1
|
Cerezo J, Gierschner J, Santoro F, Prampolini G. Explicit Modelling of Spectral Bandshapes by a Mixed Quantum-Classical Approach: Solvent Order and Temperature Effects in the Optical Spectra of Distyrylbenzene. Chemphyschem 2024; 25:e202400307. [PMID: 38728539 DOI: 10.1002/cphc.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
The absorption and emission spectral shapes of a flexible organic probe, the distyrylbenzene (DSB) dye, are simulated accounting for the effect of different environments of increasing complexity, ranging from a homogeneous, low-molecular- weight solvent, to a long-chain alkane, and, eventually, a channel-forming organic matrix. Each embedding is treated explicitly, adopting a mixed quantum-classical approach, the Adiabatic Molecular Dynamics - generalized vertical Hessian (Ad-MD|gVH) model, which allows a direct simulation of the environment-induced constraining effects on the vibronic spectral shapes. In such a theoretical framework, the stiff modes of the dye are described at a quantum level within the harmonic approximation, including Duschinsky mixing effects, while flexible degrees of freedom of the solute (e. g. torsions) and those of the solvent are treated classically by means of molecular dynamics sampling. Such a setup is shown to reproduce the distinct effects exerted by the different environments in varied thermodynamic conditions. Besides allowing for a first-principles rationale on the supramolecular mechanism leading to the experimental spectral features, this result represents the first successful application of the Ad-MD|gVH method to complex embeddings and supports its potential application to other heterogeneous environments, such as for instance, pigment-protein complexes or organic dyes adsorbed into metal-organic frameworks.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| |
Collapse
|
2
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
3
|
Franco LR, Toledo KCF, Matias TA, Araujo CM, Araki K, Coutinho K. Theoretical investigation of solvent and oxidation/deprotonation effects on the electronic structure of a mononuclear Ru-aqua-polypyridine complex in aqueous solution. Phys Chem Chem Phys 2023; 25:24475-24494. [PMID: 37655780 DOI: 10.1039/d3cp02154h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Mononuclear polypyridine ruthenium (Ru) complexes can catalyze various reactions, including water splitting, and can also serve as photosensitizers in solar cells. Despite recent progress in their synthesis, accurately modeling their physicochemical properties, particularly in solution, remains challenging. Herein, we conduct a theoretical investigation of the structural and electronic properties of a mononuclear Ru-aqua polypyridine complex in aqueous solution, considering five of its possible oxidation/protonation states species: [RuII(H2O)(py)(bpy)2]2+, [RuII(OH)(py)(bpy)2]+, [RuIII(H2O)(py)(bpy)2]3+, [RuIII(OH)(py)(bpy)2]2+ and [RuIV(O)(py)(bpy)2]2+, where py = pyridine and bpy = 2,2'-bipyridine. At first, we investigate the impact of proton-coupled and non-coupled electron transfer reactions on the geometry and electronic structure of the complexes in vacuum and in solution, using an implicit solvent model. Then, using a sequential multiscale approach that combines quantum mechanics and molecular mechanics (S-QM/MM), we examine the explicit solvent effects on the electronic excitations of the complexes, and compare them with the experimental results. The complexes were synthesized, and their absorption spectra measured in aqueous solution. To accurately describe the QM interactions between the metal center and the aqueous ligand in the MM simulations, we developed new force field parameters for the Ru atom. We analyze the solvent structure around the complexes and account for its explicit influence on the polarization and electronic excitations of the complexes. Notably, accounting for the explicit solvent polarization effects of the first solvation shells is essential to correctly describe the energy of the electronic transitions, and the explicit treatment of the hydrogen bonds at the QM level in the excitation calculations improves the accuracy of the description of the metal-to-ligand charge-transfer bands. Transition density matrix analysis is used to characterize all electronic transitions in the visible and ultraviolet ranges according to their charge-transfer (CT) character. This study elucidates the electronic structure of those ruthenium polypyridyl complexes in aqueous solution and underscores the importance of precisely describing solvent effects, which can be achieved employing the S-QM/MM method.
Collapse
Affiliation(s)
- Leandro Rezende Franco
- Instituto de Fisica, Universidade de Sao Paulo, Cidade Universitaria, 05508-090 Sao Paulo, SP, Brazil
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden.
| | | | - Tiago Araujo Matias
- Instituto de Quimica, Universidade de Sao Paulo, Av. Lineu Prestes 748, Butanta, 05508-000 Sao Paulo, SP, Brazil
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden.
