1
|
Khrebtov A, Tretyakova G, Fedorenko E, Mirochnik A. Aromatic Difluoroboron β-Ketoiminate Complexes: Effect of Substituents on Mechanofluorochromism and Polymorphic Behavior. J Fluoresc 2024:10.1007/s10895-024-03968-3. [PMID: 39392543 DOI: 10.1007/s10895-024-03968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Aromatic difluoroboron β-ketoiminate complexes (ketimBF2) are structural nitrogen-containing analogues of aromatic difluoroboron β-diketonates (diketBF2). Aggregation-induced emission (AIE) and polymorphic behavior allow ketimBF2 to exhibit mechanofluorochromic (MFC) properties. A detailed comparative study of the luminescence of a wide range of ketimBF2 with H- and CH3-substituents of nitrogen atom and diketBF2 with various substituents of the chelate ring (methyl, phenyl, toluoyl, anisoyl, biphenyl, naphthyl, anthracyl) in the solid state was carried out. As a result, regularities of the influence of substituents on the luminescent and MFC properties for 21 dyes have been established. Replacing one oxygen atom in diketBF2 with nitrogen atom in the chelate ring (H-substituted ketimBF2) changes the nature of the molecular stacking in crystals, which is manifested in different MFC properties. The introduction of a methyl group into the chelate ring (CH3-substituted ketimBF2) induces steric hindrance, which prevents the efficient formation of supramolecular structures and, consequently, leads to the shortest-wavelength monomeric emission in the solid state in comparison with oxygen and H-substituted nitrogen analogues. Methoxy derivative of H-substituted ketimBF2 exhibits non-reversible fluorochromic switching after annealing and can be used as temperature indicator to control unauthorized heating of temperature-sensitive substances during transportation and storage.
Collapse
Affiliation(s)
- Aleksandr Khrebtov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prosp. 100 Letiya Vladivostoka, 159, Vladivostok, Russian Federation
- Far Eastern Federal University, FEFU Campus 10 Ajax Bay Russky Island, Vladivostok, Russian Federation
| | - Galina Tretyakova
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prosp. 100 Letiya Vladivostoka, 159, Vladivostok, Russian Federation.
- Far Eastern Federal University, FEFU Campus 10 Ajax Bay Russky Island, Vladivostok, Russian Federation.
| | - Elena Fedorenko
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prosp. 100 Letiya Vladivostoka, 159, Vladivostok, Russian Federation
| | - Anatolii Mirochnik
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prosp. 100 Letiya Vladivostoka, 159, Vladivostok, Russian Federation
| |
Collapse
|
2
|
Potopnyk MA, Mech-Piskorz J, Angulo G, Ceborska M, Luboradzki R, Andresen E, Gajek A, Wisniewska A, Resch-Genger U. Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms. Chemistry 2024; 30:e202400004. [PMID: 38361470 DOI: 10.1002/chem.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i. e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement.
Collapse
Affiliation(s)
- Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Str. 5, 02000, Kyiv, Ukraine
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Magdalena Ceborska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elina Andresen
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| | - Arkadiusz Gajek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| |
Collapse
|
3
|
Mirochnik AG, Puzyrkov ZN, Fedorenko EV, Svistunova IV, Markova AA, Shibaeva AV, Burtsev ID, Kostyukov AA, Egorov AE, Kuzmin VA. Fluorescent boron difluoride curcuminoides as perspective materials for bio-visualization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122319. [PMID: 36630811 DOI: 10.1016/j.saa.2023.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Curcuminoids of boron difluoride, 1-aryl(hetaryl)-5-phenylpenta-2,4-dien-1-onates of boron difluoride, have been synthesized. A comparative study of the electronic structure, luminescent properties and their potential for applications in bio-imaging has been carried out. The influence of the electronic structure of α-substituents on the luminescence of compounds was studied by the methods of stationary and time-resolved luminescence spectroscopy and DFT modeling. The introduction of π-donor substituents leads to a noticeable bathochromic shift and an increase in the Stokes shift in the luminescence spectra. On going from σ-donor substituents in the phenyl ring to π-donor substituents, the luminescence quantum yield increases from 0.03 to 0.22. The maximum Stokes shift and high quantum yield of luminescence is exhibited by the complex with a stilbene substituent, which has the longest π-system and the maximum efficiency of charge transfer. Dyes are able to penetrate into the cells of the model cell line and accumulate, moreover, accumulation occurs mainly in the cytoplasm of cells. The compounds penetrate into the cells by 12 h of incubation without damaging it's structure and without causing rapid cell death. The submicromolar range of non-toxic concentrations during long-term incubation for a model cell line was determined, which is a characteristic of fluorescent imaging. Due to uniform distribution in the cytoplasm of cells dye with naphtyl substituent is promising for visualization of the cell cytoplasm. This leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent. The leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent.
