1
|
Trenerry MJ, Bailey GA. Ditopic ligand effects on solution structure and redox chemistry in discrete [Cu 12S 6] clusters with labile Cu-S bonds. NANOSCALE 2024; 16:16048-16057. [PMID: 39078277 DOI: 10.1039/d4nr02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Copper chalcogenide nanoclusters (Cu-S/Se/Te NCs) are a broad and diverse class of atomically precise nanomaterials that have historically been studied for potential applications in luminescent devices and sensors, and for their beautiful, mineral-like crystal structures. By the "cluster-surface" analogy, Cu-S/Se NCs are prime candidates for the development of nanoscale multimetallic catalysts with atomic precision. However, the majority of studies conducted to date have focused exclusively on their solid-state structures and physical properties, leaving open questions as to their solution stability, dynamics, and reactivity. Herein, we report the first detailed interrogation of solution structure, dynamics, electrochemistry, and decomposition of Cu-S NCs. Specifically, we report the detailed NMR spectroscopy, diffusion-ordered spectroscopy, MALDI mass spectrometry, electrochemical and stoichiometric redox reactivity studies, and DFT studies of a series of [Cu12S6] clusters with labile Cu-S bonds supported by monodentate phosphines and ditopic bis(diphenylphosphino)alkane ligands PPh2R (R = Et, -(CH2)5-, -(CH2)8-). We find that the ligand binding topology dictates the extent of speciation in solution, with complete stability being afforded by the longer octane chelate in dppo (1,8-bis(diphenylphosphino)octane) according to 1H and DOSY NMR and MALDI-MS studies. Furthermore, a combined electrochemical and computational investigation of [Cu12S6(dppo)4] reveals that the intact [Cu12S6] core undergoes a quasireversible one-electron oxidation at mild applied potentials ([Cu12S6]0/+: -0.50 V vs. Fc0/+). In contrast, prolonged air exposure or treatment with chemical oxidants results in cluster degradation with S atom extrusion as phosphine sulfide byproducts. This work adds critical new dimensions to the stabilization and study of atomically precise metal chalcogenide NCs with labile M-S/Se bonds, and demonstrates both progress and challenges in controlling the solution behaviour and redox chemistry of phosphine-supported copper chalcogenide nanoclusters.
Collapse
|
2
|
Rashmi, Sharma SK, Chaudhary V, Pala RGS, Sivakumar S. Rapid nucleation and optimal surface-ligand interaction stabilize wurtzite MnSe. Phys Chem Chem Phys 2024; 26:20837-20851. [PMID: 39044559 DOI: 10.1039/d4cp02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Non-native structures (NNS) differ in discrete translational symmetry from the bulk ground state native structure (NS). To explore the extent of deconvolution of various factors relevant to the stabilization of the wurtzite/NNS of MnSe via a heat-up method, we performed experiments using various ligands (oleic acid, oleylamine, octadecylamine, stearic acid, and octadecene), solvents (tetraethylene glycol and octadecene), and precursor salts (manganese chloride and manganese acetate). Experiments suggest that oleic acid in the presence of tetraethylene glycol and oleylamine in the presence of octadecene stabilize wurtzite/NNS. Further, density functional theory (DFT) computations explore the interaction between the functional groups in ligands and the most exposed surfaces of wurtzite/NNS and rocksalt/NS polymorphs. Computations suggest that the interactions between relevant surface facets with carboxylic acid and the double bond functional groups suppress the phase transformation from NNS to NS. In addition, the ionizability of the precursor salt also determines the rate of formation of the metal-ligand complex and the rate of nucleation. Consequently, the formation rate of the Mn-ligand complex is expected to be greater in the case of chloride salt than acetate salt because the chloride salt has higher ionizability in ethylene glycol. From the above, we conclude that the kinetics of the wurtzite/NNS to rocksalt/NS phase transformation depends mainly on two factors: (1) nucleation/growth kinetics which is controlled by the ionizability of the precursor salt, solvent, and stability of the metal-ligand complex, and (2) the activation energy barrier of the NNS to NS conversion which is controlled by surface energy minimization with the ligand.
