1
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
2
|
Alvarez-Hernandez JL, Zhang X, Cui K, Deziel AP, Hammes-Schiffer S, Hazari N, Piekut N, Zhong M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt-porphyrin complexes. Chem Sci 2024; 15:6800-6815. [PMID: 38725508 PMCID: PMC11077573 DOI: 10.1039/d3sc06177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
A CoII-porphyrin complex (1) with an appended aza-crown ether for Lewis acid (LA) binding was synthesized and characterized. NMR spectroscopy and electrochemistry show that cationic group I and II LAs (i.e., Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) bind to the aza-crown ether group of 1. The binding constant for Li+ is comparable to that observed for a free aza-crown ether. LA binding causes an anodic shift in the CoII/CoI couple of between 10 and 40 mV and also impacts the CoIII/CoII couple. The magnitude of the anodic shift of the CoII/CoI couple varies linearly with the strength of the LA as determined by the pKa of the corresponding metal-aqua complex, with dications giving larger shifts than monocations. The extent of the anodic shift of the CoII/CoI couple also increases as the ionic strength of the solution decreases. This is consistent with electric field effects being responsible for the changes in the redox properties of 1 upon LA binding and provides a novel method to tune the reduction potential. Density functional theory calculations indicate that the bound LA is 5.6 to 6.8 Å away from the CoII ion, demonstrating that long-range electrostatic effects, which do not involve changes to the primary coordination sphere, are responsible for the variations in redox chemistry. Compound 1 was investigated as a CO2 reduction electrocatalyst and shows high activity but rapid decomposition.
Collapse
Affiliation(s)
| | - Xiaowei Zhang
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| | - Kai Cui
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | | - Nilay Hazari
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Nicole Piekut
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| |
Collapse
|
3
|
Trowbridge L, Averkiev B, Sues PE. Electrocatalytic Hydrogen Evolution using a Nickel-based Calixpyrrole Complex: Controlling the Secondary Coordination Sphere on an Electrode Surface. Chemistry 2023; 29:e202301920. [PMID: 37665793 PMCID: PMC10842979 DOI: 10.1002/chem.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Incorporating design elements from homogeneous catalysts to construct well defined active sites on electrode surfaces is a promising approach for developing next generation electrocatalysts for energy conversion reactions. Furthermore, if functionalities that control the electrode microenvironment could be integrated into these active sites it would be particularly appealing. In this context, a square planar nickel calixpyrrole complex, Ni(DPMDA) (DPMDA=2,2'-((diphenylmethylene)bis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))bis(azaneylylidene))dianiline) with pendant amine groups is reported that forms a heterogeneous hydrogen evolution catalyst using anilinium tetrafluoroborate as the proton source. The supported Ni(DPMDA) catalyst was surprisingly stable and displayed fast reaction kinetics with turnover frequencies (TOF) up to 25,900 s-1 or 366,000 s-1 cm-2 . Kinetic isotope effect (KIE) studies revealed a KIE of 5.7, and this data, combined with Tafel slope analysis, suggested that a proton-coupled electron transfer (PCET) process involving the pendant amine groups was rate-limiting. While evidence of an outer-sphere reduction of the Ni(DPMDA) catalyst was observed, it is hypothesized that the control over the secondary coordination sphere provided by the pendant amines facilitated such high TOFs and enabled the PCET mechanism. The results reported herein provide insight into heterogeneous catalyst design and approaches for controlling the secondary coordination sphere on electrode surfaces.