Collapse
Affiliation(s)
- Anatolii G Mirochnik
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation
| | - Zakhar N Puzyrkov
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation; Far Eastern Federal University, 8, Sukhanova Str., Vladivostok 690950, Russian Federation
| | - Elena V Fedorenko
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation.
| | - Irina V Svistunova
- Far Eastern Federal University, 8, Sukhanova Str., Vladivostok 690950, Russian Federation
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ivan D Burtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anton E Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Xiao Y, Zheng K, Zhang N, Wang Y, Yan J, Wang D, Liu X. Facile Synthesis of Tetraphenylethene (TPE)-Based Fluorophores Derived by π-Extended Systems: Opposite Mechanofluorochromism, Anti-Counterfeiting and Bioimaging. Chemistry 2023; 29:e202203772. [PMID: 36746746 DOI: 10.1002/chem.202203772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Although remarkable progresses are achieved in the design and development of the mono-shift in photoluminescence for mechanofluorochromic materials, it is still a severe challenge to explore the opposite mechanofluorochromic materials with both blue- and red-shifted photoluminescence. Herein, two unprecedented 4,5-bis(TPE)-1H-imidazole fused pyridine or quinoline-based fluorophores X-1 and X-2 were designed and synthesized, and X-1 and X-2, exhibit completely opposite mechanofluorochromic behavior. Under UV lamp, the color of pristine X-1 changed from blue to green with reversible redshifted 27 nm in fluorescence emission spectra after ground, while the color of pristine X-2 changed from red to yellow with reversible blue-shifted 74 nm after ground. The detailed characterizations (including PXRD, SEM and DSC) confirmed that this opposite mechanofluorochromism was attributed to the transformation of order-crystalline and amorphous states. The crystal structure analysis and theoretical calculation further explain that opposite mechanofluorochromic behavior take into account different π-π stacking mode by induced π-extended systems. In addition, these TPE-based fluorophores (X-1 and X-2) exhibited excellent bio-compatibility and fluorescence properties for bio-imaging, writable data storage and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yufeng Xiao
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Yanlan Wang
- Department of chemistry and chemical engineering, 252059, Liaocheng, P.R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P.R. China
| |
Collapse
|
5
|
Belova AS, Khchoyan AG, Il’ina TM, Kononevich YN, Ionov DS, Sazhnikov VA, Khanin DA, Nikiforova GG, Vasil’ev VG, Muzafarov AM. Polydimethylsiloxanes with Grafted Dibenzoylmethanatoboron Difluoride: Synthesis and Properties. Polymers (Basel) 2022; 14:5075. [PMID: 36501470 PMCID: PMC9740564 DOI: 10.3390/polym14235075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
A method for the preparation of polydimethylsiloxanes with grafted methoxy-substituted dibenzoylmethanatoboron difluoride has been described. The structures of prepared polymers were confirmed using NMR, IR spectroscopy and gel permeation chromatography methods. Their thermal properties were investigated using thermal gravimetric analysis, differential scanning calorimetry and thermomechanical analysis. The prepared polymers had good thermal (Td5% up to 393 °C) and thermo-oxidative (Td5% = 413 °C) stability. The polymers started to transit in a viscous flow state at about 40 °C (for 3 a) and at about 20 °C (for 3 b). The viscoelastic characteristics of prepared polymers were determined in the sinusoidal oscillating vibrations mode. It was shown that the studied polymers at low frequencies at room temperature are viscoelastic fluids (G′ < G″). Increasing the frequency led to inversion (crossover) of dependences G′ and G″, which indicated the transition of polymers from viscous to elastomeric behavior characteristics, and the beginning of the formation of a physical network. Optical properties were studied using electron absorption, steady-state and time-resolved fluorescence spectroscopy. It was shown that intramolecular H-dimers exist in the ground state. The polymers studied had a bright fluorescence in the solution and in the solid state, consisting of bands of monomer and excimer emission. Thermally-activated delayed fluorescence was observed in the solution and the solid state. The prepared polymers possess intriguing properties that make them useful as optical materials, sensors or imaging agents.