- Materials Theory Division, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Koiti Araki
- Instituto de Quimica, Universidade de Sao Paulo, Av. Lineu Prestes 748, Butanta, 05508-000 Sao Paulo, SP, Brazil
| | - Kaline Coutinho
- Instituto de Fisica, Universidade de Sao Paulo, Cidade Universitaria, 05508-090 Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
5
|
Prampolini G, Campetella M, Ferretti A. Solvent effects on catechol's binding affinity: investigating the role of the intra-molecular hydrogen bond through a multi-level computational approach. Phys Chem Chem Phys 2023; 25:2523-2536. [PMID: 36602108 DOI: 10.1039/d2cp04500a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The subtle interplay between the inter-molecular interactions established by catechol with the surrounding solvent and the intra-molecular hydrogen bond (HB) characterizing its conformational dynamics is investigated through a multi-level computational approach. First, quantum mechanical (QM) calculations are employed to accurately characterize both large portions of the catechol's potential energy surface and the interaction energy with neighboring solvent molecules. The acquired information is thereafter exploited to develop a QM derived force-field (QMD-FF), in turn employed in molecular dynamics (MD) simulations based on classical mechanics. The reliability of the QMD-FF is further validated through a comparison with the outcomes of ab initio molecular dynamics, also purposely carried out in this work. In agreement with recent experimental findings, the MD results reveal remarkable differences in the conformational behavior of isolated and solvated catechol, as well as among the investigated solvents, namely water, acetonitrile or cyclohexane. The rather strong intramolecular HB, settled between the vicinal phenolic groups and maintained in the gas phase, loses stability when catechol is solvated in polar solvents, and is definitively lost in protic solvents such as water. In fact, the internal energy increase associated with the rotation of one hydroxyl group and the breaking of the internal HB is well compensated by the intermolecular HB network available when both phenolic hydrogens point toward the surrounding solvent. In such a case, catechol is stabilized in a chelating conformation, which in turn could be very effective in water removal and surface anchoring. Besides unraveling the role of the different contributors that govern catechol's conformational dynamics, the QMD-FF developed in this work could be in future employed to model larger catechol containing molecules, due to its accuracy to reliably model both internal flexibility and solvent effects, while exploiting MD computational benefits to include more complex players as for instance surfaces, ions or biomolecules.
Collapse
Affiliation(s)
- Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Marco Campetella
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2 SI, Siena, I-53100, Italy
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| |
Collapse
|
6
|
Greff da Silveira L, Livotto PR, Padula D, Vilhena JG, Prampolini G. Accurate Quantum-Mechanically Derived Force-Fields through a Fragment-Based Approach: Balancing Specificity and Transferability in the Prediction of Self-Assembly in Soft Matter. J Chem Theory Comput 2022; 18:6905-6919. [PMID: 36260420 DOI: 10.1021/acs.jctc.2c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The wide range of time/length scales covered by self-assembly in soft matter makes molecular dynamics (MD) the ideal candidate for simulating such a supramolecular phenomenon at an atomistic level. However, the reliability of MD outcomes heavily relies on the accuracy of the adopted force-field (FF). The spontaneous re-ordering in liquid crystalline materials stands as a clear example of such collective self-assembling processes, driven by a subtle and delicate balance between supramolecular interactions and single-molecule flexibility. General-purpose transferable FFs often dramatically fail to reproduce such complex phenomena, for example, the error on the transition temperatures being larger than 100 K. Conversely, quantum-mechanically derived force-fields (QMD-FFs), specifically tailored for the target system, were recently shown (J. Phys. Chem. Lett.2022,13, 243) to allow for the required accuracy as they not only well reproduced transition temperatures but also yielded a quantitative agreement with the experiment on a wealth of structural, dynamic, and thermodynamic properties. The main drawback of this strategy stands in the computational burden connected to the numerous quantum mechanical (QM) calculations usually required for a target-specific parameterization, which has undoubtedly hampered the routine application of QMD-FFs. In this work, we propose a fragment-based strategy to extend the applicability of QMD-FFs, in which the amount of QM calculations is significantly reduced, being a single-molecule-optimized geometry and its Hessian matrix the only QM information required. To validate this route, a new FF is assembled for a large mesogen, exploiting the parameters obtained for two smaller liquid crystalline molecules, in this and previous work. Lengthy MD simulations are carried out with the new transferred QMD-FF, observing again a spontaneous re-orientation in the correct range of temperatures, with good agreement with the available experimental measures. The present results strongly suggest that a partial transfer of QMD-FF parameters can be invoked without a significant loss of accuracy, thus paving the way to exploit the method's intrinsic predictive capabilities in the simulation of novel soft materials.
