1
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. Conformational dynamics of complement protease C1r inhibitor proteins from Lyme disease- and relapsing fever-causing spirochetes. J Biol Chem 2023; 299:104972. [PMID: 37380082 PMCID: PMC10413161 DOI: 10.1016/j.jbc.2023.104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Charles E Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
2
|
Puelles JS, Ghorbani M, Tuck B, Machuca LL, Ackland ML, Chen F, Somers AE, Forsyth M. Effect of cetrimonium carrier micelles on bacterial membranes and extracellular DNA, an in silico study. Sci Rep 2023; 13:8041. [PMID: 37198168 DOI: 10.1038/s41598-023-32475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Microorganisms do not live as dispersed single cells but rather they form aggregates with extracellular polymeric substances at interfaces. Biofilms are considered efficient life forms because they shield bacteria from biocides and collect dilute nutrients. This is a big concern in industry since the microorganisms can colonize a wide range of surfaces, accelerating material deterioration, colonizing medical devices, contaminating ultrapure drinking water, increasing energy costs and creating focus of infection. Conventional biocides that target a specific component of the bacteria are not effective in the presence of biofilms. Efficient biofilm inhibitors are based on a multitarget approach interacting with the bacteria and the biofilm matrix. Their rationale design requires a thorough understanding of inhibitory mechanisms that are still largely lacking today. Herein we uncover via molecular modelling the inhibition mechanism of cetrimonium 4-OH cinnamate (CTA-4OHcinn). Simulations show that CTA-4OH micelles can disrupt symmetric and asymmetric bilayers, representative of inner and outer bacterial membranes, following three stages: adsorption, assimilation, and defect formation. The main driving force for micellar attack is electrostatic interactions. In addition to disrupting the bilayers, the micelles work as carriers facilitating the trapping of 4OH cinnamate anions within the bilayer upper leaflet and overcoming electrostatic repulsion. The micelles also interact with extracellular DNA (e-DNA), which is one of the main components of biofilms. It is observed that CTA-4OHcinn forms spherical micelles on the DNA backbone; which hinders their ability to pack. This is demonstrated by modelling the DNA along the hbb histone-like protein, showing that in the presence of CTA-4OHcinn, DNA does not pack properly around hbb. The abilities of CTA-4OHcinn to cause cell death through membrane disruption and to disperse a mature, multi-species biofilm are also confirmed experimentally.
Collapse
Affiliation(s)
| | - Mahdi Ghorbani
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia
| | - Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Laura L Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - M Leigh Ackland
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, 3125, Australia
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia
| | - Fangfang Chen
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia.
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, 3125, Australia.
| | - Anthony E Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia.
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia.
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, 3125, Australia.
| |
Collapse
|
3
|
Strelnikov IA, Kovaleva NA, Klinov AP, Zubova EA. C-B-A Test of DNA Force Fields. ACS OMEGA 2023; 8:10253-10265. [PMID: 36969447 PMCID: PMC10034787 DOI: 10.1021/acsomega.2c07781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The DNA duplex may be locally strongly bent in complexes with proteins, for example, with polymerases or in a nucleosome. At such bends, the DNA helix is locally in the noncanonical forms A (with a narrow major groove and a large amount of north sugars) or C (with a narrow minor groove and a large share of BII phosphates). To model the formation of such complexes by molecular dynamics methods, the force field is required to reproduce these conformational transitions for a naked DNA. We analyzed the available experimental data on the B-C and B-A transitions under the conditions easily implemented in modeling: in an aqueous NaCl solution. We selected six DNA duplexes which conformations at different salt concentrations are known reliably enough. At low salt concentrations, poly(GC) and poly(A) are in the B-form, classical and slightly shifted to the A-form, respectively. The duplexes ATAT and GGTATACC have a strong and salt concentration dependent bias toward the A-form. The polymers poly(AC) and poly(G) take the C- and A-forms, respectively, at high salt concentrations. The reproduction of the behavior of these oligomers can serve as a test for the balance of interactions between the base stacking and the conformational flexibility of the sugar-phosphate backbone in a DNA force field. We tested the AMBER bsc1 and CHARMM36 force fields and their hybrids, and we failed to reproduce the experiment. In all the force fields, the salt concentration dependence is very weak. The known B-philicity of the AMBER force field proved to result from the B-philicity of its excessively strong base stacking. In the CHARMM force field, the B-form is a result of a fragile balance between the A-philic base stacking (especially for G:C pairs) and the C-philic backbone. Finally, we analyzed some recent simulations of the LacI-, SOX-4-, and Sac7d-DNA complex formation in the framework of the AMBER force field.