Collapse
Affiliation(s)
- Logan Trowbridge
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| | - Boris Averkiev
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| | - Peter E Sues
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, Kansas, 66503, USA
| |
Collapse
|
4
|
Teindl K, Patrick BO, Nichols EM. Linear Free Energy Relationships and Transition State Analysis of CO 2 Reduction Catalysts Bearing Second Coordination Spheres with Tunable Acidity. J Am Chem Soc 2023; 145:17176-17186. [PMID: 37499125 DOI: 10.1021/jacs.3c03919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In molecular catalysts, protic functional groups in the secondary coordination sphere (SCS) work in conjunction with an exogenous acid to relay protons to the active site of electrochemical CO2 reduction; however, it is not well understood how the acidity of the SCS and exogenous acid together determine the kinetics of catalytic turnover. To evaluate the relative contributions of proton transfer driving forces, we synthesized a series of modular iron tetraphenylporphyrin electrocatalysts bearing SCS amides of tunable pKa (17.6 to 20.0 in dimethyl sulfoxide (DMSO)) and employed phenols of variable acidity (15.3 to 19.1) as exogenous acids. This system allowed us to (1) evaluate contributions from proton transfer driving forces associated with either the SCS or exogenous acid and (2) obtain mechanistic insights into CO2 reduction as a function of pKa. A series of linear free-energy relationships show that kinetics become increasingly sensitive to variations in SCS pKa when more acidic exogenous acids are used (0.82 ≥ Brønsted α ≥ 0.13), as well as to variations in exogenous acid pKa when SCS acidity is increased (0.62 ≥ Brønsted α ≥ 0.32). An Eyring analysis suggests that the rate-determining transition state becomes more ordered with decreasing SCS acidity, which is consistent with the proposal that SCS acidity modulates charge accumulation and solvation at the rate-limiting transition state. Together, these insights enable the optimization of activation barriers as a function of both SCS and exogenous acid pKa and can further guide the rational design of electrocatalytic systems wherein contributions from all participants in a proton relay are considered.
Collapse
Affiliation(s)
- Kaeden Teindl
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Xue S, Lv X, Liu N, Zhang Q, Lei H, Cao R, Qiu F. Electrocatalytic Hydrogen Evolution of Bent Bis(dipyrrin) Ni(II) Complexes. Inorg Chem 2023; 62:1679-1685. [PMID: 36634365 DOI: 10.1021/acs.inorgchem.2c04097] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Planar Ni(II) porphyrinoid complexes have been widely used in electrochemical carbon dioxide reduction reaction and oxygen reduction reaction as well as hydrogen evolution reaction (HER). However, nonplanar Ni(II) tetra-pyrrolic complexes have not been thoroughly investigated thus far. In this study, three highly bent bis(dipyrrin) Ni(II) complexes have been synthesized to investigate their structure, electronic property, and electrocatalytic HER activities. Cyclic voltammetry and thin-layer UV-visible spectroelectrochemistry studies revealed four redox processes, yielding two reduced species as the final products. The ic/ip values of phenyl- and pentafluorophenyl-bearing bis(dipyrrin) Ni(II) complexes were >30 when trifluoroacetic acid was used as the proton source, and their Faradaic efficiencies for H2 generation were >93%. Density functional theory calculations of the HERs revealed low endothermic energies of bent bis(dipyrrin) Ni(II) complexes.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
7
|
Zheng J, Zhou D, Han J, Liu J, Cao R, Lei H, Bian H, Fang Y. Non-negligible Axial Ligand Effect on Electrocatalytic CO 2 Reduction with Iron Porphyrin Complexes. J Phys Chem Lett 2022; 13:11811-11817. [PMID: 36519945 DOI: 10.1021/acs.jpclett.2c03235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iron(III) porphyrin complexes have been demonstrated as one of the efficient molecular catalysts for the electrochemical reduction of CO2. However, the role of axial ligands coordinated with a metal center in the complex on the electrochemical CO2 reduction activity has not been fully explored yet. Herein, iron(III) tetraphenylporphyrin thiocyanate (FeTPP-SCN) is synthesized from a commercially available catalyst of FeTPP-Cl by a counteranion exchanging reaction. Cyclic voltammetry measurements showed that the catalytic activity of FeTPP-SCN is noticeably suppressed in the DMF solutions. The structural dynamics of the axial ligand in FeTPP-SCN are further examined by the FTIR and ultrafast IR spectroscopies, where the SCN ligand is employed as the local vibrational probe. Vibrational relaxation measurements showed that the reorientational dynamics of SCN ligands was strongly restricted in DMF solution, suggesting that the subtle electrostatic interaction between the ligands and metal center in the complex can have a non-negligible effect on its catalytic activity.
