1
|
Rajchel-Mieldzioć P, Fita P. Deciphering Photoluminescence in an Aryl Iodides-Gold Nanoparticles System: Au-Mediated Homocoupling Reaction at a Low Temperature. J Phys Chem Lett 2024; 15:3982-3986. [PMID: 38573119 PMCID: PMC11017310 DOI: 10.1021/acs.jpclett.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
The study of photoactive materials often unveils intriguing findings, showcasing the value of an interdisciplinary approach. We examined the purported metal-enhanced luminescence thought to result from the chemisorption of aryl iodides on poly(N-vinylpyrrolidone)-stabilized gold nanoparticles. Our discovery deviates from previous assumptions: the fluorescence observed does not originate from excimers of iodophenols chemisorbed on Au:PVP. Instead, it arises from biphenol products, resulting from a gold-mediated Ullmann homocoupling reaction that occurs within the system. Notably, this reaction, known for its demanding nature, proceeds in methanol under purely ambient conditions: room temperature and air atmosphere, without the need for a base. Therefore, these findings not only offer a complete understanding of the observed luminescence but also provide a substantial contribution to the field of carbon-carbon coupling reactions.
Collapse
Affiliation(s)
- Paulina Rajchel-Mieldzioć
- Institute of Experimental Physics,
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Fita
- Institute of Experimental Physics,
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Aliyarova IS, Tupikina EY, Soldatova NS, Ivanov DM, Postnikov PS, Yusubov M, Kukushkin VY. Halogen Bonding Involving Gold Nucleophiles in Different Oxidation States. Inorg Chem 2022; 61:15398-15407. [PMID: 36137295 DOI: 10.1021/acs.inorgchem.2c01858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A single-crystal X-ray diffraction (XRD) study of diaryliodonium tetrachloroaurates (or, in the recent terminology, tetrachloridoaurates), [(p-XC6H4)2I][AuCl4] (X = Cl, 1; Br, 2), was performed for 1 (the structure is denoted as 1a to show similarity with the isomorphic structure 2a) and two polymorphs─2a (obtained from MeOH) and 2b (from 1,2-C2H4Cl2). Examination of the XRD data for these three structures revealed 2-center C-X···AuIII (X = Cl and Br) and 3-center bifurcated C-Br···(Cl-Au) halogen bonding (abbreviated as XB) between the p-Cl or p-Br atoms of the diaryliodonium cations and the gold(III) atom of [AuCl4]-. The noncovalent nature of AuIII-involving interactions, the nucleophilicity of the gold(III) atoms, and the electrophilic role of p-X atoms of the diaryliodonium cations in the XBs were studied by a set of complementary computational methods. Combined experimental and theoretical studies allowed the recognition of the d-nucleophilicity of the [d8AuIII] atom which, regardless of its rather substantial formal 3+ charge, can function as a d-nucleophilic partner of XB. This conclusion was also supported by theoretical calculations performed for the structures' refcodes BINXOM and ICSD 62511; the obtained data verified the nucleophilicity of AuIII toward a K+ ions or a σ-(Cl)-hole, respectively. All our results, together with consideration of relevant literature, indicate that gold atoms in the three oxidation states (0, I, and even III) exhibit nucleophilicity in XBs.
Collapse
Affiliation(s)
- Irina S Aliyarova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Elena Yu Tupikina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation.,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| | - Mekhman Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
3
|
Bhowmik S, Paria S, Tater I, Maity P. Synthesis of Orange-Red Emissive Au-SG and AuAg-SG Nanoclusters and Their Turn-OFF vs. Turn-ON Metal Ion Sensing. J Fluoresc 2022; 32:2271-2280. [PMID: 36068419 DOI: 10.1007/s10895-022-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
Synthesis of luminescent metal cluster for selective sensing of specific analyte with detail mechanistic understanding is very important for real world applications as well as for developing new emissive materials. In the present work, we have synthesized L-glutathione stabilized gold (Au-SG) and gold-silver bimetallic (AuAg-SG) clusters under identical experimental conditions with orange red emissive characteristics for both. Detail photo physical analysis reveals that both clusters are phosphorescent in nature with moderate quantum yield of 7% and 19% for Au-SG and AuAg-SG respectively and their excited state lifetime values are in the range of 1-2 μs. While Au-SG cluster showed luminescence quenching response (turn-off) in presence of Fe3+ and Hg2+ ions, AuAg-SG cluster showed turn-off response for Cu2+, Fe3+ and Hg2+, but luminescent enhancement (turn-on) response for Cd2+ ions. The highest detection limit obtained for Cu2+ ion by AuAg-SG cluster is 20 nM while for Cd2+ ion it is 75 nM. From Time Correlated Single Photo Counting (TCSPC) and Dynamic Light Scattering (DLS) measurements we postulated that except Cd2+, all other metal ions cause aggregation of clusters through ligation with SG ligands while Cd2+ ion does not induce any cluster aggregation but binds to cluster surface atoms. The near constant life time values of both clusters during gradual addition of respective metal ions confirms static quenching/enhancement process through formation of stable ground state adducts.