Collapse
|
4
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. "Conformational dynamics of C1r inhibitor proteins from Lyme disease and relapsing fever spirochetes". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530473. [PMID: 36909632 PMCID: PMC10002728 DOI: 10.1101/2023.03.01.530473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r. Borrelia miyamotoi spirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain of B. hermsii FbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Charles E. Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Alexandra D. Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Anna M. Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Brandon L. Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
5
|
Wang SD, Zhang RB, Eriksson LA. Markov state models elucidate the stability of DNA influenced by the chiral 5S-Tg base. Nucleic Acids Res 2022; 50:9072-9082. [PMID: 35979954 PMCID: PMC9458442 DOI: 10.1093/nar/gkac691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.
Collapse
Affiliation(s)
- Shu-dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidan District, 100081 Beijing, China
| | - Ru-bo Zhang
- Correspondence may also be addressed to Ru-bo Zhang.
| | - Leif A Eriksson
- To whom correspondence should be addressed. Tel: +46 31 786 9117;
| |
Collapse
|
6
|
Wang SD, Eriksson LA, Zhang RB. Dynamics of 5R-Tg Base Flipping in DNA Duplexes Based on Simulations─Agreement with Experiments and Beyond. J Chem Inf Model 2022; 62:386-398. [PMID: 34994562 PMCID: PMC8790752 DOI: 10.1021/acs.jcim.1c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Damaged or mismatched
DNA bases are normally thought to be able
to flip out of the helical stack, providing enzymes with access to
the faulty genetic information otherwise hidden inside the helix.
Thymine glycol (Tg) is one of the most common products of nucleic
acid damage. However, the static and dynamic structures of DNA duplexes
affected by 5R-Tg epimers are still not clearly understood, including
the ability of these to undergo spontaneous base flipping. Structural
effects of the 5R-Tg epimers on the duplex DNA are herein studied
using molecular dynamics together with reliable DFT based calculations.
In comparison with the corresponding intact DNA, the cis-5R,6S-Tg epimer base causes little perturbation to the duplex DNA,
and a barrier of 4.9 kcal mol–1 is obtained by meta-eABF
for cis-5R,6S-Tg base flipping out of the duplex
DNA, comparable to the 5.4 kcal mol–1 obtained for
the corresponding thymine flipping in intact DNA. For the trans-5R,6R-Tg epimer, three stable local structures were
identified, of which the most stable disrupts the Watson–Crick
hydrogen-bonded G5/C20 base pair, leading to conformational distortion
of the duplex. Interestingly, the relative barrier height of the 5R-Tg
flipping is only 1.0 kcal mol–1 for one of these trans-5R,6R-Tg epimers. Water bridge interactions were identified
to be essential for 5R-Tg flipping. The study clearly demonstrates
the occurrence of partial trans-5R,6R-Tg epimer flipping
in solution.
Collapse
Affiliation(s)
- Shu Dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30 Göteborg, Sweden
| | - Ru Bo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| |
Collapse
|
7
|
Bae S, Kim JS. Potential of Mean Force for DNA Wrapping Around a Cationic Nanoparticle. J Chem Theory Comput 2021; 17:7952-7961. [PMID: 34792353 DOI: 10.1021/acs.jctc.1c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sharp bending and wrapping of DNA around proteins and nanoparticles (NPs) has been of extensive research interest. Here, we present the potential of mean force (PMF) for wrapping a DNA double helix around a cationic NP using coarse-grained models of a double-stranded DNA and a cationic NP. Starting from a NP wrapped around by DNA, the PMF was calculated along the distance between the center of the NP and one end of the DNA molecule. A relationship between the distance and the extent of DNA wrapping is used to calculate the PMF as a function of DNA wrapping around a NP. In particular, the PMF was compared for two DNA sequences of (AT)25/(AT)25 and (AC)25/(GT)25, for which the persistence lengths are different by ∼10 nm. The simulation results provide solid evidence of the thermodynamic preference for complex formation of a cationic NP with more flexible DNA over the less flexible DNA. Furthermore, we estimated the elastic energy of DNA bending, which was in good order-of-magnitude agreement with the theoretical prediction of elastic rods. This work suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnologies, in which the position and dynamics of NPs are regulated on large-scale DNA structures, or the structural transformation of DNA is triggered by the sequence-dependent binding of NPs.
