1
|
Vishwajith NS, Sharma MK, Jain I, Vishnoi P. [NH 3(CH 2) 4NH 3]SnX 4 (X = Br, I): Dion-Jacobson type 2-D perovskites with short interlayer spacing. Dalton Trans 2024; 53:2465-2470. [PMID: 38258476 DOI: 10.1039/d3dt03772j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Two-dimensional tin(II) halide perovskites stand as an environmentally benign alternative to Pb(II) halide perovskites. However, they are often challenging to make due to the oxidation of Sn(II) ion to more stable Sn(IV) ion. Here we report hybrid tin bromide and iodide perovskites: (1,4-BDA)Sn(IV)Br6 and (1,4-BDA)Sn(II)X4 (where X = Br, I; 1,4-BDA = 1,4-diammoniumbutane) with 0D and 2D structures, respectively. Their synthesis, structural characterization and photophysical properties are reported. They show bandgaps in the 1.94-2.70 eV range.
Collapse
Affiliation(s)
- Nagale S Vishwajith
- New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| | - Mridul Krishna Sharma
- New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| | - Isha Jain
- New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| | - Pratap Vishnoi
- New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| |
Collapse
|
2
|
Yang S, Wen J, Wu Y, Zhu H, Liu A, Hu Y, Noh YY, Chu J, Li W. Unlocking the Potential of Tin-Based Perovskites: Properties, Progress, and Applications in New-Era Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304626. [PMID: 37641178 DOI: 10.1002/smll.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Electronics have greatly promoted the development of modern society and the exploration of new semiconducting materials with low cost and high mobility continues to attract interest in the advance of next-generation electronic devices. Among emerging semiconductors, the metal-halide perovskite, especially the nontoxic tin (Sn)-based candidates, has recently made breakthroughs in the field of diverse electronic devices due to its excellent charge transport properties and cost-effective large-area deposition capability at low temperatures. To enable a more comprehensive understanding of this emerging research field and promote the development of new-generation perovskite electronics, this review aims to provide an in-depth understanding with the discussion of unique physical properties of Sn-based perovskites and the summarization of recent research progress of Sn-based perovskite field-effect transistors (FETs) and diverse electronic devices. The unique character of negligible ion migration is also discussed, which is fundamentally different from the lead-based counterparts and provides a great prerequisite for device application. The following section highlights the potential broad applications of Sn-perovskite FETs as a competitive and feasible technology. Finally, an outlook and remaining challenges are given to advance the progression of Sn-based perovskite FETs, especially on the origin and solution of stability problems toward high-performance Sn-based perovskite electronics.
Collapse
Affiliation(s)
- Shuzhang Yang
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Jincheng Wen
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Yanqiu Wu
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Huihui Zhu
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ao Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Junhao Chu
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Wenwu Li
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Chowdhury TH, Reo Y, Yusoff ARBM, Noh Y. Sn-Based Perovskite Halides for Electronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203749. [PMID: 36257820 PMCID: PMC9685468 DOI: 10.1002/advs.202203749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Because of its less toxicity and electronic structure analogous to that of lead, tin halide perovskite (THP) is currently one of the most favorable candidates as an active layer for optoelectronic and electric devices such as solar cells, photodiodes, and field-effect transistors (FETs). Promising photovoltaics and FETs performances have been recently demonstrated because of their desirable electrical and optical properties. Nevertheless, THP's easy oxidation from Sn2+ to Sn4+ , easy formation of tin vacancy, uncontrollable film morphology and crystallinity, and interface instability severely impede its widespread application. This review paper aims to provide a basic understanding of THP as a semiconductor by highlighting the physical structure, energy band structure, electrical properties, and doping mechanisms. Additionally, the key chemical instability issues of THPs are discussed, which are identified as the potential bottleneck for further device development. Based on the understanding of the THPs properties, the key recent progress of THP-based solar cells and FETs is briefly discussed. To conclude, current challenges and perspective opportunities are highlighted.