Collapse
Affiliation(s)
- Leandro Greff da Silveira
- Instituto de Química (Universidade Federal do Rio Grande do Sul), Avenida Bento Gonçalves 9500, CEP 91501-970Porto Alegre, Brazil
| | - Paolo Roberto Livotto
- Instituto de Química (Universidade Federal do Rio Grande do Sul), Avenida Bento Gonçalves 9500, CEP 91501-970Porto Alegre, Brazil
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia (Università di Siena), via Aldo Moro 2, 53100Siena, SI, Italy
| | - J G Vilhena
- Departamento de Física Teórica de la Materia Condensada (Universidad Autónoma de Madrid), E-28049Madrid, Spain.,Condensed Matter Physics Center (IFIMAC) (Universidad Autónoma de Madrid), E-28049Madrid, Spain
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124Pisa, Italy
| |
Collapse
|
7
|
Vandaele E, Mališ M, Luber S. The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase. J Chem Phys 2022; 156:130901. [PMID: 35395890 DOI: 10.1063/5.0083340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
8
|
Cebrían C, Pastore M, Monari A, Assfeld X, Gros PC, Haacke S. Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solar Energy Conversion: Current Status and Open Questions. Chemphyschem 2022; 23:e202100659. [DOI: 10.1002/cphc.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Stefan Haacke
- University of Strasbourg: Universite de Strasbourg IPCMS 23, rue du Loess 67034 Strasbourg FRANCE
| |
Collapse
|
9
|
alberto ME, Francés-Monerris A. A Multiscale Free Energy Method Reveals an Unprecedented Photoactivation of a Bimetallic Os(II)-Pt(II) Dual Anticancer Agent. Phys Chem Chem Phys 2022; 24:19584-19594. [DOI: 10.1039/d2cp02128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoreactivity of relatively large transition metal complexes is often limited to the description of the static potential energy surfaces of the involved electronic states. While useful to grasp some...
Collapse
|
10
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
11
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
12
|
Segalina A, Cerezo J, Prampolini G, Santoro F, Pastore M. Accounting for Vibronic Features through a Mixed Quantum-Classical Scheme: Structure, Dynamics, and Absorption Spectra of a Perylene Diimide Dye in Solution. J Chem Theory Comput 2020; 16:7061-7077. [DOI: 10.1021/acs.jctc.0c00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alekos Segalina
- Université de Lorraine & CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR) SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR) SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | | |
Collapse
|
13
|
El-Zohry AM, Agrawal S, De Angelis F, Pastore M, Zietz B. Critical Role of Protons for Emission Quenching of Indoline Dyes in Solution and on Semiconductor Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:21346-21356. [PMID: 33343786 PMCID: PMC7737328 DOI: 10.1021/acs.jpcc.0c07099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Indexed: 05/27/2023]
Abstract
By combining time-correlated single photon counting (TCSPC) measurements, density functional theory (DFT), and time-dependent DFT (TD-DFT) calculations, we herein investigate the role of protons, in solutions and on semiconductor surfaces, for the emission quenching of indoline dyes. We show that the rhodanine acceptor moieties, and in particular the carbonyl oxygens, undergo protonation, leading to nonradiative excited-state deactivation. The presence of the carboxylic acid anchoring group, close to the rhodanine moiety, further facilitates the emission quenching, by establishing stable H-bond complexes with carboxylic acid quenchers, with high association constants, in both ground and excited states. This complexation favors the proton transfer process, at a low quencher concentration, in two ways: bringing close to the rhodanine unit the quencher and assisting the proton release from the acid by a partial-concerted proton donation from the close-by carboxylic group to the deprotonated acid. Esterification of the carboxylic group, indeed, inhibits the ground-state complex formation with carboxylic acids and thus the quenching at a low quencher concentration. However, the rhodanine moiety in the ester form can still be the source of emission quenching through dynamic quenching mechanism with higher concentrations of protic solvents or carboxylic acids. Investigating this quenching process on mesoporous ZrO2, for solar cell applications, also reveals the sensitivity of the adsorbed excited rhodanine dyes toward adsorbed protons on surfaces. This has been confirmed by using an organic base to remove surface protons and utilizing cynao-acrylic dye as a reference dye. Our study highlights the impact of selecting such acceptor group in the structural design of organic dyes for solar cell applications and the overlooked role of protons to quench the excited state for such chemical structures.