Collapse
Affiliation(s)
- Rashmi
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Shilendra Kumar Sharma
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Vivek Chaudhary
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Raj Ganesh S Pala
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Sri Sivakumar
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Nanosciences, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Gangwal School and Mehta Family Center for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
3
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
4
|
Mukhopadhyay S, Naeem MS, Shiva Shanker G, Ghatak A, Kottaichamy AR, Shimoni R, Avram L, Liberman I, Balilty R, Ifraemov R, Rozenberg I, Shalom M, López N, Hod I. Local CO 2 reservoir layer promotes rapid and selective electrochemical CO 2 reduction. Nat Commun 2024; 15:3397. [PMID: 38649389 PMCID: PMC11035706 DOI: 10.1038/s41467-024-47498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at -0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.
Collapse
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Muhammad Saad Naeem
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
| | - G Shiva Shanker
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Alagar R Kottaichamy
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Avram
- Department of Chemical Research Support Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain.
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
5
|
Dattila F, Monteiro MCO, Koper MTM, López N. Reply to: On the role of metal cations in CO2 electrocatalytic reduction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhang Y, Li F, Dong J, Jia K, Sun T, Xu L. Recent advances in designing efficient electrocatalysts for electrochemical carbon dioxide reduction to formic acid/formate. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Lim JW, Dong WJ, Cho WS, Yoo CJ, Lee JL. CuS x Catalysts by Ag-Mediated Corrosion of Cu for Electrochemical Reduction of Sulfur-Containing CO 2 Gas to HCOOH. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Wook Lim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang790-784, Korea
| | - Wan Jae Dong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang790-784, Korea
| | - Won Seok Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang790-784, Korea
| | - Chul Jong Yoo
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang790-784, Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang790-784, Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang790-784, Korea
| |
Collapse
|
8
|
Creissen CE, Rivera de la Cruz JG, Karapinar D, Taverna D, Schreiber MW, Fontecave M. Molecular Inhibition for Selective CO
2
Conversion. Angew Chem Int Ed Engl 2022; 61:e202206279. [DOI: 10.1002/anie.202206279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Charles E. Creissen
- Laboratoire de Chimie des Processus Biologiques CNRS UMR 8229 Collège de France 75231 Paris France
| | | | - Dilan Karapinar
- Laboratoire de Chimie des Processus Biologiques CNRS UMR 8229 Collège de France 75231 Paris France
| | - Dario Taverna
- Institut de Minéralogie et de Physique des Milieux Condensés UMR 7590 CNRS Sorbonne Universités UPMC Univ Paris 06 4 place Jussieu 75005 Paris France
| | - Moritz W. Schreiber
- Total Research and Technology Refining and Chemicals Division CO2 Conversion Feluy 7181 Seneffe Belgium
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques CNRS UMR 8229 Collège de France 75231 Paris France
| |
Collapse
|
9
|
Creissen CE, Rivera de la Cruz JG, Karapinar D, Taverna D, schreiber MW, Fontecave M. Molecular Inhibition for Selective CO2 Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Dario Taverna
- Sorbonne University: Sorbonne Universite chemistry FRANCE
| | | | - Marc Fontecave
- College de France Chimie 11 place Marcellin Berthelot 75005 Paris FRANCE
| |
Collapse
|
10
|
Zhang Y, Lan J, Xie F, Peng M, Liu J, Chan TS, Tan Y. Aligned InS Nanorods for Efficient Electrocatalytic Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25257-25266. [PMID: 35609249 DOI: 10.1021/acsami.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical CO2 reduction technology can combine renewable energy sources with carbon capture and storage to convert CO2 into industrial chemicals. However, the catalytic activity under high current density and long-term electrocatalysis process may deteriorate due to agglomeration, catalytic polymerization, element dissolution, and phase change of active substances. Here, we report a scalable and facile method to fabricate aligned InS nanorods by chemical dealloying. The resulting aligned InS nanorods exhibit a remarkable CO2RR activity for selective formate production at a wide potential window, achieving over 90% faradic efficiencies from -0.5 to -1.0 V vs reversible hydrogen electrode (RHE) under gas diffusion cell, as well as continuously long-term operation without deterioration. In situ electrochemical Raman spectroscopy measurements reveal that the *OCHO* species (Bidentate adsorption) are the intermediates that occurred in the reaction of CO2 reduction to formate. Meanwhile, the presence of sulfur can accelerate the activation of H2O to react with CO2, promoting the formation of *OCHO* intermediates on the catalyst surface. Significantly, through additional coupling anodic methanol oxidation reaction (MOR), the unusual two-electrode electrolytic system allows highly energy-efficient and value-added formate manufacturing, thereby reducing energy consumption.
