1
|
Cheng T, Xie Z, Wang T, Jiang Y, Guo X, Liu X, Wen Y, Yang H, Wu Y. Ultrasensitive SERS Detection of Five β-Blockers Achieved Using Chemometrics with a Two-Dimensional Substrate Formed by Large-Sized Ag@SiO 2 Nanoparticles. Anal Chem 2024; 96:16379-16386. [PMID: 39360675 DOI: 10.1021/acs.analchem.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We report on a surface-enhanced Raman scattering (SERS) platform for the detection of five beta-blockers (β-blockers): atenolol, esmolol, labetalol, sotalol, and propranolol. Key to this platform was a two-dimensional substrate formed by self-assembling large Ag@SiO2 nanoparticles (Ag@SiO2 NPs) on a silicon wafer. The close arrangement of these large nanoparticles on the surface generated a strong and uniform electromagnetic field, which enhanced SERS signal intensity for the detection of small amounts of the target molecules. The intensities of characteristic peaks of the five β-blocker drugs increased linearly with the increase of their concentrations in the range of 10-5 to 10-8 mol/L. The detection limits were 10-10 mol/L for propranolol, 10-9 mol/L for atenolol, labetalol, and sotalol, and 10-8 mol/L for esmolol. Determination of these five β-blocker drugs added to human urine samples, using a portable Raman spectroscopy instrument, showed quantitative recovery (93-101%). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of SERS spectral data improved the differentiation among these five β-blockers. This study highlights the potential of the developed SERS platform for rapid, on-site detection of illicit drugs and for antidoping screening.
Collapse
Affiliation(s)
- Tao Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ziyue Xie
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Tianrun Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Youden B, Yang D, Carrier A, Oakes K, Servos M, Jiang R, Zhang X. Speciation Analysis of Metals and Metalloids by Surface Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250346 DOI: 10.1021/acs.est.4c06906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The presence of metalloids and heavy metals in the environment is of critical concern due to their toxicological impacts. However, not all metallic species have the same risk level. Specifically, the physical, chemical, and isotopic speciation of the metal(loids) dictate their metabolism, toxicity, and environmental fate. As such, speciation analysis is critical for environmental monitoring and risk assessment. In the past two decades, surface-enhanced Raman spectroscopy (SERS) has seen significant developments regarding trace metal(loid) sensing due to its ultrahigh sensitivity, readiness for in situ real-time applications, and cost-effectiveness. However, the speciation of metal(loid)s has not been accounted for in the design and application of SERS sensors. In this Perspective, we examine the potential of SERS for metal(loid) speciation analysis and highlight the advantages, progress, opportunities, and challenges of this application.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
3
|
Xie Z, Sun L, Sajid M, Feng Y, Lv Z, Chen W. Rechargeable alkali metal-chlorine batteries: advances, challenges, and future perspectives. Chem Soc Rev 2024; 53:8424-8456. [PMID: 39007548 DOI: 10.1039/d4cs00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The emergence of Li-SOCl2 batteries in the 1970s as a high-energy-density battery system sparked considerable interest among researchers. However, limitations in the primary cell characteristics have restricted their potential for widespread adoption in today's sustainable society. Encouragingly, recent developments in alkali/alkaline-earth metal-Cl2 (AM-Cl2) batteries have shown impressive reversibility with high specific capacity and cycle performance, revitalizing the potential of SOCl2 batteries and becoming a promising technology surpassing current lithium-ion batteries. In this review, the emerging AM-Cl2 batteries are comprehensively summarized for the first time. The development history and advantages of Li-SOCl2 batteries are traced, followed by the critical working mechanisms for achieving high rechargeability. The design concepts of electrodes and electrolytes for AM-Cl2 batteries as well as key characterization techniques are also demonstrated. Furthermore, the current challenges and corresponding strategies, as well as future directions regarding the battery are systematically discussed. This review aims to deepen the understanding of the state-of-the-art AM-Cl2 battery technology and accelerate the development of practical AM-Cl2 batteries for next-generation high-energy storage systems.