Collapse
Affiliation(s)
- Jiancong Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Palladium complexes bearing calixpyrrole ligands with pendant hydrogen bond donors: Synthesis, structural characterization, electrochemistry and dihydrogen evolution. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022; 61:e202207666. [PMID: 35878059 PMCID: PMC9452489 DOI: 10.1002/anie.202207666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 08/26/2023]
Abstract
Microenvironments tailored by multifunctional secondary coordination sphere groups can enhance catalytic performance at primary metal active sites in natural systems. Here, we capture this biological concept in synthetic systems by developing a family of iron porphyrins decorated with imidazolium (im) pendants for the electrochemical CO2 reduction reaction (CO2 RR), which promotes multiple synergistic effects to enhance CO2 RR and enables the disentangling of second-sphere contributions that stem from each type of interaction. Fe-ortho-im(H), which poises imidazolium units featuring both positive charge and hydrogen-bond capabilities proximal to the active iron center, increases CO2 binding affinity by 25-fold and CO2 RR activity by 2000-fold relative to the parent Fe tetraphenylporphyrin (Fe-TPP). Comparison with monofunctional analogs reveals that through-space charge effects have a greater impact on catalytic CO2 RR performance compared to hydrogen bonding in this context.
Collapse
Affiliation(s)
- Mina R Narouz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| |
Collapse
|
10
|
Guo K, Li X, Lei H, Guo H, Jin X, Zhang X, Zhang W, Apfel U, Cao R. Role‐Specialized Division of Labor in CO
2
Reduction with Doubly‐Functionalized Iron Porphyrin Atropisomers. Angew Chem Int Ed Engl 2022; 61:e202209602. [DOI: 10.1002/anie.202209602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
11
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mina R. Narouz
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | | | - Lun An
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | - Christopher J. Chang
- University of California Department of Chemistry 532A Latimer Hall 94720-1460 Berkeley UNITED STATES
| |
Collapse
|
12
|
Guo K, Li X, Lei H, Guo H, Jin X, Zhang XP, Zhang W, Apfel UP, Cao R. Role‐Specialized Division of Labor in CO2 Reduction with Doubly‐Functionalized Iron Porphyrin Atropisomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Hongbo Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xiaotong Jin
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universitat Bochum Fakultät für Chemie und Biochemie GERMANY
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering Shaanxi Normal UniversityChang'an CampusNumber 620 West Chang'an AvenueChang'an District 710119 Xi'an CHINA
| |
Collapse
|
13
|
Derrick JS, Loipersberger M, Nistanaki SK, Rothweiler AV, Head-Gordon M, Nichols EM, Chang CJ. Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO 2 Reduction Catalyzed by Iron Porphyrins. J Am Chem Soc 2022; 144:11656-11663. [PMID: 35749266 DOI: 10.1021/jacs.2c02972] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bicarbonate-based electrolytes are ubiquitous in aqueous electrochemical CO2 reduction, particularly in heterogenous catalysis, where they demonstrate improved catalytic performance relative to other buffers. In contrast, the presence of bicarbonate in organic electrolytes and its roles in homogeneous electrocatalysis remain underexplored. Here, we investigate the influence of bicarbonate on iron porphyrin-catalyzed electrochemical CO2 reduction. We show that bicarbonate is a viable proton donor in organic electrolyte (pKa = 20.8 in dimethyl sulfoxide) and that urea pendants in the second coordination sphere can be used to template bicarbonate in the vicinity of a molecular iron porphyrin catalyst. The templated binding of bicarbonate increases its acidity, resulting in a 1500-fold enhancement in catalytic rates relative to unmodified parent iron porphyrin. This work emphasizes the importance of bicarbonate speciation in wet organic electrolytes and establishes second-sphere bicarbonate templating as a design strategy to harness this adventitious acid and enhance CO2 reduction catalysis.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sepand K Nistanaki
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aila V Rothweiler
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
15
|