Collapse
Affiliation(s)
- Anastasia S. Belova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Arevik G. Khchoyan
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Tatiana M. Il’ina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Technology of Inorganic Substances and High-Temperature Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry S. Ionov
- Photochemistry Center, FSRC “Crystallography and Photonics” of Russian Academy of Sciences, 1119421 Moscow, Russia
| | - Viacheslav A. Sazhnikov
- Photochemistry Center, FSRC “Crystallography and Photonics” of Russian Academy of Sciences, 1119421 Moscow, Russia
| | - Dmitry A. Khanin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Galina G. Nikiforova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Viktor G. Vasil’ev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- N.S. Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
6
|
Khrebtov AA, Fedorenko EV, Mirochnik AG. Laser activated room-temperature excimer delayed fluorescence of difluoroboron β-diketonate complexes in polymer matrix. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ito S. Mechanochromic luminescence of soft crystals: Recent systematic studies in controlling the molecular packing and mechanoresponsive properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Takemura K, Imato K, Ooyama Y. Mechanofluorochromism of (D-π-) 2A-type azine-based fluorescent dyes. RSC Adv 2022; 12:13797-13809. [PMID: 35558838 PMCID: PMC9089242 DOI: 10.1039/d2ra02431d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Bathochromic or hypsochromic shift-type mechanofluorochromism (b-MFC or h-MFC) was found for (D-π-)2A-type azine-based fluorescent dyes OUY-2, OUK-2, and OUJ-2 possessing intramolecular charge-transfer (ICT) characteristics from two (diphenylamino)carbazole-thiophene units as D (electron-donating group)-π (π-conjugated bridge) moieties to a pyridine, pyrazine, or triazine ring as A (electron-withdrawing group): grinding of the recrystallized dyes induced red or blue shifts of the fluorescent colors, that is, bathochromic or hypsochromic shifts of the fluorescence maximum wavelengths (λfl-solid max). The degrees of MFC evaluated by the absolute value of differences (Δλ fl-solid max) in λfl-solid max before and after grinding of the recrystallized dyes increased in the order of OUY-2 (+7 nm) < OUK-2 (-17 nm) < OUJ-2 (+45 nm), so that OUJ-2 exhibits obvious b-MFC, but OUK-2 exhibits h-MFC. X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) demonstrated that the recrystallized dyes were in the crystalline state but the ground dyes were in the amorphous state. When the ground solids were heated above their crystallization temperatures (T c), the colors and fluorescent colors recovered to the original ones before grinding or converted to other ones, that is, heating the ground solids in the amorphous state induced the recrystallization to recover the original microcrystals or to form other microcrystals due to polymorph transformation. However, (D-π-)2Ph-type fluorescent dye OTK-2 having a phenyl group as a substitute for the azine rings exhibited non-obvious MFC. Molecular orbital (MO) calculations indicated that the values of the dipole moments (μ g) in the ground state were 4.0 debye, 1.4 debye, 3.2 debye, and 2.9 debye for OTK-2, OUY-2, OUK-2, and OUJ-2, respectively. Consequently, on the basis of experimental results and MO calculations, we have demonstrated that the MFC of the (D-π-)2A-type azine-based fluorescent dyes is attributed to reversible switching between the crystalline state of the recrystallized dyes and the amorphous state of the ground dyes with changes in the intermolecular dipole-dipole and π-π interactions before and after grinding. Moreover, this work reveals that (D-π-)2A fluorescent dyes possessing dipole moments of ca. 3 debye as well as moderate or intense ICT characteristics make it possible to activate the MFC.
