1
|
Luo LL, Lin Y, Linghu JH, Gong W, Luo YH, Liu M, Jin DC, Smagghe G, Liu TX, Gui SH, Yi TC. Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress. INSECT SCIENCE 2024; 31:773-791. [PMID: 37689966 DOI: 10.1111/1744-7917.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/11/2023]
Abstract
Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Yang Lin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Yuan-Hong Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Yang Z, Wang W, Deng M, Xiao T, Ma W, Huang X, Lu K. Characterization of Neuropeptides from Spodoptera litura and Functional Analysis of NPF in Diet Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10304-10313. [PMID: 38657164 DOI: 10.1021/acs.jafc.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenling Ma
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Huang C, Dong X, Yang X, Zou J, Yang M, Wang X, Li W, He Y. Identification of neuropeptides and their G protein-coupled receptors in the predatory stink bug, Arma custos (Hemiptera: Pentatomidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22094. [PMID: 38409857 DOI: 10.1002/arch.22094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
The predatory stink bug Arma custos has been selected as an effective biological control agent and has been successfully massly bred and released into fields for the control of a diverse insect pests. As a zoophytophagous generalist, A. custos relies on a complex neuropeptide signaling system to prey on distinct food and adapt to different environments. However, information about neuropeptide signaling genes in A. custos has not been reported to date. In the present study, a total of 57 neuropeptide precursor transcripts and 41 potential neuropeptide G protein-coupled receptor (GPCR) transcripts were found mainly using our sequenced transcriptome data. Furthermore, a number of neuropeptides and their GPCR receptors that were enriched in guts and salivary glands of A. custos were identified, which might play critical roles in feeding and digestion. Our study provides basic information for an in-depth understanding of biological and ecological characteristics of the predatory bug and would aid in the development of better pest management strategies based on the effective utilization and protection of beneficial natural enemies.
Collapse
Affiliation(s)
- Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiangli Dong
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Jingmiao Zou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Zhu S, Chen X, Xia S, Li Q, Ye Z, Zhao S, Liu K, Liu F. Hexamerin and allergen are required for female reproduction in the American cockroach, Periplaneta americana. INSECT SCIENCE 2024; 31:186-200. [PMID: 37327125 DOI: 10.1111/1744-7917.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
Reproduction is of great importance for the continuation of the species. In insects, the fat body is the major tissue for nutrient storage and involved in vitellogenesis, which is essential for female reproduction. Here, 2 proteins, hexamerin and allergen, were separated from the fat bodies of adult female American cockroaches (Periplaneta americana) and identified as storage proteins, encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa, respectively. The encoding genes of these 2 storage proteins are mainly expressed in the fat body. RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation, indicating that these storage proteins are involved in controlling reproduction. Importantly, the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone (JH) receptor gene Met and the primary response gene Kr-h1, and was induced by methoprene, a JH analog, in both in vivo and in vitro experiments. Altogether, we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach. The expression of their encoding genes is induced by JH signaling. Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sishi Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoting Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Jiang S, Marco HG, Scheich N, He S, Wang Z, Gäde G, McMahon DP. Comparative analysis of adipokinetic hormones and their receptors in Blattodea reveals novel patterns of gene evolution. INSECT MOLECULAR BIOLOGY 2023; 32:615-633. [PMID: 37382487 DOI: 10.1111/imb.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches.