Kelty ML, McNeece AJ, Kurutz JW, Filatov AS, Anderson JS. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chem Sci 2022; 13:4377-4387. [PMID: 35509471 PMCID: PMC9007067 DOI: 10.1039/d1sc04277g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Enhanced rates and selectivity in enzymes are enabled in part by precisely tuned electric fields within active sites. Analogously, the use of charged groups to leverage electrostatics in molecular systems is a promising strategy to tune reactivity. However, separation of the through space and through bond effects of charged functional groups is a long standing challenge that limits the rational application of electric fields in molecular systems. To address this challenge we developed a method using the phosphorus selenium coupling value (J P-Se) of anionic phosphine selenides to quantify the electrostatic contribution of the borate moiety to donor strength. In this analysis we report the synthesis of a novel anionic phosphine, PPh2CH2BF3K, the corresponding tetraphenyl phosphonium and tetraethyl ammonium selenides [PPh4][SePPh2CH2BF3] and [TEA][SePPh2CH2BF3], and the Rh carbonyl complex [PPh4][Rh(acac)(CO)(PPh2(CH2BF3))]. Solvent-dependent changes in J P-Se were fit using Coulomb's law and support up to an 80% electrostatic contribution to the increase in donor strength of [PPh4][SePPh2CH2BF3] relative to SePPh2Et, while controls with [TEA][SePPh2CH2BF3] exclude convoluting ion pairing effects. Calculations using explicit solvation or point charges effectively replicate the experimental data. This J P-Se method was extended to [PPh4][SePPh2(2-BF3Ph)] and likewise estimates up to a 70% electrostatic contribution to the increase in donor strength relative to SePPh3. The use of PPh2CH2BF3K also accelerates C-F oxidative addition reactivity with Ni(COD)2 by an order of magnitude in comparison to the comparatively donating neutral phosphines PEt3 and PCy3. This enhanced reactivity prompted the investigation of catalytic fluoroarene C-F borylation, with improved yields observed for less fluorinated arenes. These results demonstrate that covalently bound charged functionalities can exert a significant electrostatic influence under common solution phase reaction conditions and experimentally validate theoretical predictions regarding electrostatic effects in reactivity.
Collapse
Affiliation(s)
- Margaret L Kelty
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Josh W Kurutz
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| |
Collapse
|
16
|
Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Kumar A, Ibraheem S, Anh Nguyen T, Gupta RK, Maiyalagan T, Yasin G. Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214122] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Gotico P, Leibl W, Halime Z, Aukauloo A. Shaping the Electrocatalytic Performance of Metal Complexes for CO
2
Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Philipp Gotico
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Current Affiliation: Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Winfried Leibl
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Zakaria Halime
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| | - Ally Aukauloo
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| |
Collapse
|
20
|
Guo K, Lei H, Li X, Zhang Z, Wang Y, Guo H, Zhang W, Cao R. Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63762-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Martin DJ, Mayer JM. Oriented Electrostatic Effects on O 2 and CO 2 Reduction by a Polycationic Iron Porphyrin. J Am Chem Soc 2021; 143:11423-11434. [PMID: 34292718 DOI: 10.1021/jacs.1c03132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Next-generation energy technologies require improved methods for rapid and efficient chemical-to-electrical energy transformations. One new approach has been to include atomically positioned, electrostatic motifs in molecular catalysts to stabilize high-energy, charged intermediates. For example, an iron porphyrin bearing four cationic, o-N,N,N-trimethylanilinium groups (o-[N(CH3)3]+) has recently been used to catalyze the complex, multistep O2 and CO2 reduction reactions (ORR and CO2RR) with fast rates and at low overpotentials. The success of this catalyst is attributed, at least in part, to specific charge-charge interactions between the atomically positioned o-[N(CH3)3]+ groups and the bound substrate. However, by nature of the mono-ortho substitution pattern, there are four possible atropisomers of this metalloporphyrin and thus four unique electrostatic environments. This work reports that each of the four individual atropisomers catalyzes both the ORR and CO2RR with fast rates and low overpotentials. The maximum turnover frequencies vary among the atropisomers, by a factor of 60 for the ORR and a factor of 5 for CO2RR. For the ORR, the αβαβ isomer is the fastest and has the highest overpotential, while for the CO2RR the αααα isomer is the fastest and has the highest overpotential. The role of charge positioning is complex and can affect more than a single step such as CO2 binding. These data offer a first-of-a-kind perspective on atomically positioned charge and highlight the significance of high charge density, rather than orientation, on the thermodynamics and kinetics of multistep molecular electrochemical transformations.