Collapse
Affiliation(s)
- Sagar Bhowmik
- School of Engineering and Technology, National Forensic Sciences University - Gandhinagar, Sector-09, Gandhinagar, 382007, India.,School of Forensic Science, National Forensic Sciences University - Tripura, Radhanagar, Agartala, 799001, India
| | - Shashikana Paria
- School of Engineering and Technology, National Forensic Sciences University - Gandhinagar, Sector-09, Gandhinagar, 382007, India
| | - Ishika Tater
- School of Engineering and Technology, National Forensic Sciences University - Gandhinagar, Sector-09, Gandhinagar, 382007, India
| | - Prasenjit Maity
- School of Engineering and Technology, National Forensic Sciences University - Gandhinagar, Sector-09, Gandhinagar, 382007, India. .,School of Forensic Science, National Forensic Sciences University - Tripura, Radhanagar, Agartala, 799001, India.
| |
Collapse
|
4
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
5
|
Bulatova M, Ivanov DM, Rautiainen JM, Kinzhalov MA, Truong KN, Lahtinen M, Haukka M. Studies of Nature of Uncommon Bifurcated I-I···( I- M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals. Inorg Chem 2021; 60:13200-13211. [PMID: 34357775 PMCID: PMC8424624 DOI: 10.1021/acs.inorgchem.1c01591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/03/2022]
Abstract
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal-iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed by weaker I···M interaction. The electrophilic and nucleophilic nature of atoms participating in I···M interaction was studied with ED/ESP minima analysis. In trans-[PtI2(CNXyl)2]·I2 cocrystal, Pt atoms act as weak nucleophiles in I···Pt interaction. In the case of trans-[PdI2(CNXyl)2]·I2 cocrystal, electrophilic/nucleophilic roles of Pd and I are not clear, and thus the quasimetallophilic nature of the I···Pd interaction was suggested.
Collapse
Affiliation(s)
- Margarita Bulatova
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Daniil M. Ivanov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - J. Mikko Rautiainen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Mikhail A. Kinzhalov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Khai-Nghi Truong
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Manu Lahtinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
6
|
Selective sensing of thiols by aryl iodide stabilized fluorescent gold cluster through turn-off excimer emission caused by ligand displacement. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hasobe T. Organic-Inorganic Hybrid Molecular Architectures Utilizing Self-assembled Monolayers for Singlet Fission and Light Energy Conversion. CHEM LETT 2021. [DOI: 10.1246/cl.200858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Taku Hasobe
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
4-Iodophenylboronic Acid Stabilized Gold Cluster as a New Fluorescent Chemosensor for Saccharides Based on Excimer Emission Quenching. J Fluoresc 2021; 31:447-454. [PMID: 33417107 DOI: 10.1007/s10895-020-02672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
4-iodophenylboronic acid (IPBA) ligated luminescent gold cluster was synthesized by mixing an aqueous solution of IBPA and polyvinylpyrrolidone stabilized gold cluster (Au:PVP) in water at room temperature through chemisorption of iodine on gold nano surface. Transmission Electron microscopy (TEM) and matrix assisted laser desorption ionization (MALDI) analysis revealed that the size of these Au-clusters (1.4±0.2 nm) remain unchanged without any noticeable aggregation during synthesis. Owing to the formation of excimer between aryl moieties grafted over Au surface, the cluster exhibit strong emission peak at 335 nm. This luminescent gold cluster is used for sensing different saccharides in water at physiological pH through quenching of excimer emission peak. This strong excimer emission is significantly quenched in presence of saccharides through interaction with boronic acid moieties. The selectivity for different saccharides follows the order: fructose > galactose > maltose > glucose ~ ribose > sorbitol with hight affinity for fructose (KSV = 1.54 × 104 M-1) with Limit of Detection (LOD) of 100 μM.
Collapse
|
9
|
Thakarda J, Agrawal B, Anil D, Jana A, Maity P. Detection of Trace-Level Nitroaromatic Explosives by 1-Pyreneiodide-Ligated Luminescent Gold Nanostructures and Their Forensic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15442-15449. [PMID: 33289565 DOI: 10.1021/acs.langmuir.0c03117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By attaching the1-pyreneiodide ancillary ligand to the surface of polyvinylpyrrolidone-stabilized gold (Au:PVP) cluster or the cetyltrimethyl ammonium bromide-stabilized gold (Au:CTAB) nanorod, a new class of luminescent mixed ligand-stabilized gold nanostructures is synthesized. This postsynthetic surface modification method followed by us is a comparatively easier and hassle-free technique to acquire surface-active luminescent "functional nanomaterials". Careful analyses of transmission electron microscopy images revealed that the sizes of these Au-clusters or Au-nanorods remain unchanged without any noticeable aggregation in the medium. Owing to the formation of an excimer within the neighboring pyrenes mounted on the surface of core nanostructures (i.e., Au:PVP nanocluster and Au:CTAB nanorod), the resulting pyrene-grafted nanocomposites exhibit strong emission characteristics. The strong excimer emission is significantly quenched in the presence of electron-deficient chemical inputs, and this phenomenon can be used for analytical purposes. Using these luminescent Au-nanomaterials, we demonstrate a selective detection and sensing of trace-level nitroaromatic explosives (e.g., trinitrotoluene, trinitrophenol (TNP), dinitrotoluene, 4-nitrotoluene, etc.). It was observed that the Py-Au:PVP nanocluster is equally effective for explosive detection in both solution and solid phases with the limit of detection up to 10 nanomolar. A high Stern-Volmer constant of up to 3.88 × 106 M-1 was seen in the case of TNP in anhydrous methanol at 298 K. The deactivation pathway operating within the Py-Au:PVP nanocluster and the analytes is thought to be a result of a predominating static quenching process, where a nonfluorescent D-A supramolecular adduct is formed in the medium. Py-Au:PVP has also been successfully used to develop latent fingerprints from nonporous surfaces under an exposure of 365 nm UV light. The results suggest that these new composite materials could behave as potential "functional nanomaterials", which might be a promising alternative for on-the-spot detection of explosive traces as well as for easy visualization of latent fingerprints.
Collapse
Affiliation(s)
- Jaydev Thakarda
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| | - Bhavesh Agrawal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| | - Devisree Anil
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| | - Atanu Jana
- Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Prasenjit Maity
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar 382007, India
| |
Collapse
|