Collapse
Affiliation(s)
- Yanlong Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
11
|
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling Operando Electrochemical CO 2 Reduction. Chem Rev 2022; 122:11085-11130. [PMID: 35476402 DOI: 10.1021/acs.chemrev.1c00690] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.
Collapse
Affiliation(s)
- Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ranga Rohit Seemakurthi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Wen CF, Zhou M, Liu PF, Liu Y, Wu X, Mao F, Dai S, Xu B, Wang XL, Jiang Z, Hu P, Yang S, Wang HF, Yang HG. Highly Ethylene‐Selective Electrocatalytic CO
2
Reduction Enabled by Isolated Cu−S Motifs in Metal–Organic Framework Based Precatalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Zhou
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance School of Physics and Materials Science East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance School of Physics and Materials Science East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - P. Hu
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- School of Chemistry and Chemical Engineering The Queen's University of Belfast Belfast BT9 5AG UK
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
13
|
Kumar Ummireddi A, Kumar Sharma S, Ganesh S. Pala R. Influence of Tetraethylammonium Cation on Electrochemical CO2 Reduction over Cu, Ag, Ni, and Fe Surfaces. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Hu W, Li J, Ma L, Su W, Zhu Y, Li W, Chen Y, Zou L, Zou Z, Yang B, Wen K, Yang H. Electrochemical Reduction of CO 2 to HCOOH over Copper Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57462-57469. [PMID: 34843201 DOI: 10.1021/acsami.1c18902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although great progress has been made in the field of electrochemical CO2 reduction reaction (eCO2RR), inducing product selectivity is still difficult. We herein report that a thiocyanate ion (SCN-) switched the product selectivity of copper catalysts for eCO2RR in an H-cell. A cuprous thiocyanate-derived Cu catalyst was found to exhibit excellent HCOOH selectivity (faradaic efficiency = 70-88%) over a wide potential range (-0.66 to -0.95 V vs RHE). Furthermore, it was revealed that the formation of CO and C2H4 over commercial copper electrodes could be dramatically suppressed with the presence of SCN-, switching to HCOOH. Density functional theory calculations disclosed that SCN- made the formation of HCOO* easier than COOH* on Cu (211), facilitating the HCOOH generation. Our results provide a new insight into eCO2RR and will be helpful in the development of cheap electrocatalysts for specific utilization.
Collapse
Affiliation(s)
- Weibo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiejie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lushan Ma
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wanyu Su
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Department of Chemistry, Shanghai University, Shanghai 201210, China
| | - Yanping Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenhao Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Liangliang Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhiqing Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Wen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
15
|
Chen M, Wan S, Zhong L, Liu D, Yang H, Li C, Huang Z, Liu C, Chen J, Pan H, Li D, Li S, Yan Q, Liu B. Dynamic Restructuring of Cu‐Doped SnS
2
Nanoflowers for Highly Selective Electrochemical CO
2
Reduction to Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengxin Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
| | - Shipeng Wan
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
- School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing Jiangsu 210094 China
| | - Lixiang Zhong
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Daobin Liu
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
| | - Chengcheng Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhiqi Huang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
| | - Jian Chen
- Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China
| | - Hongge Pan
- Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China
| | - Dong‐Sheng Li
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China
| | - Shuzhou Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Bin Liu
- School of Chemical and Biomedical engineering Nanyang Technological University 62 Nanyang Avenue Singapore 637459 Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
16
|
Zhu S, Delmo EP, Li T, Qin X, Tian J, Zhang L, Shao M. Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO 2 Electrochemical Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005484. [PMID: 33899277 DOI: 10.1002/adma.202005484] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical CO2 reduction has been recognized as a promising solution in tackling energy- and environment-related challenges of human society. In the past few years, the rapid development of advanced electrocatalysts has significantly improved the efficiency of this reaction and accelerated the practical applications of this technology. Herein, representative catalyst structures and composition engineering strategies in regulating the CO2 reduction selectivity and activity toward various products including carbon monoxide, formate, methane, methanol, ethylene, and ethanol are summarized. An overview of in situ/operando characterizations and advanced computational modeling in deepening the understanding of the reaction mechanisms and accelerating catalyst design are also provided. To conclude, future challenges and opportunities in this research field are discussed.