Collapse
Affiliation(s)
- Sehui Bae
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Hognon C, Bignon E, Harle G, Touche N, Grandemange S, Monari A. The Iron Maiden. Cytosolic Aconitase/IRP1 Conformational Transition in the Regulation of Ferritin Translation and Iron Hemostasis. Biomolecules 2021; 11:biom11091329. [PMID: 34572542 PMCID: PMC8469783 DOI: 10.3390/biom11091329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Maintaining iron homeostasis is fundamental for almost all living beings, and its deregulation correlates with severe and debilitating pathologies. The process is made more complicated by the omnipresence of iron and by its role as a fundamental component of a number of crucial metallo proteins. The response to modifications in the amount of the free-iron pool is performed via the inhibition of ferritin translation by sequestering consensus messenger RNA (mRNA) sequences. In turn, this is regulated by the iron-sensitive conformational equilibrium between cytosolic aconitase and IRP1, mediated by the presence of an iron-sulfur cluster. In this contribution, we analyze by full-atom molecular dynamics simulation, the factors leading to both the interaction with mRNA and the conformational transition. Furthermore, the role of the iron-sulfur cluster in driving the conformational transition is assessed by obtaining the related free energy profile via enhanced sampling molecular dynamics simulations.
Collapse
Affiliation(s)
- Cécilia Hognon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Guillaume Harle
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
| | - Nadège Touche
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
| | - Stéphanie Grandemange
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France; (G.H.); (N.T.)
- Correspondence: (S.G.); (A.M.)
| | - Antonio Monari
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France; (C.H.); (E.B.)
- Université de Paris and CNRS, ITODYS, F-75006 Paris, France
- Correspondence: (S.G.); (A.M.)
| |
Collapse
|
9
|
Bae S, Oh I, Yoo J, Kim JS. Effect of DNA Flexibility on Complex Formation of a Cationic Nanoparticle with Double-Stranded DNA. ACS OMEGA 2021; 6:18728-18736. [PMID: 34337212 PMCID: PMC8319935 DOI: 10.1021/acsomega.1c01709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges. However, a small increase in the persistence length of DNA by 10 nm requires a cationic nanoparticle with a markedly increased electric charge to bend and wrap DNA around. Thus, a more flexible DNA molecule bends and wraps around a cationic nanoparticle with an intermediate electric charge, whereas a less flexible DNA molecule binds to a nanoparticle with the same electric charge without notable bending. This work provides solid evidence that a small difference in DNA flexibility (as small as 10 nm in persistence length) has a substantial influence on the complex formation of DNA with proteins from a biological perspective and suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnology as a new tool to manipulate the structure of DNA molecules mediated by nanoparticle binding.
Collapse
Affiliation(s)
- Sehui Bae
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Inrok Oh
- LG
Chem Ltd., LG Science Park, Seoul 07796, Republic of Korea
| | - Jejoong Yoo
- Department
of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Soo Kim
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, Grandemange S, Barone G, Marazzi M, Monari A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J Proteome Res 2020; 19:4291-4315. [PMID: 33119313 PMCID: PMC7640986 DOI: 10.1021/acs.jproteome.0c00779] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/18/2023]
Abstract
The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Cécilia Hognon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Tom Miclot
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Cristina García-Iriepa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Isabel Iriepa
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
- Department
of Organic and Inorganic Chemistry, Universidad
de Alcalá, Ctra.
Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | - Alessio Terenzi
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | | | - Giampaolo Barone
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Marco Marazzi
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| |
Collapse
|
11
|
Francés-Monerris A, Hognon C, Douki T, Monari A. Photoinduced DNA Lesions in Dormant Bacteria: The Peculiar Route Leading to Spore Photoproducts Characterized by Multiscale Molecular Dynamics*. Chemistry 2020; 26:14236-14241. [PMID: 32597544 DOI: 10.1002/chem.202002484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 11/07/2022]
Abstract
Some bacterial species enter a dormant state in the form of spores to resist to unfavorable external conditions. Spores are resistant to a wide series of stress agents, including UV radiation, and can last for tens to hundreds of years. Due to the suspension of biological functions, such as DNA repair, they accumulate DNA damage upon exposure to UV radiation. Differently from active organisms, the most common DNA photoproducts in spores are not cyclobutane pyrimidine dimers, but rather the so-called spore photoproducts. This noncanonical photochemistry results from the dry state of DNA and its binding to small, acid-soluble proteins that drastically modify the structure and photoreactivity of the nucleic acid. Herein, multiscale molecular dynamics simulations, including extended classical molecular dynamics and quantum mechanics/molecular mechanics based dynamics, are used to elucidate the coupling of electronic and structural factors that lead to this photochemical outcome. In particular, the well-described impact of the peculiar DNA environment found in spores on the favored formation of the spore photoproduct, given the small free energy barrier found for this path, is rationalized. Meanwhile, the specific organization of spore DNA precludes the photochemical path that leads to cyclobutane pyrimidine dimer formation.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- Departament de Química Física, Universitat de València, 46100, Burjassot, Spain
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- Université de Lorraine and CNRS, CRAN UMR 7039, 54000, Nancy, France
| | - Thierry Douki
- SyMMES, CEA, CNRS, IRIG, University Grenoble Alpes, 38000, Grenoble, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
12
|
Xie YC, Eriksson LA, Zhang RB. Molecular dynamics study of the recognition of ATP by nucleic acid aptamers. Nucleic Acids Res 2020; 48:6471-6480. [PMID: 32442296 PMCID: PMC7337527 DOI: 10.1093/nar/gkaa428] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Despite their great success in recognizing small molecules in vitro, nucleic acid aptamers are rarely used in clinical settings. This is partially due to the lack of structure-based mechanistic information. In this work, atomistic molecular dynamics simulations are used to study the static and dynamic supramolecular structures relevant to the process of the wild-type (wt) nucleic acid aptamer recognition and binding of ATP. The effects brought about by mutation of key residues in the recognition site are also explored. The simulations reveal that the aptamer displays a high degree of rigidity and is structurally very little affected by the binding of ATP. Interaction energy decomposition shows that dispersion forces from π-stacking between ATP and the G6 and A23 nucleobases in the aptamer binding site plays a more important role in stabilizing the supramolecular complex, compared to hydrogen-bond interaction between ATP and G22. Moreover, metadynamics simulations show that during the association process, water molecules act as essential bridges connecting ATP with G22, which favors the dynamic stability of the complex. The calculations carried out on three mutated aptamer structures confirm the crucial role of the hydrogen bonds and π-stacking interactions for the binding affinity of the ATP nucleic acid aptamer.
Collapse
Affiliation(s)
- Ya-Chen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, 100081 Beijing, China
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30 Göteborg, Sweden
| | - Ru-Bo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, 100081 Beijing, China
| |
Collapse
|
13
|
Matoušková E, Bignon E, Claerbout VEP, Dršata T, Gillet N, Monari A, Dumont E, Lankaš F. Impact of the Nucleosome Histone Core on the Structure and Dynamics of DNA-Containing Pyrimidine-Pyrimidone (6-4) Photoproduct. J Chem Theory Comput 2020; 16:5972-5981. [PMID: 32810397 DOI: 10.1021/acs.jctc.0c00593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyrimidine-pyrimidone (6-4) photoproduct (64-PP) is an important photoinduced DNA lesion constituting a mutational signature for melanoma. The structural impact of 64-PP on DNA complexed with histones affects the lesion mutagenicity and repair but remains poorly understood. Here we investigate the conformational dynamics of DNA-containing 64-PP within the nucleosome core particle by atomic-resolution molecular dynamics simulations and multiscale data analysis. We demonstrate that the histone core exerts important mechanical restraints that largely decrease global DNA structural fluctuations. However, the local DNA flexibility at the damaged site is enhanced due to imperfect structural adaptation to restraints imposed by the histone core. If 64-PP faces the histone core and is therefore not directly accessible by the repair protein, the complementary strand facing the solvent is deformed and exhibits higher flexibility than the corresponding strand in a naked, undamaged DNA. This may serve as an initial recognition signal for repair. Our simulations also pinpoint the structural role of proximal residues from the truncated histone tails.
Collapse
Affiliation(s)
- Eva Matoušková
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Emmanuelle Bignon
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Victor E P Claerbout
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Natacha Gillet
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
14
|
Yoo J, Winogradoff D, Aksimentiev A. Molecular dynamics simulations of DNA-DNA and DNA-protein interactions. Curr Opin Struct Biol 2020; 64:88-96. [PMID: 32682257 DOI: 10.1016/j.sbi.2020.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
The all-atom molecular dynamics method can characterize the molecular-level interactions in DNA and DNA-protein systems with unprecedented resolution. Recent advances in computational technologies have allowed the method to reveal the unbiased behavior of such systems at the microseconds time scale, whereas enhanced sampling approaches have matured enough to characterize the interaction free energy with quantitative precision. Here, we describe recent progress toward increasing the realism of such simulations by refining the accuracy of the molecular dynamics force field, and we highlight recent application of the method to systems of outstanding biological interest.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea.
| | - David Winogradoff
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|