Collapse
Affiliation(s)
- Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lidong Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuancheng Feng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenshan Lv
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
4
|
Chen Z, Sun Y, Zhang X, Shen Y, Khalifa SAM, Huang X, Shi J, Li Z, Zou X. Green and sustainable self-cleaning flexible SERS base: Utilized for cyclic-detection of residues on apple surface. Food Chem 2024; 441:138345. [PMID: 38185049 DOI: 10.1016/j.foodchem.2023.138345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Advances in flexible SERS substrates has made it possible to approach the ultimate goal of rapid in-situ monitoring of fruit and vegetable safety, but its vulnerability under laser ablation results in low utilization. In order to solve this problem, a 3D framework of TiO2-doped PVDF\PVP polymer was utilized to self-assemble gold-silver core-shell nanorods (Au@Ag NRs) to prepare a flexible SERS substrate with good physical stability and self-cleaning properties. This substrate showed excellent detection limit and recyclability after the detection of three pesticide residues in apple peel. The LOD of methyl-parathion (MP) was as low as 0.037 ng/cm2, with an RSD of 5.61 % for 5 cycle-detection. The recoveries of two additional pesticides thiram (TMTD) and chlorpyrifos (CPF) were 86.32 %-112.47 %. We hoped that this research will contribute to providing a recyclable and facile method for in-situ analysis of fruit and vegetable surface residues and functional manufacture of flexible SERS substrates.
Collapse
Affiliation(s)
- Zhiyang Chen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ye Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shaden A M Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran"s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Jafari M, Li Z, Song LF, Sagresti L, Brancato G, Merz KM. Thermodynamics of Metal-Acetate Interactions. J Phys Chem B 2024; 128:684-697. [PMID: 38226860 DOI: 10.1021/acs.jpcb.3c06567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal ions play crucial roles in protein- and ligand-mediated interactions. They not only act as catalysts to facilitate biological processes but are also important as protein structural elements. Accurately predicting metal ion interactions in computational studies has always been a challenge, and various methods have been suggested to improve these interactions. One such method is the 12-6-4 Lennard-Jones (LJ)-type nonbonded model. Using this model, it has been possible to successfully reproduce the experimental properties of metal ions in aqueous solution. The model includes induced dipole interactions typically ignored in the standard 12-6 LJ nonbonded model. In this we expand the applicability of this model to metal ion-carboxylate interactions. Using 12-6-4 parameters that reproduce the solvation free energies of the metal ions leads to an overestimation of metal ion-acetate interactions, thus, prompting us to fine-tune the model to specifically handle the latter. We also show that the standard 12-6 LJ model significantly falls short in reproducing the experimental binding free energy between acetate and 11 metal ions (Ni(II), Mg(II), Cu(II), Zn(II), Co(II), Cu(I), Fe(II), Mn(II), Cd(II), Ca(II), and Ag(I)). In this study, we describe optimized C4 parameters for the 12-6-4 LJ nonbonded model to be used with three widely employed water models (Transferable Intermolecular Potential with 3 Points (TIP3P), Simple Point Charge Extended (SPC/E), and Optimal Point Charge (OPC) water models). These parameters can accurately match the experimental binding free energy between 11 metal ions and acetate. These parameters can be applied to the study of metalloproteins and transition metal ion channels and transporters, as acetate serves as a representative of the negatively charged amino acid side chains from aspartate and glutamate.