Collapse
Affiliation(s)
- Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xueping Qin
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jian Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Lili Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Jiangsu Key Laboratory for Chemistry of Low-Dimension Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Wen CF, Zhou M, Liu PF, Liu Y, Wu X, Mao F, Dai S, Xu B, Wang XL, Jiang Z, Hu P, Yang S, Wang HF, Yang HG. Highly Ethylene-Selective Electrocatalytic CO 2 Reduction Enabled by Isolated Cu-S Motifs in Metal-Organic Framework Based Precatalysts. Angew Chem Int Ed Engl 2021; 61:e202111700. [PMID: 34687123 DOI: 10.1002/anie.202111700] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/11/2022]
Abstract
Copper-based materials are efficient electrocatalysts for the conversion of CO2 to C2+ products, and most these materials are reconstructed in situ to regenerate active species. It is a challenge to precisely design precatalysts to obtain active sites for the CO2 reduction reaction (CO2 RR). Herein, we develop a strategy based on local sulfur doping of a Cu-based metal-organic framework precatalyst, in which the stable Cu-S motif is dispersed in the framework of HKUST-1 (S-HKUST-1). The precatalyst exhibits a high ethylene selectivity in an H-type cell with a maximum faradaic efficiency (FE) of 60.0 %, and delivers a current density of 400 mA cm-2 with an ethylene FE up to 57.2 % in a flow cell. Operando X-ray absorption results demonstrate that Cuδ+ species stabilized by the Cu-S motif exist in S-HKUST-1 during CO2 RR. Density functional theory calculations indicate the partially oxidized Cuδ+ at the Cu/Cux Sy interface is favorable for coupling of the *CO intermediate due to the modest distance between coupling sites and optimized adsorption energy.
Collapse
Affiliation(s)
- Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - P Hu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
18
|
Chen M, Wan S, Zhong L, Liu D, Yang H, Li C, Huang Z, Liu C, Chen J, Pan H, Li DS, Li S, Yan Q, Liu B. Dynamic Restructuring of Cu-Doped SnS 2 Nanoflowers for Highly Selective Electrochemical CO 2 Reduction to Formate. Angew Chem Int Ed Engl 2021; 60:26233-26237. [PMID: 34586693 DOI: 10.1002/anie.202111905] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/17/2022]
Abstract
With ever-increasing energy consumption and continuous rise in atmospheric CO2 concentration, electrochemical reduction of CO2 into chemicals/fuels is becoming a promising yet challenging solution. Sn-based materials are identified as attractive electrocatalysts for the CO2 reduction reaction (CO2 RR) to formate but suffer from insufficient selectivity and activity, especially at large cathodic current densities. Herein, we demonstrate that Cu-doped SnS2 nanoflowers can undergo in situ dynamic restructuring to generate catalytically active S-doped Cu/Sn alloy for highly selective electrochemical CO2 RR to formate over a wide potential window. Theoretical thermodynamic analysis of reaction energetics indicates that the optimal electronic structure of the Sn active site can be regulated by both S-doping and Cu-alloying to favor formate formation, while the CO and H2 pathways will be suppressed. Our findings provide a rational strategy for electronic modulation of metal active site(s) for the design of active and selective electrocatalysts towards CO2 RR.
Collapse
Affiliation(s)
- Mengxin Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore
| | - Shipeng Wan
- School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore.,School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Daobin Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongbin Yang
- School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore
| | - Chengcheng Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiqi Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bin Liu
- School of Chemical and Biomedical engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore, 637459, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
19
|
Dong WJ, Navid IA, Xiao Y, Lim JW, Lee JL, Mi Z. CuS-Decorated GaN Nanowires on Silicon Photocathodes for Converting CO 2 Mixture Gas to HCOOH. J Am Chem Soc 2021; 143:10099-10107. [PMID: 34210119 DOI: 10.1021/jacs.1c02139] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hybrid materials consisting of semiconductors and cocatalysts have been widely used for photoelectrochemical (PEC) conversion of CO2 gas to value-added chemicals such as formic acid (HCOOH). To date, however, the rational design of catalytic architecture enabling the reduction of real CO2 gas to chemical has remained a grand challenge. Here, we report a unique photocathode consisting of CuS-decorated GaN nanowires (NWs) integrated on planar silicon (Si) for the conversion of H2S-containing CO2 mixture gas to HCOOH. It was discovered that H2S impurity in the modeled industrial CO2 gas could lead to the spontaneous transformation of Cu to CuS NPs, which resulted in significantly increased faradaic efficiency of HCOOH generation. The CuS/GaN/Si photocathode exhibited superior faradaic efficiency of HCOOH = 70.2% and partial current density = 7.07 mA/cm2 at -1.0 VRHE under AM1.5G 1 sun illumination. To our knowledge, this is the first demonstration that impurity mixed in the CO2 gas can enhance, rather than degrade, the performance of the PEC CO2 reduction reaction.