Collapse
Affiliation(s)
- Ahmed M. El-Zohry
- Department
of Chemistry, Ångström Laboratories, Box 523, SE-75120 Uppsala, Sweden
- Department
of Physics—AlbaNova Universitetscentrum, Stockholm University, SE-10691 Stockholm, Sweden
| | - Saurabh Agrawal
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), via Elce
di Sotto 8, 06123 Perugia, Italy
| | - Filippo De Angelis
- Department
of Chemistry, Biology and Biotechnolgy, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), via Elce
di Sotto 8, 06123 Perugia, Italy
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mariachiara Pastore
- Laboratoire
de Physique et Chimie Théoriques (LPCT), Université de Lorraine & CNRS, F-54000 Nancy, France
| | - Burkhard Zietz
- Department
of Chemistry, Ångström Laboratories, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
14
|
Diez-Cabanes V, Prampolini G, Francés-Monerris A, Monari A, Pastore M. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex. Molecules 2020; 25:molecules25133084. [PMID: 32640764 PMCID: PMC7411876 DOI: 10.3390/molecules25133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and transient spectroscopy of transition metal complexes in solution. Following this idea, here we focus on the comparison between general-purpose transferable force-fields (FFs), directly available from existing databases, and specific quantum mechanical derived FFs (QMD-FFs), obtained in this work through the Joyce procedure. We have chosen a recently reported FeIII complex with nanosecond excited-state lifetime as a representative case. Our molecular dynamics (MD) simulations demonstrated that the QMD-FF nicely reproduces the structure and the dynamics of the complex and its chemical environment within the same precision as higher cost QM methods, whereas general-purpose FFs failed in this purpose. Although in this particular case the chemical environment plays a minor role on the photo physics of this system, these results highlight the potential of QMD-FFs to rationalize photophysical phenomena provided an accurate QM method to derive its parameters is chosen.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Antonio Francés-Monerris
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
15
|
Cerezo J, Aranda D, Avila Ferrer FJ, Prampolini G, Santoro F. Adiabatic-Molecular Dynamics Generalized Vertical Hessian Approach: A Mixed Quantum Classical Method To Compute Electronic Spectra of Flexible Molecules in the Condensed Phase. J Chem Theory Comput 2020; 16:1215-1231. [PMID: 31855424 DOI: 10.1021/acs.jctc.9b01009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a general mixed quantum classical method that couples classical molecular dynamics (MD) and vibronic models to compute the shape of electronic spectra of flexible molecules in the condensed phase without, in principle, any phenomenological broadening. It is based on a partition of the nuclear motions of the solute + solvent system in "soft" and "stiff" vibrational modes and an adiabatic hypothesis that assumes that stiff modes are much faster than soft ones. In this framework, the spectrum is rigorously expressed as a conformational integral of quantum vibronic spectra along the stiff coordinates only. Soft modes enter at the classical level through the conformational distribution that is sampled with classical MD runs. In each configuration, reduced-dimensionality quadratic Hamiltonians are built in the space of the stiff coordinates only, thanks to a generalization of the Vertical Hessian harmonic model and an iterative application of projectors in internal coordinates to remove soft modes. Quantum vibronic spectra, specific for each sampled configuration of the soft coordinates, are then computed at the desired temperature with efficient time-dependent techniques, and the global spectrum simply arises from their average. For consistency of the whole procedure, classical MD runs are performed with quantum-mechanically derived force fields, parameterized at the same level of theory selected for generating the quadratic Hamiltonians along the stiff coordinates. Application to N-methyl-6-oxyquinolinium betaine in water, dithiophene in ethanol, and cyanidine in water is presented to show the performance of the method.
Collapse
Affiliation(s)
| | - Daniel Aranda
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy.,Departamento de Química Física, Facultad de Ciencias, Andalucía Tech , Universidad de Málaga , E-29071 Málaga , Spain
| | - Francisco José Avila Ferrer
- Departamento de Química Física, Facultad de Ciencias, Andalucía Tech , Universidad de Málaga , E-29071 Málaga , Spain
| | - Giacomo Prampolini
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy
| |
Collapse
|