Collapse
Affiliation(s)
- Majid Jafari
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lin Frank Song
- Biochemical and Biophysical Systems Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Luca Sagresti
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Kenneth M Merz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Shi W, Wang Z, Li F, Xu Y, Chen X. Multilayer adsorption of lead (Pb) and fulvic acid by Chlorella pyrenoidosa: Mechanism and impact of environmental factors. CHEMOSPHERE 2023; 329:138596. [PMID: 37023904 DOI: 10.1016/j.chemosphere.2023.138596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
When the multilayer adsorption of lead (Pb) and fulvic acid (FA) occurs on algal surface, the adsorption capacity of Pb on the algae will increase dramatically, thus increasing the environmental risk of Pb. However, the corresponding mechanism and the influence of environmental factors on the multilayer adsorption remain unclear. Here, microscopic observation methods and batch adsorption experiments were exactly designed to investigate the adsorption behavior of multilayer adsorption of Pb and FA on algal surface. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed that carboxyl groups were the major functional groups responsible for the binding of Pb ions in multilayer adsorption, and its number was more than that in monolayer adsorption. The solution pH, with an optimal pH of 7, was a critical factor influencing the occurrence of multilayer adsorption because it influences the protonation of the involved functional groups and determines the concentration of Pb2+ and Pb-FA in the solution. Increasing the temperature was beneficial for multilayer adsorption, with ΔH for Pb and FA varied from +17.12 to +47.68 kJ/mol and +16.19 to +57.74 kJ/mol, respectively. The multilayer adsorption of Pb and FA onto algal surface also followed the pseudo-second order kinetic model, but was extremely slower than the monolayer adsorption of Pb and FA by 30 times and 15 orders of magnitude, respectively. Therefore, the adsorption of Pb and FA in the ternary system had a different adsorption behavior than that in the binary system, which verified the presence of multilayer adsorption of Pb and FA and further support the multilayer adsorption mechanism. This work is important to provide data support for water ecological risk prevention and control of heavy metals.
Collapse
Affiliation(s)
- Wen Shi
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang University of Technology, College of Environment, Hangzhou, 310014, China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feili Li
- Zhejiang University of Technology, College of Environment, Hangzhou, 310014, China.
| | - Yuxin Xu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xijing Chen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
7
|
Tong L, Yu Z, Gao YJ, Li XC, Zheng JF, Shao Y, Wang YH, Zhou XS. Local cation-tuned reversible single-molecule switch in electric double layer. Nat Commun 2023; 14:3397. [PMID: 37296181 DOI: 10.1038/s41467-023-39206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The nature of molecule-electrode interface is critical for the integration of atomically precise molecules as functional components into circuits. Herein, we demonstrate that the electric field localized metal cations in outer Helmholtz plane can modulate interfacial Au-carboxyl contacts, realizing a reversible single-molecule switch. STM break junction and I-V measurements show the electrochemical gating of aliphatic and aromatic carboxylic acids have a conductance ON/OFF behavior in electrolyte solution containing metal cations (i.e., Na+, K+, Mg2+ and Ca2+), compared to almost no change in conductance without metal cations. In situ Raman spectra reveal strong molecular carboxyl-metal cation coordination at the negatively charged electrode surface, hindering the formation of molecular junctions for electron tunnelling. This work validates the critical role of localized cations in the electric double layer to regulate electron transport at the single-molecule level.
Collapse
Affiliation(s)
- Ling Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004, Jinhua, China
| | - Xiao-Chong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China.
| |
Collapse
|
8
|
Liu Z, Wei P, Qi Y, Huang X, Xie Y. High stretchable and self-healing nanocellulose-poly(acrylic acid) composite hydrogels for sustainable CO2 shutoff. Carbohydr Polym 2023; 311:120759. [PMID: 37028878 DOI: 10.1016/j.carbpol.2023.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
The injection of CO2 into oil reservoirs to enhance oil recovery (EOR) has become a widely accepted and effective technical method, which, however, remains subject to the gas channeling caused by the reservoir fractures. Herein, this work developed a novel plugging gel combining excellent mechanical properties, fatigue resistance, elastic and self-healing properties for the CO2 shutoff purpose. This gel consisting of grafted nanocellulose and polymer network was synthesized via a free-radical polymerization, and reinforced by using Fe3+ to cross-link the two networks. The as-prepared PAA-TOCNF-Fe3+ gel has a stress of 1.03 MPa and a high strain of 1491 %, and self-heals to its original 98 % in stress and 96 % in strain after rupture, respectively. The introduce of TOCNF/Fe3+ improves the excellent energy dissipation and self-healing via the synergy effect of dynamical coordination bonds and hydrogen bonds. Further, the PAA-TOCNF-Fe3+ gel is both flexible and high-strength in plugging the multi-round CO2 injection, during which the CO2 breakthrough pressure is above 9.9 MPa/m, the plugging efficiency exceeds 96 %, and the self-healing rate is larger than 90 %. Given that above, this gel shows a great potential to plug the high-pressure CO2 flow, which could offer a new method for CO2-EOR and carbon storage.
