iodoacetylene. J Phys Chem Lett 2019; 10:4273-4277. [PMID: 31287313 DOI: 10.1021/acs.jpclett.9b01687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During charge migration, electrons flow rapidly from one site of a molecule to another, perhaps inducing subsequent processes (e.g., selective breaking of chemical bonds). The first joint experimental and theoretical preparation and measurement of the initial state and subsequent quantum dynamics simulation of charge migration for fixed nuclei was demonstrated recently for oriented, ionized iodoacetylene. Here, we present new quantum dynamics simulations for the same system with moving nuclei. They reveal the decisive role of the nuclei, i.e. they switch charge migration off (decoherence) and on (recoherence). This is a new finding in attosecond-to-femtosecond chemistry and physics which opens new prospects for laser control over electronic dynamics via nuclear motions.
Collapse
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- International Center for Chemical Theory , University of Science and Technology of China , Hefei 230026 , China
- Institut für Chemie und Biochemie , Freie Universität Berlin , 14195 Berlin , Germany
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| |
Collapse
|
45
|
Palacios A, Martín F. The quantum chemistry of attosecond molecular science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1430] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alicia Palacios
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Institute of Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid Spain
| | - Fernando Martín
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nano) Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
46
|
Perfetto E, Sangalli D, Palummo M, Marini A, Stefanucci G. First-Principles Nonequilibrium Green’s Function Approach to Ultrafast Charge Migration in Glycine. J Chem Theory Comput 2019; 15:4526-4534. [DOI: 10.1021/acs.jctc.9b00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E. Perfetto
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - D. Sangalli
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - M. Palummo
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - A. Marini
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - G. Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
47
|
Geneaux R, Marroux HJB, Guggenmos A, Neumark DM, Leone SR. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170463. [PMID: 30929624 PMCID: PMC6452051 DOI: 10.1098/rsta.2017.0463] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 05/07/2023]
Abstract
Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Romain Geneaux
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Hugo J. B. Marroux
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Alexander Guggenmos
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley 94720, CA, USA
- Department of Physics, University of California, Berkeley 94720, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| |
Collapse
|
48
|
Trabattoni A, Galli M, Lara-Astiaso M, Palacios A, Greenwood J, Tavernelli I, Decleva P, Nisoli M, Martín F, Calegari F. Charge migration in photo-ionized aromatic amino acids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170472. [PMID: 30929627 PMCID: PMC6452047 DOI: 10.1098/rsta.2017.0472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Attosecond pump-probe spectroscopy is a unique tool for the direct observation of the light-activated electronic motion in molecules and it offers the possibility to capture the first instants of a chemical reaction. Recently, advances in attosecond technology allowed the charge migration processes to be revealed in biochemically relevant molecules. Although this purely electronic process might be key for a future chemistry at the electron time scale, the influence of this ultrafast charge flow on the reactivity of a molecule is still debated. In this work, we exploit extreme ultraviolet attosecond pulses to activate charge migration in two aromatic amino acids, namely phenylalanine and tryptophan. Advanced numerical calculations are performed to interpret the experimental data and to discuss the effects of the nuclear dynamics on the activated quantum coherences. By comparing the experimental results obtained in the two molecules, we show that the presence of different functional groups strongly affects the fragmentation pathways, as well as the charge rearrangement. The observed charge dynamics indeed present peculiar aspects, including characteristic periodicities and decoherence times. Numerical results indicate that, even for a very large molecule such as tryptophan, the quantum coherences can survive the nuclear dynamics for several femtoseconds. These results open new and important perspectives for a deeper understanding of the photo-induced charge dynamics, as a promising tool to control the reactivity of bio-relevant molecules via photo-excitation. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- A. Trabattoni
- Center for Free-Electron Laser Science (CFEL), DESY, 22607 Hamburg, Germany
- e-mail:
| | - M. Galli
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - M. Lara-Astiaso
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - A. Palacios
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J. Greenwood
- School of Maths and Physics, Queen's University, Belfast BT7 1NN, UK
| | - I. Tavernelli
- IBM Research GmbH, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
| | - P. Decleva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste, 34127 Trieste, Italy
| | - M. Nisoli
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - F. Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
| | - F. Calegari
- Center for Free-Electron Laser Science (CFEL), DESY, 22607 Hamburg, Germany
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Department of Physics, Hamburg Universität, 20355 Hamburg, Germany
- e-mail:
| |
Collapse
|
49
|
Agostini F, Curchod BFE. Different flavors of nonadiabatic molecular dynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1417] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Federica Agostini
- Laboratoire de Chimie Physique UMR 8000 CNRS/University Paris‐Sud Orsay France
| | | |
Collapse
|
50
|
Abstract
A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 10 12 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.
Collapse
|