Collapse
Affiliation(s)
- Towhid H. Chowdhury
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| | - Youjin Reo
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| | - Yong‐Young Noh
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| |
Collapse
|
4
|
Low-dimensional Sn-based perovskites: Evolution and future prospects of solar cells. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Abiram G, Thanihaichelvan M, Ravirajan P, Velauthapillai D. Review on Perovskite Semiconductor Field-Effect Transistors and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2396. [PMID: 35889621 PMCID: PMC9322712 DOI: 10.3390/nano12142396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022]
Abstract
Perovskite materials are considered as the most alluring successor to the conventional semiconductor materials to fabricate solar cells, light emitting diodes and electronic displays. However, the use of the perovskite semiconductors as a channel material in field effect transistors (FET) are much lower than expected due to the poor performance of the devices. Despite low attention, the perovskite FETs are used in widespread applications on account of their unique opto-electrical properties. This review focuses on the previous works on perovskite FETs which are summarized into tables based on their structures and electrical properties. Further, this review focuses on the applications of perovskite FETs in photodetectors, phototransistors, light emitting FETs and memory devices. Moreover, this review highlights the challenges faced by the perovskite FETs to meet the current standards along with the future directions of these FETs. Overall, the review summarizes all the available information on existing perovskite FET works and their applications reported so far.
Collapse
Affiliation(s)
- Gnanasampanthan Abiram
- Department of Physics, University of Jaffna, Jaffna 40 000, Sri Lanka; (G.A.); (P.R.)
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| | | | | | - Dhayalan Velauthapillai
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| |
Collapse
|
6
|
Fu D, Hou Z, He Y, Wu H, Wu S, Zhang Y, Niu G, Zhang XM. Formamidinium Perovskitizers and Aromatic Spacers Synergistically Building Bilayer Dion-Jacobson Perovskite Photoelectric Bulk Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11690-11698. [PMID: 35213126 DOI: 10.1021/acsami.2c00806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) multilayer Dion-Jacobson (DJ) phase organic inorganic hybrid perovskites (OIHPs) have attracted extensive research attention due to the high stability and excellent charge-transport properties in the optoelectronic field. However, the synthesis of 2D multilayer DJ OIHPs is still very challenging. Until now, only few multilayer DJ perovskites have been reported and most of them are based on volatile methylamine (MA) cations. Compared with MA-based OIHPs, the OIHPs constructed with formamidinium (FA) as perovskitizers not only improve the stability but also extend the light absorption range. Meanwhile, the introducing aromatic diamines as spacers could promote the electron-hole separation in such DJ hybrids. However, the DJ OIHP bulk single crystal constructed by using the advantages of FA as perovskitizers and aromatic diamines as spacers is still blank. Herein, we integrate the properties of organic cations and inorganic skeletons at a molecular-scale to construct a broadband-responsive 2D bilayer DJ perovskite (3AMPY)(FA)Pb2I7 [3AMPY = 3-(aminomethyl)pyridinium], which shows a fascinating detectivity from X-ray (5.23 × 104 μC Gyair-1 cm-2 at 200 V bias) and visible light (6 × 1012 jones at 637 nm) to the near-infrared region (2.6 × 109 jones at 780 nm). After an in-depth analysis of structure and optical properties, we found that the distortion degree of Pb-I-Pb bond angles between adjacent PbI6 octahedra plays a crucial role on optical properties; on the other hand, the interlayer spacer cations (3AMPY) and intralayer perovskitizers (FA) mutual participate in the contribution of the conduction band, making (3AMPY)(FA)Pb2I7 have a narrow optical band gap of 1.54 eV. Such a 2D perovskite material with a wide spectra response will be the preferred choice for photodetection under complex conditions.
Collapse
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
| | - Zuoming Hou
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
| | - Haodi Wu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shichao Wu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
| | - Yi Zhang
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Guo N, Li J, Yang S, Zhang J, Ni J, Cai H. Dimensional structure regulation of organic-inorganic hybrid perovskite and its application in thin film transistors. NANOTECHNOLOGY 2021; 32:395704. [PMID: 34153963 DOI: 10.1088/1361-6528/ac0d1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The effects of dimensional structure on the properties of lead iodide perovskite (C8H9NH3)2(CH3NH3)n-1PbnI3n+1were investigated. Furthermore, perovskite thin films with different dimensionalities were applied as the channel layer of thin film transistors (TFT). The electrical performance and stability of TFT devices were significantly improved through the regulation of dimensional microstructure of the perovskites. As a result, the quasi-2D (n = 6) perovskite TFTs achieved a field-effect mobility (μFE) of 3.90 cm2V-1s-1, with 104on-off current ratio and -1.85 V threshold voltage, which can be maintained well after 4 days without degradation at 30% ambient humidity. Moreover, the electrical performance of the TFTs based on Pure-2D and Quasi-2D perovskite also exhibited a good bias stability.