Collapse
|
9
|
Sugawa K, Hayakawa Y, Aida Y, Kajino Y, Tamada K. Two-dimensional assembled PVP-modified silver nanoprisms guided by butanol for surface-enhanced Raman scattering-based invisible printing platforms. NANOSCALE 2022; 14:9278-9285. [PMID: 35762405 DOI: 10.1039/d2nr01725c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study proposes a methodology for the fabrication of two-dimensional assembled colloidal nanocrystals based on the classical theory for the surface excess of a short-chain alcohol (butanol) in an aqueous mixture and Rayleigh-Bénard-Marangoni convection caused by temperature and/or surface tension gradients due to the volatilization of butanol at the air-water interface. When polyvinylpyrrolidone (PVP)-modified anisotropic silver nanoprisms dispersed in butanol were added into the water phase, the nanoprisms were guided to the air-water interface via adsorbed butanol together with free butanol and formed dense two-dimensional assemblies through the lateral attraction between nanoprisms as the adsorbed butanol was volatilized. The obtained dense film composed of silver nanoprisms exhibited surface-enhanced Raman scattering (SERS) activity, and in particular, the activity was largely enhanced by low-pressure plasma treatment. A SERS-based invisible printing platform that could only be recognized by x-y SERS mapping was demonstrated with the patterned nanoprism films.
Collapse
Affiliation(s)
- Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Yutaro Hayakawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Yukiko Aida
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | - Yuto Kajino
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | - Kaoru Tamada
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| |
Collapse
|
10
|
Zhang C, Li Y, Zhu A, Yang L, Du X, Hu Y, Yang X, Zhang F, Xie W. In situ monitoring of Suzuki-Miyaura cross-coupling reaction by using surface-enhanced Raman spectroscopy on a bifunctional Au-Pd nanocoronal film. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Acelas M, Castellanos NJ, Sierra CA. Stability and Performance Enhancement of an Oligo (phenylene vinylene) Photocatalyst via Surface Grafting onto TiO
2
for Visible‐Light Indigo Carmine Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mauricio Acelas
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - Nelson J. Castellanos
- Estado Sólido y Catálisis Ambiental (ESCA) Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - César A. Sierra
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| |
Collapse
|
12
|
Zhang T, Wen Y, Pan Z, Kuwahara Y, Mori K, Yamashita H, Zhao Y, Qian X. Overcoming Acidic H 2O 2/Fe(II/III) Redox-Induced Low H 2O 2 Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2617-2625. [PMID: 35098712 DOI: 10.1021/acs.est.1c06276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fenton reaction has important implications in biology- and environment-related remediation. Hydroxyl radicals (•OH) and hydroxide (OH-) were formed by a reaction between Fe(II) and hydrogen peroxide (H2O2). The acidic H2O2/Fe(II/III) redox-induced low H2O2 utilization efficiency is the bottleneck of Fenton reaction. Electron paramagnetic resonance, surface-enhanced Raman scattering, and density functional theory calculation indicate that the unpaired electrons in the defects of carbon quantum dots (CQDs) and the carboxylic groups at the edge have a synergistic effect on CQDs Fenton-like catalysis. This leads to a 33-fold higher H2O2 utilization efficiency in comparison with Fe(II)/H2O2 Fenton reaction, and the pseudo-first-order reaction rate constant (kobs) increases 38-fold that of Fe(III)/H2O2 under equivalent conditions. The replacement of acidic H2O2/Fe(II/III) redox with CQD-mediated Fe(II/III) redox improves the sluggish Fe(II) generation. Highly effective production of •OH in CQDs-Fe(III)/H2O2 dramatically decreases the selectivity of toxic intermediate benzoquinone. The inorganic ions and dissolved organic matter (DOM) in real groundwater show negligible effects on the CQDs Fenton-like catalysis process. This work presents a process with a higher efficiency of utilization of H2O2in situ chemical oxidation (ISCO) to remove persistent organic pollutants.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yichan Wen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Zhelun Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