Collapse
Affiliation(s)
- Kosuke Takemura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| |
Collapse
|
9
|
Kundu S, Das S, Dutta A, Patra A. Three in One: Stimuli-Responsive Fluorescence, Solid-State Emission, and Dual-Organelle Imaging Using a Pyrene-Benzophenone Derivative. J Phys Chem B 2022; 126:691-701. [PMID: 35030009 DOI: 10.1021/acs.jpcb.1c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small organic luminogens, owing to their contrasting stimuli-responsive fluorescence in solution along with strong emission in aggregated and solidstates, have been employed in optoelectronic devices, sensors, and bioimaging. Pyrene derivatives usually exhibit strong fluorescence and concentration-dependent excimer/aggregate emission in solution. However, the impacts of microenvironments on the monomer and aggregate emission bands and their relative intensities in solution, solid, and supramolecular aggregates are intriguing. The present study delineates a trade-off between the monomer and aggregate emissions of a pyrene-benzophenone derivative (ABzPy) in solution, in the solid-state, and in nanoaggregates through a combined spectroscopic and microscopic approach. The impact of external stimuli (viscosity, pH) on the aggregate emission was demonstrated using steady-state and time-resolved spectroscopy, including fluorescence correlation spectroscopy and fluorescence anisotropy decay analysis. The aggregate formation was noticed at a higher concentration (>10 μM) in solution, at 77 K (5 μM), and in the solid-state due to the π-π stacking interactions (3.6 Å) between two ABzPy molecules. In contrast, no aggregate formation was observed in the viscous medium as well as in a micellar environment even at a higher concentration of ABzPy (50 μM). The crystal structure analysis further shed light on the intermolecular hydrogen-bonding-assisted solid-state emission, which was found to be highly sensitive toward external stimuli like pH and mechanical forces. The broad emission band comprising both monomer and aggregate in the aqueous dispersion of nanoaggregates was used for the specific cellular imaging of lysosomes and lipid droplets, respectively.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abir Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
10
|
Duarte F, Cuerva C, Fernández-Lodeiro C, Fernández-Lodeiro J, Jiménez R, Cano M, Lodeiro C. Polymer Micro and Nanoparticles Containing B(III) Compounds as Emissive Soft Materials for Cargo Encapsulation and Temperature-Dependent Applications. NANOMATERIALS 2021; 11:nano11123437. [PMID: 34947786 PMCID: PMC8708886 DOI: 10.3390/nano11123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Polymer nanoparticles doped with fluorescent molecules are widely applied for biological assays, local temperature measurements, and other bioimaging applications, overcoming several critical drawbacks, such as dye toxicity, increased water solubility, and allowing imaging of dyes/drug delivery in water. In this work, some polymethylmethacrylate (PMMA), polyvinylpyrrolidone (PVP) and poly(styrene-butadiene-styrene) (SBS) based micro and nanoparticles with an average size of about 200 nm and encapsulating B(III) compounds have been prepared via the reprecipitation method by using tetrahydrofuran as the oil phase and water. The compounds are highly hydrophobic, but their encapsulation into a polymer matrix allows obtaining stable colloidal dispersions in water (3.39 µM) that maintain the photophysical behavior of these dyes. Although thermally activated non-radiative processes occur by increasing temperature from 25 to 80 °C, the colloidal suspension of the B(III) particles continues to emit greenish light (λ = 509 nm) at high temperatures. When samples are cooling back to room temperature, the emission is restored, being reversible. A probe of concept drug delivery study was conducted using coumarin 6 as a prototype of a hydrophobic drug.