Collapse
Affiliation(s)
- Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Nina Scheich
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Shulin He
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zongqing Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
6
|
Marco HG, König S, Gäde G. Predicted novel hypertrehalosaemic peptides of cockroaches are verified by mass spectrometry. Amino Acids 2023; 55:1641-1654. [PMID: 37882863 PMCID: PMC10689539 DOI: 10.1007/s00726-023-03337-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Small neuropeptides from the corpora cardiaca are responsible in cockroaches for the mobilisation of trehalose from the fat body into the haemolymph. Such hypertrehalosaemic hormones (HrTHs) belong to the large family of insect adipokinetic hormones (AKHs); a few HrTHs were previously sequenced from cockroaches, and from genomic and/or transcriptomic information one may predict the genes encoding HrTHs from more species. Definite elucidation of the primary structure of the mature peptide with putative modifications needs analytical chemical methods. In the current study, we use high-resolution mass spectrometry coupled with liquid chromatography to identify unequivocally the HrTHs of 13 cockroach species. Either genomic/transcriptomic information was available for most of the species examined, or from related species. We confirm predicted novel sequences and find hydroxyproline modification for the majority of the peptides. The novel decapeptides are structurally close to Bladi-HrTH, which is found in all seven of the investigated blaberid subfamilies. Bladi-HrTH and all the novel peptides elicit a hypertrehalosaemic response in Periplaneta americana, a blattid cockroach.
Collapse
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
7
|
Li W, Li Z, Yang X, Wang X, Yang M, Huang C, He Y. Transcriptome analysis reveals salivary gland-specific neuropeptide signaling genes in the predatory stink bug, Picromerus lewisi. Front Physiol 2023; 14:1270751. [PMID: 37841314 PMCID: PMC10570428 DOI: 10.3389/fphys.2023.1270751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Predatory stink bugs derive from phytophagous stink bugs and evolved enhanced predation skills. Neuropeptides are a diverse class of ancient signaling molecules that regulate physiological processes and behavior in animals, including stink bugs. Neuropeptide evolution might be important for the development of predation because neuropeptides can be converted to venoms that impact prey. However, information on neuropeptide signaling genes in predatory stink bugs is lacking. In the present study, neuropeptide signaling genes of Picromerus lewisi, an important predatory stink bug and an effective biological agent, were comprehensively identified by transcriptome analysis, with a total of 59 neuropeptide precursor genes and 58 potential neuropeptide receptor genes found. In addition, several neuropeptides and their receptors enriched in salivary glands of P. lewisi were identified. The present study and subsequent functional research contribute to an in-depth understanding of the biology and behavior of the predatory bugs and can provide basic information for the development of better pest management strategies, possibly including neuropeptide receptors as insecticide targets and salivary gland derived venom toxins as novel killing moleculars.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhimo Li
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Veenstra JA. Different neuroendocrine cell types in the pars intercerebralis of Periplaneta americana produce their own specific IGF-related peptides. Gen Comp Endocrinol 2023; 335:114233. [PMID: 36791825 DOI: 10.1016/j.ygcen.2023.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Of the nine genes of the American cockroach, Periplaneta americana, coding for peptides related to insulin and insulin-like growth factor, seven show significant expression in the central nervous system as demonstrated by the polymerase chain reaction on reverse transcribed RNA. In situ hybridisation shows that five of those are expressed by cells in the pars intercerebralis. Antisera raised to the predicted peptides show that these cells are neuroendocrine in nature and project to the corpora cardiaca. Interestingly, there are at least three cell types that each express different genes. This contrasts with Drosophila where a single cell type expresses a number of genes expressing several such peptides. Whereas in Drosophila the neuroendocrine cells producing insulin-like peptides also express sulfakinins, the arthropod orthologs of gastrin and cholecystokinin, in Periplaneta the sulfakinins are produced by different cells. Other neuropeptides known to be produced by the pars intercerebralis in Periplaneta and other insect species, such as the CRF-like diuretic hormone, neuroparsin, leucokinin or myosuppressin, neither colocalize with an insulin-related peptide. The separate cellular localization of these peptides and the existence of multiple insulin receptors in this species implies a more complex regulation by insulin and IGF-related peptides in cockroaches than in the fruit fly.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 Pessac Cedex, France.
| |
Collapse
|
9
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Sasao M, Uno T, Kitagawa R, Matsui A, Toryu F, Mizoguchi A, Kanamaru K, Sakamoto K, Uno Y. Localization of SNARE proteins in the brain and corpus allatum of Bombyx mori. Histochem Cell Biol 2023; 159:199-208. [PMID: 36129568 DOI: 10.1007/s00418-022-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.