13
|
Hsieh MY, Huang PJ. Magnetic nanoprobes for rapid detection of copper ion in aqueous environment by surface-enhanced Raman spectroscopy. RSC Adv 2021; 12:921-928. [PMID: 35425122 PMCID: PMC8978930 DOI: 10.1039/d1ra07482b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive copper ions in drinking water could cause serious health issues, such as gastrointestinal disorders and cirrhosis, and they are associated with Alzheimer's disease. ICP-OES, ICP-MS, and AAS are the most common methods of copper ion determination. However, the high cost of sample preparation and labor limit the possibility of on-site detection. In this study, rapid monitoring of copper ion through the SERS technique was evaluated. Fe3O4@SiO2–Ag–4MBA nanoparticles were investigated as SERS-activated magnetic nanoprobes. These magnetic nanoprobes underwent superparamagnetism for rapid aggregation in seconds and provided selectivity in sensing copper ions. According to the dose–response curve of the SERS spectra, the limit of detection (LOD) was 0.421 ppm and the dynamic range was from 0.5 to 20 ppm in the presence of other metal ions. Copper ion detection through SERS was highly correlated with ICP-OES (R2 = 0.95, slope = 0.974). These results demonstrate that magnetic nanoprobes may ultimately be used in a platform for on-site detection. Magnetic SERS probes can rapidly detect copper ions within high precision and accuracy.![]()
Collapse
Affiliation(s)
- Min-Ying Hsieh
- Institute of Environmental Engineering, National San Yat-sen University Kaohsiung 80424 Taiwan
| | - Po-Jung Huang
- Institute of Environmental Engineering, National San Yat-sen University Kaohsiung 80424 Taiwan
| |
Collapse
|
14
|
Yang K, Zhu K, Wang Y, Qian Z, Zhang Y, Yang Z, Wang Z, Wu L, Zong S, Cui Y. Ti 3C 2T x MXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout. ACS NANO 2021; 15:12996-13006. [PMID: 34328307 DOI: 10.1021/acsnano.1c01890] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas sensors lie at the heart of various fields ranging from medical to environmental sciences, and the demand of gas sensors is instantly expanding. However, in the face of complex gas samples, how to maintain high sensitivity while performing multiplex detection still puzzles the researchers. Here, by introducing Ti3C2Tx MXene into a microfluidic gas sensor with a three-dimensional (3D) transferable SERS substrate, a powerful gas sensor having both multiplex detecting ability and high sensitivity is demonstrated. The employ of MXene endows the sensor with a universal high adsorption efficiency for various gases while the generation of in situ gas vortices in the sophisticated nanomicro structure extends the molecule residence time in SERS-active area, both leading to the increased sensitivity. In the proof-of-concept experiment, a limit of detection (LOD) of 10-50 ppb was achieved for three typical volatile organic compounds (VOCs) according to the intrinsic SERS signals of gas molecules. Besides, the well-designed periodic 3D structure solves the general repeatability problem of SERS substrates. In addition, the detailed composition of gas mixture was revealed using classic least-square analysis (CLS) with an average accuracy of 90.6%. Further, a chromatic barcode was developed based on the results of CLS to read out the complex composition of samples visually.