Collapse
Affiliation(s)
- Wan Jae Dong
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Jin Wook Lim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Saravanan A, Senthil kumar P, Vo DVN, Jeevanantham S, Bhuvaneswari V, Anantha Narayanan V, Yaashikaa P, Swetha S, Reshma B. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116515] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Chatzipanagiotou KR, Soekhoe V, Jourdin L, Buisman CJN, Bitter JH, Strik DPBTB. Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis. Chempluschem 2021; 86:763-777. [PMID: 33973736 DOI: 10.1002/cplu.202100119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Electrocatalytic metals and microorganisms can be combined for CO2 conversion in microbial electrosynthesis (MES). However, a systematic investigation on the nature of interactions between metals and MES is still lacking. To investigate this nature, we integrated a copper electrocatalyst, converting CO2 to formate, with microorganisms, converting CO2 to acetate. A co-catalytic (i. e. metabolic) relationship was evident, as up to 140 mg L-1 of formate was produced solely by copper oxide, while formate was also evidently produced by copper and consumed by microorganisms producing acetate. Due to non-metabolic interactions, current density decreased by over 4 times, though acetate yield increased by 3.3 times. Despite the antimicrobial role of copper, biofilm formation was possible on a pure copper surface. Overall, we show for the first time that a CO2 -reducing copper electrocatalyst can be combined with MES under biological conditions, resulting in metabolic and non-metabolic interactions.
Collapse
Affiliation(s)
- Konstantina-Roxani Chatzipanagiotou
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Virangni Soekhoe
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Ludovic Jourdin
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.,Currently at Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - J Harry Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| |
Collapse
|
22
|
Pablo‐García S, García‐Muelas R, Sabadell‐Rendón A, López N. Dimensionality reduction of complex reaction networks in heterogeneous catalysis: From l
inear‐scaling
relationships to statistical learning techniques. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sergio Pablo‐García
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Rodrigo García‐Muelas
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Albert Sabadell‐Rendón
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Núria López
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| |
Collapse
|
23
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
24
|
Cano I, Martínez-Prieto LM, van Leeuwen PWNM. Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02399j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supports, ligands and additives can promote heterolytic H2 splitting by a cooperative mechanism with metal nanoparticles.
Collapse
Affiliation(s)
- Israel Cano
- Applied Physics Department
- University of Cantabria
- 39005 Santander
- Spain
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- 46022 Valencia
- Spain
| | | |
Collapse
|
25
|
Iijima G, Yamaguchi H, Inomata T, Yoto H, Ito M, Masuda H. Methanethiol SAMs Induce Reconstruction and Formation of Cu+ on a Cu Catalyst under Electrochemical CO2 Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Go Iijima
- Advanced Research and Innovation Center, DENSO CORPORATION, 500-1 Minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan
| | - Hitoshi Yamaguchi
- Advanced Research and Innovation Center, DENSO CORPORATION, 500-1 Minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Tomohiko Inomata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan
| | - Hiroaki Yoto
- Advanced Research and Innovation Center, DENSO CORPORATION, 500-1 Minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Miho Ito
- Advanced Research and Innovation Center, DENSO CORPORATION, 500-1 Minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa,
Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
26
|
Yang H, Li Y, Zhang D, Li Z, Wang J, Yang D, Hao X, Guan G. Defect-engineering of tin oxide via (Cu, N) co-doping for electrocatalytic and photocatalytic CO2 reduction into formate. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Downes C, Libretto NJ, Harman-Ware AE, Happs RM, Ruddy DA, Baddour FG, Ferrell III JR, Habas SE, Schaidle JA. Electrocatalytic CO 2 Reduction over Cu 3P Nanoparticles Generated via a Molecular Precursor Route. ACS APPLIED ENERGY MATERIALS 2020; 3:10435-10446. [PMID: 38434678 PMCID: PMC10905424 DOI: 10.1021/acsaem.0c01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The design of nanoparticles (NPs) with tailored morphologies and finely tuned electronic and physical properties has become a key strategy for controlling selectivity and improving conversion efficiency in a variety of important electrocatalytic transformations. Transition metal phosphide NPs, in particular, have emerged as a versatile class of catalytic materials due to their multifunctional active sites and composition- and phase-dependent properties. Access to targeted transition metal phosphide NPs with controlled features is necessary to tune the catalytic activity. To this end, we have established a solution-synthesis route utilizing a molecular precursor containing M-P bonds to generate solid metal phosphide NPs with controlled stoichiometry and morphology. We expand here the application of molecular precursors in metal phosphide NP synthesis to include the preparation of phase-pure Cu3P NPs from the thermal decomposition of [Cu(H)(PPh3)]6. The mechanism of [Cu(H)(PPh3)]6 decomposition and subsequent formation of Cu3P was investigated through modification of the reaction parameters. Identification and optimization of the critical reaction parameters (i.e., time, temperature, and oleylamine concentration) enabled the synthesis of phase-pure 9-11 nm Cu3P NPs. To probe the multifunctionality of this materials system, Cu3P NPs were investigated as an electrocatalyst for CO2 reduction. At low overpotential (-0.30 V versus RHE) in 0.1 M KHCO3 electrolyte, Cu3P-modified carbon paper electrodes produced formate (HCOO-) at a maximum Faradaic efficiency of 8%.
Collapse
Affiliation(s)
- Courtney
A. Downes
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Nicole J. Libretto
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anne E. Harman-Ware
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Renee M. Happs
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Daniel A. Ruddy
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Frederick G. Baddour
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Jack R. Ferrell III
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Susan E. Habas
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Joshua A. Schaidle
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
28
|
Chen Y, Chen K, Fu J, Yamaguchi A, Li H, Pan H, Hu J, Miyauchi M, Liu M. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Lim JW, Dong WJ, Park JY, Hong DM, Lee JL. Spontaneously Formed CuS x Catalysts for Selective and Stable Electrochemical Reduction of Industrial CO 2 Gas to Formate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22891-22900. [PMID: 32392026 DOI: 10.1021/acsami.0c03606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrochemical CO2 reduction in aqueous media is a promising method for both the mitigation of climate changes and the generation of value-added fuels. Although many researchers have demonstrated selective and stable catalysts for electrochemical reduction of pure CO2 gas, the conversion of industrial CO2 gas has been limited. Here, we fabricated the copper sulfide catalysts (CuSx), which were spontaneously formed by dipping a Cu foil into a laboratory-prepared industrial CO2-purged 0.1 M KHCO3 electrolyte. Because industrial CO2 contains H2S gas, sulfur species dissolved in the electrolyte can easily react with the Cu foil. As the concentration of dissolved sulfur species increased, the reaction between the Cu foil and sulfur enhanced. As a result, the average size and surface density of CuSx nanoparticles (NPs) increased to 133.2 ± 33.1 nm and 86.2 ± 3.3%, respectively. Because of the larger amount of sulfur content and the enlarged electrochemical surface area of CuSx NPs, the Faradaic efficiency (FE) of formate was improved from 22.7 to 72.0% at -0.6 VRHE. Additionally, CuSx catalysts showed excellent stability in reducing industrial CO2 to formate. The change in FE was hardly observed even after long-term (72 h) operation. This study experimentally demonstrated that spontaneously formed CuSx catalysts are efficient and stable for reducing the industrial CO2 gas to formate.
Collapse
Affiliation(s)
- Jin Wook Lim
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Wan Jae Dong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jae Yong Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Dae Myung Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jong-Lam Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| |
Collapse
|
30
|
Ismail AM, Samu GF, Nguyën HC, Csapó E, López N, Janáky C. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction. ACS Catal 2020; 10:5681-5690. [PMID: 32455054 PMCID: PMC7236132 DOI: 10.1021/acscatal.0c00749] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Indexed: 12/16/2022]
Abstract
![]()
The
electrochemical conversion of carbon dioxide (CO2) to high-value
chemicals is an attractive approach to create an
artificial carbon cycle. Tuning the activity and product selectivity
while maintaining long-term stability, however, remains a significant
challenge. Here, we study a series of Au–Pb bimetallic electrocatalysts
with different Au/Pb interfaces, generating carbon monoxide (CO),
formic acid (HCOOH), and methane (CH4) as CO2 reduction products. The formation of CH4 is significant
because it has only been observed on very few Cu-free electrodes.