Collapse
Affiliation(s)
- Mako Sasao
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Risa Kitagawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Asuka Matsui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Fumika Toryu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, 470-0195, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Katsuhiko Sakamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
11
|
Liu F, Cui Y, Lu H, Chen X, Li Q, Ye Z, Chen W, Zhu S. Myofilaments promote wing expansion and maintain genitalia morphology in the American cockroach, Periplaneta americana. INSECT MOLECULAR BIOLOGY 2023; 32:46-55. [PMID: 36214335 DOI: 10.1111/imb.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Insects are the most widely distributed and successful animals on the planet. A large number of insects are capable of flight with functional wings. Wing expansion is an important process for insects to achieve functional wings after eclosion and healthy genital morphology is crucial for adult reproduction. Myofilaments are functional units that constitute sarcomeres and trigger muscle contraction. Here, we identified four myofilament proteins, including Myosin, Paramyosin, Tropomyosin and Troponin T, from the wing pads of nymphs in the American cockroach, Periplaneta americana. RNAi-mediated knockdown of Myosin, Paramyosin, Tropomyosin and Troponin T in the early stage of final instar nymphs caused a severely curly wing phenotype in the imaginal moult, especially in the Paramyosin and Troponin T knockdown groups, indicating that these myofilament proteins are involved in controlling wing expansion behaviours during the nymph-adult transition. In addition, the knockdown resulted in abnormal external genitalia, caused ovulation failure, and affected male accessory gland development. Interestingly, the expression of myofilament genes was induced by methoprene, a juvenile hormone (JH) analogue, and decreased by the depletion of the JH receptor gene Met. Altogether, we have determined that myofilament genes play an important role in promoting wing expansion and maintaining adult genitalia morphology, and their expression is induced by JH signalling. Our data reveal a novel mechanism by which wing expansion is regulated by myofilaments and the functions of myofilaments are involved in maintaining genitalia morphology.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Huna Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Wanyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, People's Republic of China
| |
Collapse
|
12
|
Veenstra JA. Differential expression of some termite neuropeptides and insulin/IGF-related hormones and their plausible functions in growth, reproduction and caste determination. PeerJ 2023; 11:e15259. [PMID: 37128206 PMCID: PMC10148640 DOI: 10.7717/peerj.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Background Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.
Collapse
|
13
|
Marciniak P, Pacholska-Bogalska J, Ragionieri L. Neuropeptidomes of Tenebrio molitor L. and Zophobas atratus Fab. (Coleoptera, Polyphaga: Tenebrionidae). J Proteome Res 2022; 21:2247-2260. [PMID: 36107737 PMCID: PMC9552230 DOI: 10.1021/acs.jproteome.1c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Neuropeptides are signaling molecules that regulate almost all physiological processes in animals. Around 50 different genes for neuropeptides have been described in insects. In Coleoptera, which is the largest insect order based on numbers of described species, knowledge about neuropeptides and protein hormones is still limited to a few species. Here, we analyze the neuropeptidomes of two closely related tenebrionid beetles: Tenebrio molitor and Zophobas atratus─both of which are model species in physiological and pharmacological research. We combined transcriptomic and mass spectrometry analyses of the central nervous system to identify neuropeptides and neuropeptide-like and protein hormones. Several precursors were identified in T. molitor and Z. atratus, of which 50 and 40, respectively, were confirmed by mass spectrometry. This study provides the basis for further functional studies of neuropeptides as well as for the design of environmentally friendly and species-specific peptidomimetics to be used as biopesticides. Furthermore, since T. molitor has become accepted by the European Food Safety Authority as a novel food, a deeper knowledge of the neuropeptidome of this species will prove useful for optimizing production programs at an industrial scale.