Collapse
Affiliation(s)
- Frederico Duarte
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
| | - Cristián Cuerva
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
- MatMoPol Research Group, Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (R.J.); (M.C.)
- Correspondence: (C.C.); (C.L.)
| | - Carlos Fernández-Lodeiro
- CINBIO, Departamento de Química Física, Campus Universitario Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain;
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Javier Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Raquel Jiménez
- MatMoPol Research Group, Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (R.J.); (M.C.)
| | - Mercedes Cano
- MatMoPol Research Group, Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (R.J.); (M.C.)
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
- Correspondence: (C.C.); (C.L.)
| |
Collapse
|
11
|
Polacchi L, Brosseau A, Guillot R, Métivier R, Allain C. Enhanced mechano-responsive fluorescence in polydiacetylene thin films through functionalization with tetrazine dyes: photopolymerization, energy transfer and AFM coupled to fluorescence microscopy studies. Phys Chem Chem Phys 2021; 23:25188-25199. [PMID: 34730138 DOI: 10.1039/d1cp03458h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of mechano-responsive fluorescent materials is essential for the design and construction of reliable and versatile sensors for mechanical stress. Herein, novel energy transfer-based systems with tetrazine fluorophore and a polydiacetylene (PDA) backbone are synthesized and studied comparatively to a simple polydiacetylene in the form of thin films. Their photopolymerization properties, energy transfer efficiencies and fluorescent response to nanoscale mechanical stimulation are assessed. It is pointed out that the self-assembling group on the PDA chain influences the geometrical arrangement of the chains and the film morphology and, as a consequence, the efficiency and kinetics of polymerization and the energy transfer efficiency. Moreover, we show that the strategy of introducing tetrazine fluorophore provides a new effective route of improving force detectability by fluorescence using polydiacetylenes as mechano-responsive units.
Collapse
Affiliation(s)
- Luca Polacchi
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France.
| | - Arnaud Brosseau
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France.
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France.
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Perruchas S. Molecular copper iodide clusters: a distinguishing family of mechanochromic luminescent compounds. Dalton Trans 2021; 50:12031-12044. [PMID: 34378598 DOI: 10.1039/d1dt01827b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanochromic luminescent materials displaying switchable luminescence properties in response to external mechanical force are currently attracting wide interest because of their multiple potential applications. In the growing number of mechanochromic luminescent compounds, mechanochromic complexes based on copper present appealing features with a large variety of mechanochromic properties and economical advantages over other metals. Among Cu-based compounds, molecular copper iodide clusters of cubane geometry with formula [Cu4I4L4] (L = organic ligand) stand out. Indeed, they can exhibit multiple luminescent stimuli-responsive properties, being particularly suitable for the development of multifunctional photoactive systems. This perspective describes the survey of these mechanochromic luminescent cubane copper iodide clusters. Based on our investigations, their mechanochromic luminescence properties are presented along with the study of the underlying mechanism. Establishment of structure-property relationships supported by various characterization techniques and associated with theoretical investigations permits gaining insights into the mechanism at play. Studies of other researcher groups are also described and illustrate the interest shown by these mechanochromic compounds. Mechanically responsive films are reported, demonstrating their potential use in a range of applications of such copper-based stimuli-responsive materials. Current challenges faced by the development of technological applications are finally outlined.