Collapse
Affiliation(s)
- Kuo Yang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Kai Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Yuanzhe Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Ziting Qian
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Yizhi Zhang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Zhaoyan Yang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Zhao X, Campbell S, El-Khoury PZ, Jia Y, Wallace GQ, Claing A, Bazuin CG, Masson JF. Surface-Enhanced Raman Scattering Optophysiology Nanofibers for the Detection of Heavy Metals in Single Breast Cancer Cells. ACS Sens 2021; 6:1649-1662. [PMID: 33847111 DOI: 10.1021/acssensors.1c00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mercury(II) ions (Hg2+) and silver ions (Ag+) are two of the most hazardous pollutants causing serious damage to human health. Here, we constructed surface-enhanced Raman scattering (SERS)-active nanofibers covered with 4-mercaptopyridine (4-Mpy)-modified gold nanoparticles to detect Hg2+ and Ag+. Experimental evidence suggests that the observed spectral changes originate from the combined effect of (i) the coordination between the nitrogen on 4-Mpy and the metal ions and (ii) the 4-Mpy molecular orientation (from flatter to more perpendicular with respect to the metal surface). The relative intensity of a pair of characteristic Raman peaks (at ∼428 and ∼708 cm-1) was used to quantify the metal ion concentration, greatly increasing the reproducibility of the measurement compared to signal-on or signal-off detection based on a single SERS peak. The detection limit of this method for Hg2+ is lower than that for the Ag+ (5 vs 100 nM), which can be explained by the stronger interaction energy between Hg2+ and N compared to Ag+ and N, as demonstrated by density functional theory calculations. The Hg2+ and Ag+ ions can be masked by adding ethylenediaminetetraacetate and Cl-, respectively, to the Hg2+ and Ag+ samples. The good sensitivity, high reproducibility, and excellent selectivity of these nanosensors were also demonstrated. Furthermore, detection of Hg2+ in living breast cancer cells at the subcellular level is possible, thanks to the nanometric size of the herein described SERS nanosensors, allowing high spatial resolution and minimal cell damage.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Shirley Campbell
- Département de pharmacologie et physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Patrick Z. El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Yuechen Jia
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Gregory Q. Wallace
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Audrey Claing
- Département de pharmacologie et physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - C. Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
16
|
Phan HT, Geng S, Haes AJ. Microporous silica membranes promote plasmonic nanoparticle stability for SERS detection of uranyl. NANOSCALE 2020; 12:23700-23708. [PMID: 33226397 PMCID: PMC7725980 DOI: 10.1039/d0nr06296k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Silica membrane stabilized gold coated silver (Ag@Au) (i.e., internally etched silica coated Ag@Au (IE Ag@Au@SiO2)) nanoparticles promote surface-enhanced Raman scattering (SERS) activity and detection of uranium(vi) oxide (uranyl) under harsh solution phase conditions including at pH 3-7, with ionic strengths up to 150 mM, and temperatures up to 37 °C for at least 10 hours. These materials overcome traditional solution-phase plasmonic nanomaterial limitations including signal variability and/or degradation arising from nanoparticle aggregation, dissolution, and/or surface chemistry changes. Quantitative uranyl detection occurs via coordination to 3-mercaptopropionate (MPA), a result confirmed through changes in correlated SERS intensities for uranyl and COOH/COO- vibrational modes. Quantification is demonstrated down to 110 nM, a concentration below toxic levels. As pH varies from 3 to 7, the plasmonic properties of the nanoparticles are unchanged, and the uranyl signal depends on both the protonation state of MPA as well as uranyl solubility. High ionic strengths (up to 150 mM) and incubation at 37 °C for at least 10 hours do not impact the SERS activity of uranyl even though slight silica dissolution is observed during thermal treatment. All in all, microporous silica membranes effectively protect the nanoparticles against variations in solution conditions thus illustrating robust tunability for uranyl detection using SERS.