Collapse
Affiliation(s)
- Paweł Marciniak
- Department
of Animal Physiology and Developmental Biology, Institute of Experimental
Biology, Faculty of Biology, Adam Mickiewicz
University, Poznań 61-614, Poland
| | - Joanna Pacholska-Bogalska
- Department
of Animal Physiology and Developmental Biology, Institute of Experimental
Biology, Faculty of Biology, Adam Mickiewicz
University, Poznań 61-614, Poland
| | - Lapo Ragionieri
- Department
for Biology, Institute of Zoology, University
of Cologne, Cologne 50674, Germany
| |
Collapse
|
14
|
Althaus V, Jahn S, Massah A, Stengl M, Homberg U. 3D-atlas of the brain of the cockroach Rhyparobia maderae. J Comp Neurol 2022; 530:3126-3156. [PMID: 36036660 DOI: 10.1002/cne.25396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022]
Abstract
The Madeira cockroach Rhyparobia maderae is a nocturnal insect and a prominent model organism for the study of circadian rhythms. Its master circadian clock, controlling circadian locomotor activity and sleep-wake cycles, is located in the accessory medulla of the optic lobe. For a better understanding of brain regions controlled by the circadian clock and brain organization of this insect in general, we created a three-dimensional (3D) reconstruction of all neuropils of the cerebral ganglia based on anti-synapsin and anti-γ-aminobutyric acid immunolabeling of whole mount brains. Forty-nine major neuropils were identified and three-dimensionally reconstructed. Single-cell dye fills complement the data and provide evidence for distinct subdivisions of certain brain areas. Most neuropils defined in the fruit fly Drosophila melanogaster could be distinguished in the cockroach as well. However, some neuropils identified in the fruit fly do not exist as distinct entities in the cockroach while others are lacking in the fruit fly. In addition to neuropils, major fiber systems, tracts, and commissures were reconstructed and served as important landmarks separating brain areas. Being a nocturnal insect, R. maderae is an important new species to the growing collection of 3D insect brain atlases and only the second hemimetabolous insect, for which a detailed 3D brain atlas is available. This atlas will be highly valuable for an evolutionary comparison of insect brain organization and will greatly facilitate addressing brain areas that are supervised by the circadian clock.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Azar Massah
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| |
Collapse
|
15
|
Wu HP, Wang XY, Hu J, Su RR, Lu W, Zheng XL. Identification of neuropeptides and neuropeptide receptor genes in Phauda flammans (Walker). Sci Rep 2022; 12:9892. [PMID: 35701459 PMCID: PMC9198061 DOI: 10.1038/s41598-022-13590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Neuropeptides and neuropeptide receptors are crucial regulators to insect physiological processes. The 21.0 Gb bases were obtained from Illumina sequencing of two libraries representing the female and male heads of Phauda flammans (Walker) (Lepidoptera: Phaudidae), which is a diurnal defoliator of ficus plants and usually outbreaks in the south and south-east Asia, to identify differentially expressed genes, neuropeptides and neuropeptide receptor whose tissue expressions were also evaluated. In total, 99,386 unigenes were obtained, in which 156 up-regulated and 61 down-regulated genes were detected. Fifteen neuropeptides (i.e., F1b, Ast, NP1, IMF, Y, BbA1, CAP2b, NPLP1, SIF, CCH2, NP28, NP3, PDP3, ARF2 and SNPF) and 66 neuropeptide receptor genes (e.g., A2-1, FRL2, A32-1, A32-2, FRL3, etc.) were identified and well-clustered with other lepidopteron. This is the first sequencing, identification neuropeptides and neuropeptide receptor genes from P. flammans which provides valuable information regarding the molecular basis of P. flammans.