Collapse
Affiliation(s)
- Daniel J Martin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
22
|
Ramuglia AR, Budhija V, Ly KH, Marquardt M, Schwalbe M, Weidinger IM. An Iron Porphyrin Complex with Pendant Pyridine Substituents Facilitates Electrocatalytic CO
2
Reduction via Second Coordination Sphere Effects. ChemCatChem 2021. [DOI: 10.1002/cctc.202100625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anthony R. Ramuglia
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Vishal Budhija
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Khoa H. Ly
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Michael Marquardt
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Matthias Schwalbe
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Inez M. Weidinger
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| |
Collapse
|
23
|
Dedić D, Dorniak A, Rinner U, Schöfberger W. Recent Progress in (Photo-)-Electrochemical Conversion of CO 2 With Metal Porphyrinoid-Systems. Front Chem 2021; 9:685619. [PMID: 34336786 PMCID: PMC8323756 DOI: 10.3389/fchem.2021.685619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Since decades, the global community has been facing an environmental crisis, resulting in the need to switch from outdated to new, more efficient energy sources and a more effective way of tackling the rising carbon dioxide emissions. The activation of small molecules such as O2, H+, and CO2 in a cost—and energy-efficient way has become one of the key topics of catalysis research. The main issue concerning the activation of these molecules is the kinetic barrier that has to be overcome in order for the catalyzed reaction to take place. Nature has already provided many pathways in which small molecules are being activated and changed into compounds with higher energy levels. One of the most famous examples would be photosynthesis in which CO2 is transformed into glucose and O2 through sunlight, thus turning solar energy into chemical energy. For these transformations nature mostly uses enzymes that function as catalysts among which porphyrin and porphyrin-like structures can be found. Therefore, the research focus lies on the design of novel porphyrinoid systems (e.g. corroles, porphyrins and phthalocyanines) whose metal complexes can be used for the direct electrocatalytic reduction of CO2 to valuable chemicals like carbon monoxide, formate, methanol, ethanol, methane, ethylene, or acetate. For example the cobalt(III)triphenylphosphine corrole complex has been used as a catalyst for the electroreduction of CO2 to ethanol and methanol. The overall goal and emphasis of this research area is to develop a method for industrial use, raising the question of whether and how to incorporate the catalyst onto supportive materials. Graphene oxide, multi-walled carbon nanotubes, carbon black, and activated carbon, to name a few examples, have become researched options. These materials also have a beneficial effect on the catalysis through for instance preventing rival reactions such as the Hydrogen Evolution Reaction (HER) during CO2 reduction. It is very apparent that the topic of small molecule activation offers many solutions for our current energy as well as environmental crises and is becoming a thoroughly investigated research objective. This review article aims to give an overview over recently gained knowledge and should provide a glimpse into upcoming challenges relating to this subject matter.