The maximum CH4 formation rate of 0.33 mA cm–2 was achieved when the most Au/Pb interfaces were present. In situ
Raman spectroelectrochemical studies confirmed the stability of the
Pb native substoichiometric oxide under the reduction conditions on
the Au–Pb catalyst, which seems to be a major contributor to
CH4 formation. Density functional theory simulations showed
that without Au, the reaction would get stuck on the COOH intermediate,
and without O, the reaction would not evolve further than the CHOH
intermediate. In addition, they confirmed that the Au/Pb bimetallic
interface (together with the subsurface oxygen in the model) possesses
a moderate binding strength for the key intermediates, which is indeed
necessary for the CH4 pathway. Overall, this study demonstrates how bimetallic nanoparticles
can be employed to overcome scaling relations in the CO2 reduction reaction.
Collapse
Affiliation(s)
- Ahmed Mohsen Ismail
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321 Alexandria, Egypt
| | - Gergely F. Samu
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Edit Csapó
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
- Department of Medical Chemistry, MTA-SZTE Biomimetic Systems Research Group, Dóm Square 8, Szeged H-6720, Hungary
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
| |
Collapse
|
31
|
Li J, Kuang Y, Meng Y, Tian X, Hung WH, Zhang X, Li A, Xu M, Zhou W, Ku CS, Chiang CY, Zhu G, Guo J, Sun X, Dai H. Electroreduction of CO2 to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency. J Am Chem Soc 2020; 142:7276-7282. [DOI: 10.1021/jacs.0c00122] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yun Kuang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongtao Meng
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xin Tian
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wei-Hsuan Hung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Xiao Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Aowen Li
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingquan Xu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wu Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Shun Ku
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Guanzhou Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
He W, Liberman I, Rozenberg I, Ifraemov R, Hod I. Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO
2
Reduction Electrocatalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenhui He
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
33
|
He W, Liberman I, Rozenberg I, Ifraemov R, Hod I. Electrochemically Driven Cation Exchange Enables the Rational Design of Active CO 2 Reduction Electrocatalysts. Angew Chem Int Ed Engl 2020; 59:8262-8269. [PMID: 32112586 DOI: 10.1002/anie.202000545] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 01/25/2023]
Abstract
Metal oxides or sulfides are considered to be one of the most promising CO2 reduction reaction (CO2 RR) precatalysts, owing to their electrochemical conversion in situ into highly active electrocatalytic species. However, further improvement of the performance requires new tools to gain fine control over the composition of the active species and its structural features [e.g., grain boundaries (GBs) and undercoordinated sites (USs)], directly from a predesigned template material. Herein, we describe a novel electrochemically driven cation exchange (ED-CE) method that enables the conversion of a predesigned CoS2 template into a CO2 RR catalyst, Cu2 S. By means of ED-CE, the final Cu2 S catalyst inherits the original 3 D morphology of CoS2 , and preserves its high density of GBs. Additionally, the catalyst's phase structure, composition, and density of USs were precisely tuned, thus enabling rational design of active CO2 RR sites. The obtained Cu2 S catalyst achieved a CO2 -to-formate Faradaic efficiency of over 87 % and a record high activity (among reported Cu-based catalysts). Hence, this study opens the way for utilization of ED-CE reactions to design advanced electrocatalysts.