Collapse
Affiliation(s)
- Ning Guo
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Juan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Shang Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Jianjun Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Jian Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin, People's Republic of China
| | - Hongkun Cai
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Zibouche N, Islam MS. Structure-Electronic Property Relationships of 2D Ruddlesden-Popper Tin- and Lead-based Iodide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15328-15337. [PMID: 32159945 DOI: 10.1021/acsami.0c03061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) halide perovskites are receiving considerable attention for applications in photovoltaics, largely due to their versatile composition and superior environmental stability over three-dimensional (3D) perovskites, but show much lower power conversion efficiencies. Hence, further understanding of the structure-property relationships of these 2D materials is crucial for improving their photovoltaic performance. Here, we investigate by means of first-principles calculations the structural and electronic properties of 2D lead and tin Ruddlesden-Popper perovskites with general formula (BA)2An-1BnI3n+1, where BA is the butylammonium organic spacer, A is either methylammonium (MA) or formamidinium (FA) cations, B represents Sn or Pb atoms, and n is the number of layers (n = 1, 2, 3, and 4). We show that the band gap progressively increases as the number of layers decreases in both Sn- and Pb-based materials. Through substituting MA by FA cations, the band gap slightly opens in the Sn systems and narrows in the Pb systems. The electron and hole carriers show small effective masses, which are lower than those of the corresponding 3D perovskites, suggesting high carrier mobilities. The structural distortion associated with the orientation of the MA or FA cations in the inorganic layers is found to be the driving force for the induced Rashba spin-splitting bands in the systems with more than one layer. From band alignment diagrams, the transfer process of the charge carriers in the 2D perovskites is found to be from smaller to higher number of layers n for electrons and oppositely for holes, in excellent agreement with experimental studies. We also find that, when interfaced with 3D analogues, the 2D perovskites could function as hole transport materials.
Collapse
Affiliation(s)
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
9
|
Wang J, Fang C, Ma J, Wang S, Jin L, Li W, Li D. Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection. ACS NANO 2019; 13:9473-9481. [PMID: 31373789 DOI: 10.1021/acsnano.9b04437] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Low-dimensional lead halide perovskite materials are an emerging class of solution-processable semiconductors with promising potential applications in optoelectronic devices. Unfortunately, it is impossible to synthesize high-crystalline-quality low-dimensional perovskite single crystals without using chemotoxic solutions such as dimethylformamide/dimethyl sulfoxide or applying heating. Herein we report an economical and universal aqueous method to synthesize 2D layered and 1D chain perovskite single crystals at room temperature. The resultant chiral 2D perovskites can efficiently and selectively emit and detect circularly polarized light at room temperature. The as-synthesized 1D perovskite single crystals exhibit strong quantum confinement and enhanced self-trapped states that give efficient warm circularly polarized white-light emission. This aqueous synthetic method is general for other high-quality low-dimensional lead halide perovskite single crystals, and thus our findings would motivate more fundamental investigations on low-dimensional perovskites for potential optoelectronic applications.
Collapse
Affiliation(s)
- Jun Wang
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Chen Fang
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Jiaqi Ma
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Shuai Wang
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Long Jin
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Wancai Li
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Dehui Li
- School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , 430074 , China
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan , 430074 , China
| |
Collapse
|
10
|
Wang S, Luo Q, Fang WH, Long R. Interfacial Engineering Determines Band Alignment and Steers Charge Separation and Recombination at an Inorganic Perovskite Quantum Dot/WS 2 Junction: A Time Domain Ab Initio Study. J Phys Chem Lett 2019; 10:1234-1241. [PMID: 30818951 DOI: 10.1021/acs.jpclett.9b00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using time-domain density functional theory and nonadiabatic (NA) molecular dynamics, we demonstrate that interfacial interaction between WS2 and CsPbBr3 quantum dots (QDs) determines the band alignment, leading to a type-II and type-I heterojunction for the WS2 contacting with Cs/Br- and PbBr2-terminated facet QD, respectively. In the type-II heterojunction, electron transfer is faster than hole transfer arising due to the stronger NA coupling, higher density of electron acceptor states, and more and higher phonon modes involved. Both the electron and hole transfer times are subpicosecond, in agreement with experiments. The energy lost by the electron and hole is slower than charge transfer by several times, facilitating keeping charge carriers sufficiently "hot". Particularly, the electron-hole recombination occurs over 1 ns, favoring a long-lived charge-separated state. Detailed atomistic insights into the photoinduced charge and energy dynamics at the WS2/QD interface provide valuable guidelines for improving performance of perovskite/transition-metal dichalcogenide solar cells.
Collapse
Affiliation(s)
- Siyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Qiquan Luo
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei 230026 , People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| |
Collapse
|