Collapse
Affiliation(s)
- Dženeta Dedić
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria.,IMC Fachhochschule Krems, Krems an der Donau, Austria
| | - Adrian Dorniak
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Uwe Rinner
- IMC Fachhochschule Krems, Krems an der Donau, Austria
| | | |
Collapse
|
24
|
Roubelakis MM, Bediako DK, Dogutan DK, Nocera DG. Influence of the proton relay spacer on hydrogen electrocatalysis by cobalt hangman porphyrins. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150067x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt hangman porphyrin system with a phenyl spacer between the porphyrin ring and an internal carboxylic acid group as well as its non-hangman analogue were synthesized and utilized for the study of the proton-coupled electron transfer (PCET) kinetics attendant to electrocatalytic hydrogen evolution. Cyclic voltammetry (CV) together with simulations show that a short distance between the proton relay and the redox active cobalt center as well as the increased proton donating strength results in superior catalytic activity. The mechanism of hydrogen generation is at the nexus of proton transfer–electron transfer (PTET) and concerted proton–electron transfer (CPET), as opposed to an ETPT mechanism that is characteristic of hangman systems with longer proton relay networks.
Collapse
Affiliation(s)
- Manolis M. Roubelakis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - D. Kwabena Bediako
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
26
|
Martin DJ, Mercado BQ, Mayer JM. All Four Atropisomers of Iron Tetra(o-N,N,N-trimethylanilinium)porphyrin in Both the Ferric and Ferrous States. Inorg Chem 2021; 60:5240-5251. [DOI: 10.1021/acs.inorgchem.1c00236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel J. Martin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
27
|
Wang J, Dou S, Wang X. Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. SCIENCE ADVANCES 2021; 7:eabf3989. [PMID: 33771872 PMCID: PMC7997508 DOI: 10.1126/sciadv.abf3989] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 05/02/2023]
Abstract
Heterogeneous molecular catalysts based on transition metal complexes have received increasing attention for their potential application in electrochemical energy conversion. The structural tuning of first and second coordination spheres of complexes provides versatile strategies for optimizing the activities of heterogeneous molecular catalysts and appropriate model systems for investigating the mechanism of structural variations on the activity. In this review, we first discuss the variation of first spheres by tuning ligated atoms; afterward, the structural tuning of second spheres by appending adjacent metal centers, pendant groups, electron withdrawing/donating, and conjugating moieties on the ligands is elaborated. Overall, these structural tuning resulted in different impacts on the geometric and electronic configurations of complexes, and the improved activity is achieved through tuning the stability of chemisorbed reactants and the redox behaviors of immobilized complexes.
Collapse
Affiliation(s)
- Jiong Wang
- Institute of Advanced Synthesis, Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Yangtze River Delta Research Institute of NPU, Taicang 215400, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Shuo Dou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
28
|
Chaturvedi A, Williams CK, Devi N, Jiang JJ. Effects of Appended Poly(ethylene glycol) on Electrochemical CO 2 Reduction by an Iron Porphyrin Complex. Inorg Chem 2021; 60:3843-3850. [PMID: 33629857 DOI: 10.1021/acs.inorgchem.0c03612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical carbon dioxide (CO2) reduction is a sustainable approach for transforming atmospheric CO2 into chemical feedstocks and fuels. To overcome the kinetic barriers of electrocatalytic CO2 reduction, catalysts with high selectivity, activity, and stability are needed. Here, we report an iron porphyrin complex, FePEGP, with a poly(ethylene glycol) unit in the second coordination sphere, as a highly selective and active electrocatalyst for the electrochemical reduction of CO2 to carbon monoxide (CO). Controlled-potential electrolysis using FePEGP showed a Faradaic efficiency of 98% and a current density of -7.8 mA/cm2 at -2.2 V versus Fc/Fc+ in acetonitrile using water as the proton source. The maximum turnover frequency was calculated to be 1.4 × 105 s-1 using foot-of-the-wave analysis. Distinct from most other catalysts, the kinetic isotope effect (KIE) study revealed that the protonation step of the Fe-CO2 adduct is not involved in the rate-limiting step. This model shows that the PEG unit as the secondary coordination sphere enhances the catalytic kinetics and thus is an effective design for electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Ashwin Chaturvedi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Nilakshi Devi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| |