Collapse
Affiliation(s)
- Sandrine Perruchas
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
| |
Collapse
|
13
|
Yamashita M, Nagai S, Ito S, Tachikawa T. In Situ Exploration of Stimulus-Induced Emission Changes in Mechanochromic Dyes. J Phys Chem Lett 2021; 12:7826-7831. [PMID: 34378940 DOI: 10.1021/acs.jpclett.1c02015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of in situ analysis techniques for visualizing and linking macro- and nanoscopic features of external stimulus-responsive materials is crucial for their rational design and applications. Herein, we investigate the mechanical stress-induced emission changes in electron donor-acceptor type organic dye molecules in solid states through in situ single-particle fluorescence spectroscopy combined with macroscopic and nanoscopic stimulation systems. The change in emission color from green to yellow was attributed to repeated rubbing or scratching of the crystal surface, and not to simple cutting. This change was due to partial amorphization, which changed the intra- and intermolecular charge-transfer interactions of stacked molecules near the surface. We believe that this study will facilitate the efficient design of mechano-responsive materials with finely controlled and responsive properties.
Collapse
Affiliation(s)
- Maho Yamashita
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Sayaka Nagai
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Suguru Ito
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takashi Tachikawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
14
|
Potopnyk MA, Volyniuk D, Luboradzki R, Lazauskas A, Grazulevicius JV. Aggregation‐Induced Emission‐Active Carbazolyl‐Modified Benzo[4,5]thiazolo[3,2‐
c
]oxadiazaborinines as Mechanochromic Fluorescent Materials. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mykhaylo A. Potopnyk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Department of Polymer Chemistry and Technology Kaunas University of Technology Barsausko 59 LT-51423 Kaunas Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology Kaunas University of Technology Barsausko 59 LT-51423 Kaunas Lithuania
| | - Roman Luboradzki
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Algirdas Lazauskas
- Institute of Material Science Kaunas University of Technology Barsausko 59 51423 Kaunas Lithuania
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology Kaunas University of Technology Barsausko 59 LT-51423 Kaunas Lithuania
| |
Collapse
|
15
|
Synthesis, characterization, mechanochromism of new AIE-active organoboron compounds derived from salicylaldehyde-based acylhydrazone. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Calupitan JP, Poirot A, Wang J, Delavaux-Nicot B, Wolff M, Jaworska M, Métivier R, Benoist E, Allain C, Fery-Forgues S. Mechanical Modulation of the Solid-State Luminescence of Tricarbonyl Rhenium(I) Complexes through the Interplay between Two Triplet Excited States. Chemistry 2021; 27:4191-4196. [PMID: 33300648 DOI: 10.1002/chem.202005245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Mechanoresponsive luminescence (MRL) materials promise smart devices for sensing, optoelectronics and security. We present here the first report on the MRL activity of two ReI complexes, opening up new opportunities for applications in these fields. Both complexes exhibit marked solid-state luminescence enhancement (SLE). Furthermore, the pristine microcrystalline powders emit in the yellow-green region, and grinding led to an amorphous phase with concomitant emission redshift and shrinking of the photoluminescence (PL) quantum yields and lifetimes. Quantum chemical calculations revealed the existence of two low-lying triplet excited states with very similar energy levels, that is, 3 IL and 3 MLCT, having, respectively, almost pure intraligand (IL) and metal-to-ligand charge-transfer (MLCT) character. Transition between these states could be promoted by rotation around the pyridyltriazole-phenylbenzoxazole bond. In the microcrystals, in which rotations are hindered, the 3 IL state induces the prominent PL emission at short wavelengths. Upon grinding, rotation is facilitated and the transition to the 3 MLCT state results in a larger proportion of long-wavelength PL. FTIR and variable-temperature PL spectroscopy showed that the opening of the vibrational modes favours non-radiative deactivation of the triplet states in the amorphous phase. In solution, PL only arises from the 3 MLCT state. The same mechanism accounts for the spectroscopic differences observed when passing from crystals to amorphous powders, and then to solutions, thereby clarifying the link between SLE and MRL for these complexes.