Collapse
Affiliation(s)
- Wenhui He
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
34
|
Büchele S, Martín AJ, Mitchell S, Krumeich F, Collins SM, Xi S, Borgna A, Pérez-Ramírez J. Structure Sensitivity and Evolution of Nickel-Bearing Nitrogen-Doped Carbons in the Electrochemical Reduction of CO2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simon Büchele
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Antonio J. Martín
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Sean M. Collins
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS Cambridge, United Kingdom
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong
Island, 627833 Singapore
| | - Armando Borgna
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong
Island, 627833 Singapore
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
35
|
Wang X, Lv J, Zhang J, Wang XL, Xue C, Bian G, Li D, Wang Y, Wu T. Hierarchical heterostructure of SnO 2 confined on CuS nanosheets for efficient electrocatalytic CO 2 reduction. NANOSCALE 2020; 12:772-784. [PMID: 31830183 DOI: 10.1039/c9nr08726e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The direct electroreduction of CO2 to ratio-tunable syngas (CO + H2) is an appealing solution to provide important feedstocks for many industrial processes. However, low-cost, Earth-abundant yet efficient and stable electrocatalysts for composition-adjustable syngas have still not been realized for practical applications. Herein, new hierarchical 0D/2D heterostructures of SnO2 nanoparticles (NPs) confined on CuS nanosheets (NSs) were designed to enable CO2 electroreduction to a wide-range syngas (CO/H2: 0.11-3.86) with high faradaic efficiency (>85%), remarkable turnover frequency (96.12 h-1) and excellent durability (over 24 h). Detailed experimental characterization studies together with theoretical calculations manifest that the ascendant catalytic performance is not only attributed to the heterostructure of ultrasmall SnO2 NPs homogeneously confined on ultrathin CuS NSs, which endows the maximum exposure of active sites and faster charge transfer, but is also accounted by the strong interaction between well-defined SnO2 and CuS interfaces, which modulated reaction free-energies of reaction intermediates and hence improved the activity of CO2 electroreduction to highly ratio-tunable syngas. This work provides a better understanding and a new strategy for intermediate regulation by interface engineering of hereostructures for CO2 reduction and beyond.
Collapse
Affiliation(s)
- Xiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Galan-Mascaros JR. Photoelectrochemical solar fuels from carbon dioxide, water and sunlight. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02606a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is science, not magic. Solar fuels can be obtained from sunlight, water and carbon dioxide.
Collapse
Affiliation(s)
- Jose Ramon Galan-Mascaros
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology (BIST)
- Tarragona
- Spain
- ICREA
| |
Collapse
|
37
|
|
38
|
Legrand U, Boudreault R, Meunier J. Decoration of N-functionalized graphene nanoflakes with copper-based nanoparticles for high selectivity CO2 electroreduction towards formate. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Iijima G, Inomata T, Yamaguchi H, Ito M, Masuda H. Role of a Hydroxide Layer on Cu Electrodes in Electrochemical CO2 Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00896] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Go Iijima
- Advanced Research and Innovation Center, DENSO Corporation, 500-1 minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho,
Showa, Nagoya 466-8555, Japan
| | - Tomohiko Inomata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho,
Showa, Nagoya 466-8555, Japan
| | - Hitoshi Yamaguchi
- Advanced Research and Innovation Center, DENSO Corporation, 500-1 minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Miho Ito
- Advanced Research and Innovation Center, DENSO Corporation, 500-1 minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho,
Showa, Nagoya 466-8555, Japan
| |
Collapse
|
40
|
Pašti IA, Fako E, Dobrota AS, López N, Skorodumova NV, Mentus SV. Atomically Thin Metal Films on Foreign Substrates: From Lattice Mismatch to Electrocatalytic Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Igor A. Pašti
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH−Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
| | - Edvin Fako
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Ana S. Dobrota
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Natalia V. Skorodumova
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH−Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Slavko V. Mentus
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia
| |
Collapse
|
41
|
Promoting electrocatalytic CO 2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun 2019; 10:892. [PMID: 30792388 PMCID: PMC6385284 DOI: 10.1038/s41467-019-08805-x] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Electrocatalytic reduction of CO2 to fuels and chemicals is one of the most attractive routes for CO2 utilization. Current catalysts suffer from low faradaic efficiency of a CO2-reduction product at high current density (or reaction rate). Here, we report that a sulfur-doped indium catalyst exhibits high faradaic efficiency of formate (>85%) in a broad range of current density (25–100 mA cm−2) for electrocatalytic CO2 reduction in aqueous media. The formation rate of formate reaches 1449 μmol h−1 cm−2 with 93% faradaic efficiency, the highest value reported to date. Our studies suggest that sulfur accelerates CO2 reduction by a unique mechanism. Sulfur enhances the activation of water, forming hydrogen species that can readily react with CO2 to produce formate. The promoting effect of chalcogen modifiers can be extended to other metal catalysts. This work offers a simple and useful strategy for designing both active and selective electrocatalysts for CO2 reduction. CO2 conversion to liquid fuels provides an appealing means to remove the greenhouse gas, although it is challenging to find materials that are both active and selective. Here, authors show sulfur-doped indium to be a highly active and selective electrocatalyst that transforms CO2 into formate.
Collapse
|