Collapse
Affiliation(s)
- Hai-Pan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Ran-Ran Su
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
16
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Ragionieri L, Verdonck R, Verlinden H, Marchal E, Vanden Broeck J, Predel R. Schistocerca neuropeptides - An update. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104326. [PMID: 34767790 DOI: 10.1016/j.jinsphys.2021.104326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 05/26/2023]
Abstract
We compiled a comprehensive list of 67 precursor genes encoding neuropeptides and neuropeptide-like peptides using the Schistocerca gregaria genome and several transcriptome datasets. 11 of these 67 precursor genes have alternative transcripts, bringing the total number of S. gregaria precursors identified in this study to 81. Based on this precursor information, we used different mass spectrometry approaches to identify the putative mature, bioactive peptides processed in the nervous system of S. gregaria. The thereby generated dataset for S. gregaria confirms significant conservation of the entire neuropeptidergic gene set typical of insects and also contains precursors typical of Polyneoptera only. This is in striking contrast to the substantial losses of peptidergic systems in some holometabolous species. The neuropeptidome of S. gregaria, apart from species-specific sequences within the known range of variation, is quite similar to that of Locusta migratoria and even to that of less closely related Polyneoptera. With the S. gregaria peptidomics data presented here, we have thus generated a very useful source of information that could also be relevant for the study of other polyneopteran species.
Collapse
Affiliation(s)
- Lapo Ragionieri
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Rik Verdonck
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium; Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Heleen Verlinden
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Elisabeth Marchal
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | - Reinhard Predel
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
18
|
Veenstra JA. Identification of cells expressing Calcitonins A and B, PDF and ACP in Locusta migratoria using cross-reacting antisera and in situ hybridization. Peptides 2021; 146:170667. [PMID: 34600039 DOI: 10.1016/j.peptides.2021.170667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
This work was initiated because an old publication suggested that electrocoagulation of four paraldehyde fuchsin positive cells in the brain of Locusta migratoria might produce a diuretic hormone, the identity of which remains unknown, since none of the antisera to the various putative Locusta diuretic hormones recognizes these cells. The paraldehyde fuchsin positive staining suggests a peptide with a disulfide bridge and the recently identified Locusta calcitonins have both a disulfide bridge and are structurally similar to calcitonin-like diuretic hormone. In situ hybridization and antisera raised to calcitonin-A and -B were used to show where these peptides are expressed in Locusta. Calcitonin-A is produced by neurons and neuroendocrine cells that were previously shown to be immunoreactive to an antiserum to pigment dispersing factor (PDF). The apparent PDF-immunoreactivity in these neurons and neuroendocrine cells is due to crossreactivity with the calcitonin-A precursor. As confirmed by both an PDF-precursor specific antiserum and in situ hybridisation, those calcitonin-A expressing cells do not express PDF. Calcitonin B is expressed by numerous enteroendocrine cells in the midgut as well as the midgut caeca. A guinea pig antiserum to calcitonin A seemed quite specific as it recognized only the calcitonin A expressing cells. However, rabbit antisera to calcitonin-A and-B both crossreacted with neuroendocrine cells in the brain that produce ACP (AKH/corazonin-related peptide), this is almost certainly due to the common C-terminal dipeptide SPamide that is shared between Locusta calcitonin-A, calcitonin-B and ACP.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 Pessac Cedex, France.
| |
Collapse
|
19
|
Habenstein J, Schmitt F, Liessem S, Ly A, Trede D, Wegener C, Predel R, Rössler W, Neupert S. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J Neurochem 2021; 158:391-412. [PMID: 33704768 DOI: 10.1111/jnc.15346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.
Collapse
Affiliation(s)
- Jens Habenstein
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Franziska Schmitt
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Sander Liessem
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Alice Ly
- Bruker Daltonik GmbH, Bremen, Germany
| | - Dennis Trede
- SCiLS, Zweigniederlassung Bremen der Bruker Daltonik GmbH, Bremen, Germany
| | - Christian Wegener
- Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg Insect Research, University of Würzburg, Würzburg, Germany
| | - Reinhard Predel
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Susanne Neupert
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany.,Department of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
20
|
Nässel DR. Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila. Int J Mol Sci 2021; 22:1940. [PMID: 33669286 PMCID: PMC7920058 DOI: 10.3390/ijms22041940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly's behavior and physiology, including feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
21
|
Nässel DR, Wu SF. Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates. Int J Mol Sci 2021; 22:1531. [PMID: 33546414 PMCID: PMC7913504 DOI: 10.3390/ijms22041531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1-3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep-metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|