Collapse
Affiliation(s)
- Jan Patrick Calupitan
- Laboratoire PPSM, CNRS UMR 8531, ENS Paris-Saclay, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Alexandre Poirot
- SPCMIB, CNRS UMR5068, Université Toulouse III-Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Jinhui Wang
- SPCMIB, CNRS UMR5068, Université Toulouse III-Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France.,Institute of Drug Discovery Technology, Ningbo University, No.818 Fenghua Road, Jiangbei District, Ningbo, 315211, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, No.2279 Lishui Road, Nanshan District, Shenzhen, Guangdong, 518055, P.R. China
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Mariusz Wolff
- Institut für Chemische Katalyse, Universität Wien, Währinger Strasse 38, 1090, Wien, Austria
| | - Maria Jaworska
- Institute of Chemistry, University of Silesia in Katowice, 9th Szkolna St., 40-006, Katowice, Poland
| | - Rémi Métivier
- Laboratoire PPSM, CNRS UMR 8531, ENS Paris-Saclay, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Eric Benoist
- SPCMIB, CNRS UMR5068, Université Toulouse III-Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Clémence Allain
- Laboratoire PPSM, CNRS UMR 8531, ENS Paris-Saclay, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR5068, Université Toulouse III-Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| |
Collapse
|
17
|
Nakamura T, Vacha M. Mechanically Induced Conformation Change, Fluorescence Modulation, and Mechanically Assisted Photodegradation in Single Nanoparticles of the Conjugated Polymer Poly(9,9-dioctylfluorene). J Phys Chem Lett 2020; 11:3103-3110. [PMID: 32239940 DOI: 10.1021/acs.jpclett.0c00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We explored the possibility of nanoscale mechanical manipulation and control of photophysical properties of conjugated polymer nanoparticles. We carried out a simultaneous atomic force microscopy (AFM) and fluorescence microspectroscopy study on single nanoparticles of the conjugated polymer poly(9,9-dioctylfluorene). The nanoparticles are prepared by a reprecipitation method and have an average height of 27 nm, and their emission is dominated by the well-ordered β-phase conformation. Fluorescence polarization anisotropy and numerical simulations show that each particle contains at least three partly oriented straight β-phase segments surrounded by amorphous glass-phase polyfluorene chains. In the simultaneous experiments, an AFM tip was used to apply external force on a single nanoparticle, and a confocal fluorescence microscope was used to monitor in real time the resulting changes in the fluorescence intensity and spectra. In a nitrogen atmosphere, weak to moderate force of up to 1 μN acts mainly on the glass-phase polyfluorene chains by forming quenchers that cause an efficient and reversible fluorescence decrease, whereas the β-phase segments stay unaffected. A higher force of 5 μN, on the contrary, breaks the β-phase segments into multiple glass-phase segments, causing a net increase in fluorescence intensity. Under ambient air conditions, even a moderate force of 1 μN strongly accelerates the degradation of the nanoparticle by preferably photobleaching the β-phase and partially transforming it into the glass phase. These results will contribute to the fundamental knowledge on the relationship between photophysical and structural properties of polyfluorene nanostructures, and will also provide important feedback for potential applications of such nanostructures in flexible optoelectronic devices.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
18
|
Polacchi L, Brosseau A, Métivier R, Allain C. Mechano-responsive fluorescent polydiacetylene-based materials: towards quantification of shearing stress at the nanoscale. Chem Commun (Camb) 2019; 55:14566-14569. [DOI: 10.1039/c9cc05797h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An AFM-induced OFF to ON fluorescence switch: a polydiacetylene derivative shows nanoscale mechano-responsive fluorescence, the intensity of which increases with the applied force.
Collapse
Affiliation(s)
- Luca Polacchi
- PPSM, ENS Cachan
- CNRS
- Université Paris-Saclay
- 94235 Cachan
- France
| | - Arnaud Brosseau
- PPSM, ENS Cachan
- CNRS
- Université Paris-Saclay
- 94235 Cachan
- France
| | - Rémi Métivier
- PPSM, ENS Cachan
- CNRS
- Université Paris-Saclay
- 94235 Cachan
- France
| | - Clémence Allain
- PPSM, ENS Cachan
- CNRS
- Université Paris-Saclay
- 94235 Cachan
- France
| |
Collapse
|