Collapse
Affiliation(s)
- Hoa T Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
17
|
Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S. Flexible, Reusable SERS Substrate Derived from ZIF-67 by Adjusting LUMO and HOMO and Its Application in Identification of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49452-49463. [PMID: 33079520 DOI: 10.1021/acsami.0c15754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventionally, surface-enhanced Raman spectroscopy (SERS)-active materials mainly include nanosized noble metals, semiconductors, or the complex of both, most of which are limited in practical applications because of their symbiotic materials, complex and difficult to control fabrication processes, and reuse and sampling challenges. To address these issues, novel SERS substrates have been developed in this study by anchoring zeolitic imidazolate framework-67 (ZIF-67) and derivatives of ZIF-67 to cotton fabric. The designed SERS substrates show extraordinary flexibility, an excellent enhancement factor, and reusable performance. By adjusting the lowest unoccupied molecular orbital and highest occupied molecular orbital of ZIF-67 through a doping process with different metal ions, the substrates exhibit a high enhancement factor of 6.07 × 106 and a low limit of detection of 10-8 M, as well as reusability resulting from photocatalysis. The enhancement process is studied based on charge transfer resonance, interband transition resonance, ground state charge transfer, and the light coupling effect. The results contribute to the approaches in designing SERS substrates by using ZIFs as unique SERS-active materials, and provide new insights into the development of novel SERS-active materials, along with promoting the use of SERS detection in the real world by improving the flexibility of substrates.
Collapse
Affiliation(s)
- Jiangtao Xu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Cheng Cheng
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Songmin Shang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Wei Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ping Zeng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Shouxiang Jiang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
18
|
Scarpitti BT, Morrison AM, Buyanova M, Schultz ZD. Comparison of 4-Mercaptobenzoic Acid Surface-Enhanced Raman Spectroscopy-Based Methods for pH Determination in Cells. APPLIED SPECTROSCOPY 2020; 74:1423-1432. [PMID: 32731744 PMCID: PMC7747936 DOI: 10.1177/0003702820950768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Measurements of cellular pH are used to infer information such as stage of cell cycle, presence of cancer and other diseases, as well as delivery or effect of a therapeutic drug. Surface-enhanced Raman spectroscopy (SERS) of nanoparticle-based pH probes have been used to interrogate intracellular pH, with the significant advantage of avoiding photobleaching compared to fluorescent indicators. 4-Mercaptobenzoic acid (MBA) is a commonly used pH-sensitive reporter molecule. Intracellular pH sensing by SERS requires analysis of the observed MBA spectrum and spectral interference can affect the pH determination. Background from common cell containers, imaging too few particles, signal-to-noise ratios, and degradation of reporter molecules are among the factors that may alter appropriate SERS-based pH determination in cells. Here, we have compared common methods of spectral analysis to see how different factors alter the calculated pH in Raman maps of MBA functionalized Au nanostars in SW620 cancer cells. The methods included in our comparison use the relative intensity of the ν(COO-) stretch, chemometric analysis of the ν8a mode, and analyzing the frequency shift of the ν8a mode. These methods show different sensitivity to some of these sources of error in live cell experiments. pH determination based on Raman frequency shift appears to give a more reliable pH determination, though in high signal-to-noise environments, intensity ratios may provide better sensitivity to small changes in pH for cellular imaging.
Collapse
|
19
|
Leong SX, Koh LK, Koh CSL, Phan-Quang GC, Lee HK, Ling XY. In Situ Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33421-33427. [PMID: 32578974 DOI: 10.1021/acsami.0c08053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Probing changes of noncovalent interactions is crucial to study the binding efficiencies and strengths of (bio)molecular complexes. While surface-enhanced Raman scattering (SERS) offers unique molecular fingerprints to examine such interactions in situ, current platforms are only able to recognize hydrogen bonds because of their reliance on manual spectral identification. Here, we differentiate multiple intermolecular interactions between two interacting species by synergizing plasmonic liquid marble-based SERS platforms, chemometrics, and density functional theory. We demonstrate that characteristic 3-mercaptobenzoic acid (probe) Raman signals have distinct peak shifts upon hydrogen bonding and ionic interactions with tert-butylamine, a model interacting species. Notably, we further quantify the contributions from each noncovalent interaction coexisting in different proportions. As a proof-of-concept, we detect and categorize biologically important nucleotide bases based on molecule-specific interactions. This will potentially be useful to study how subtle changes in biomolecular interactions affect their structural and binding properties.
Collapse
Affiliation(s)
- Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Li Keng Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Gia Chuong Phan-Quang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|