Collapse
|
29
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
30
|
Márquez I, Olloqui-Sariego JL, Molero M, Andreu R, Roldán E, Calvente JJ. Active Role of the Buffer in the Proton-Coupled Electron Transfer of Immobilized Iron Porphyrins. Inorg Chem 2021; 60:42-54. [PMID: 32568550 DOI: 10.1021/acs.inorgchem.0c01091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evaluation of the proton-coupled electron transfer thermodynamics of immobilized hemin is challenging due to the disparity of its electrochemical titration curves reported in the literature. Deviations from the one-electron, one-proton transfer at circumneutral pHs have been commonly ascribed to either the formation of dimeric species or the ionization of a second iron-bound water molecule. Herein, however, we report on non-idealities in the more acidic region, whose onset and extent vary with the nature and concentration of the commonly used phosphate and acetate buffers. It is shown that these deviations originate in the ligand-exchange binding between the oxidized aquo-hemin complex and the anionic components of the buffer, so that they are restricted to the pH interval where these forms coexist. A stepwise approach was developed to quantify unambiguously the apparent and intrinsic binding equilibrium constants. The apparent binding equilibrium constant exhibits a peak-shaped pH dependence, whose maximum is located at approximately the midpoint between the pKa of the iron-bound water and the first pKa of the buffer, and its magnitude is greater for the phosphate than for the acetate buffer. But strikingly, the opposite trend was found for the magnitude of the intrinsic binding equilibrium constants determined from the apparent ones, due to the different relative locations of the phosphoric and acetic pKa values with respect to that of the oxidized aquo-hemin. To probe the role of the heme propionic residues, a similar study was carried out with a propionic-free iron porphyrin containing eight ethyl residues. These substituents decrease the acidity of the iron-bound water, strengthen the iron(III)-acetate binding, weaken the iron(III)-dihydrogen phosphate binding, and enable the binding between iron(III) and monohydrogen phosphate, which was hampered in hemin by the presence of the negatively charged propionate residues. Overall, this work provides a more complete speciation of immobilized iron porphyrins under acidic conditions than previously considered, showing the substitutional lability of the aqua ligand in the oxidized state of the iron center and the reluctance of its hydroxyl counterpart to anion exchange. Knowledge of these redox- and pH-dependent bindings with the buffer components is crucial for a rigorous quantification of the proton-coupled electron transfer and the electrocatalytic activity of iron porphyrins.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - José Luis Olloqui-Sariego
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Miguel Molero
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Rafael Andreu
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Emilio Roldán
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| | - Juan José Calvente
- Departamento de Quı́mica Fı́sica, Universidad de Sevilla, C/Profesor Garcı́a Conzález, 1, 41012 Sevilla, Spain
| |
Collapse
|
31
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
32
|
Martin DJ, Johnson SI, Mercado BQ, Raugei S, Mayer JM. Intramolecular Electrostatic Effects on O2, CO2, and Acetate Binding to a Cationic Iron Porphyrin. Inorg Chem 2020; 59:17402-17414. [DOI: 10.1021/acs.inorgchem.0c02703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J. Martin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Samantha I. Johnson
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
33
|
Williams CK, Lashgari A, Tomb JA, Chai J, Jiang JJ. Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO
2
Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Caroline K. Williams
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Amir Lashgari
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jenny A. Tomb
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jingchao Chai
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| |
Collapse
|
34
|
Nalaoh P, Bureekaew S, Promarak V, Lindsey JS. Fourfold alkyl wrapping of a copper(II) porphyrin thwarts macrocycle π-π stacking in a compact supramolecular package. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:647-654. [PMID: 32624511 DOI: 10.1107/s2053229620007172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 11/10/2022]
Abstract
Porphyrins are valuable constituents in optoelectronic, catalytic, and other applications, yet control of intermolecular π-π stacking is invariably essential to attain the desired properties. Superstructures built onto the porphyrin, often via meso-aryl groups, can afford facial encumbrance that suppresses π-π stacking, although some molecular designs have provided insufficient facial coverage and many have entailed cumbersome syntheses. In this study, a copper(II) porphyrin bearing four meso substituents, namely, {10,20-bis[2,6-bis(octyloxy)phenyl]-5,15-dibromoporphinato}copper(II), [Cu(C64H82Br2N4O4)], was prepared by metalation of the corresponding free-base porphyrin and was characterized by single-crystal X-ray diffraction. The crystal structure reveals a dihedral angle of 111.1 (2)° for the plane of the meso-aryl group relative to the plane of the porphyrin, with both aryl groups tilted in the same direction. Each of the four octyloxy groups exhibits a gauche conformation for the -OCH2CH2- unit but is extended with four or five anti (-CH2CH2-/H) conformations thereafter, causing each octyl group to span the dimension of the macrocycle. In a global frame of reference where the two Br atoms define the north/south poles and the two aryl groups are at antipodes on the equator, two octyl groups of one aryl unit project over the northern hemisphere (covering pyrroles A and B), whereas those of the other aryl unit project over the southern hemisphere (covering pyrroles C and D). Together, the four octyl groups ensheath the two faces of the porphyrin in a self-wrapped assembly. The closest approach of the Cu atom to an octyl methylene C atom (position 6) is 3.5817 (18) Å, the mean separations of neighboring porphyrin planes are 8.059 (4) and 4.693 (8) Å along the a and c axes, respectively, and the center-to-center distances between the Cu atoms of neighboring porphyrins are 10.2725 (4), 12.2540 (6), and 12.7472 (6) Å along the a, b, and c axes, respectively. The Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots provide information concerning contact interactions in the supramolecular assembly of the solid crystal.
Collapse
Affiliation(s)
- Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Sareeya Bureekaew
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| |
Collapse
|
35
|
Talukdar K, Sinha Roy S, Amatya E, Sleeper EA, Le Magueres P, Jurss JW. Enhanced Electrochemical CO 2 Reduction by a Series of Molecular Rhenium Catalysts Decorated with Second-Sphere Hydrogen-Bond Donors. Inorg Chem 2020; 59:6087-6099. [PMID: 32309933 DOI: 10.1021/acs.inorgchem.0c00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of rhenium(I) fac-tricarbonyl complexes containing pendent arylamine functionality in the second coordination sphere have been developed and studied as electrocatalysts for carbon dioxide (CO2) reduction. Aniline moieties were appended at the 6 position of a 2,2'-bipyridine (bpy) donor in which the primary amine was positioned at the ortho- (1-Re), meta- (2-Re), and para- (3-Re) sites of the aniline substituent to generate a family of isomers. The relationship between the catalyst structure and activity was explored across the series, and the catalytic performance was compared to that of the benchmark catalyst Re(bpy)(CO)3Cl (ReBpy). Catalysts 1-Re, 2-Re, and 3-Re outperform the benchmark catalyst both in anhydrous acetonitrile and with added trifluoroethanol (TFE) as an external proton source. In the presence of TFE, the aniline-substituted catalysts convert CO2 to carbon monoxide (CO) with high Faradaic efficiencies (≥89%) and have superior turnover frequencies (TOFs) relative to ReBpy (72.9 s-1), with 2-Re having the highest TOF of the series at 239 s-1, a value that is twice that of the next most active catalyst. TOFs of 123 and 109 s-1 were observed for the ortho- and para-substituted aniline complexes (1-Re and 3-Re), respectively. Indeed, catalytic activities vary widely across the series, showing a high sensitivity to the position of the amine functionality relative to the rhenium active site. IR and UV-vis spectroelectrochemical experiments were conducted on the aniline-substituted systems, revealing important differences between the catalysts and mechanistic insight.
Collapse
Affiliation(s)
- Kallol Talukdar
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Sayontani Sinha Roy
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Eva Amatya
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Elizabeth A Sleeper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | | | - Jonah W Jurss
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|