1
|
Yang H, Wang L, Zhang M, Wu X, Li Z, Ma K. Stemona alkaloid derivative induce ferroptosis of colorectal cancer cell by mediating carnitine palmitoyltransferase 1. Front Chem 2024; 12:1478674. [PMID: 39421605 PMCID: PMC11484037 DOI: 10.3389/fchem.2024.1478674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Accumulation of acylcarnitines is a characteristic feature of various metabolic disorders affecting fatty acid metabolism. Despite extensive research, no specific molecules have been identified to induce ferroptosis through the regulation of acylcarnitine metabolism. In this study, acylcarnitine accumulation was identified based on cell metabolomics study after the treatment with Stemona alkaloid derivative (SA-11), which was proved to induce ferroptosis in our previous research. Furthermore, the CPT-1 level was proved to significantly increase, while the CPT-2 level indicated no significant difference, which resulted in the accumulation of acylcarnitine. Besides, the ferroptosis-inducing ability of SA-11 was significantly enhanced by the addition of exogenous acylcarnitine, presumably due to the production of additional ROS. This hypothesis was corroborated by the observation of increased ROS levels in HCT-116 cells treated with SA-11 compared to the control group. These findings suggest that targeting acylcarnitine metabolism, particularly through CPT-1, may offer a novel therapeutic strategy for cancer treatment by enhancing ferroptosis induction.
Collapse
Affiliation(s)
- He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Ling Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Mengcheng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Wu X, Li Y, Han C, Li S, Qin X. Discovery of Aloperine as a Potential Antineoplastic Agent for Cholangiocarcinoma Harboring Mutant IDH1. Int J Mol Sci 2024; 25:9226. [PMID: 39273177 PMCID: PMC11395030 DOI: 10.3390/ijms25179226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a universally lethal malignancy with increasing incidence. However, ICC patients receive limited benefits from current drugs; therefore, we must urgently explore new drugs for treating ICC. Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, can suppress cancer cell growth via numerous mechanisms and have therapeutic effects on liver-related diseases. However, the impact of quinolizidine alkaloids on intrahepatic cholangiocarcinoma has not been fully studied. In this article, the in vitro anti-ICC activities of six natural quinolizidine alkaloids were explored. Aloperine was the most potent antitumor compound among the tested quinolizidine alkaloids, and it preferentially inhibited RBE cells rather than HCCC-9810 cells. Mechanistically, aloperine can potentially decrease glutamate content by inhibiting the hydrolysis of glutamine, reducing D-2-hydroxyglutarate levels and, consequently, leading to preferential growth inhibition in isocitrate dehydrogenase (IDH)-mutant ICC cells. In addition, aloperine preferentially resensitizes RBE cells to 5-fluorouracil, AGI-5198 and olaparib. This article demonstrates that aloperine shows preferential antitumor effects in intrahepatic cholangiocarcinoma cells harboring the mutant IDH1 by decreasing D-2-hydroxyglutarate, suggesting that aloperine could be used as a lead compound or adjuvant chemotherapy drug to treat ICC harboring the mutant IDH.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.L.); (C.H.)
| | - Yang Li
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.L.); (C.H.)
| | - Chenchen Han
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.L.); (C.H.)
| | - Shifei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China;
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China; (Y.L.); (C.H.)
| |
Collapse
|
3
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
4
|
Vurro V, Moschetta M, Bondelli G, Sardar S, Magni A, Sesti V, Paternò GM, Bertarelli C, D’Andrea C, Lanzani G. Membrane Order Effect on the Photoresponse of an Organic Transducer. MEMBRANES 2023; 13:538. [PMID: 37233599 PMCID: PMC10220526 DOI: 10.3390/membranes13050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Non-genetic photostimulation, which allows for control over cellular activity via the use of cell-targeting phototransducers, is widely used nowadays to study and modulate/restore biological functions. This approach relies on non-covalent interactions between the phototransducer and the cell membrane, thus implying that cell conditions and membrane status can dictate the effectiveness of the method. For instance, although immortalized cell lines are traditionally used in photostimulation experiments, it has been demonstrated that the number of passages they undergo is correlated to the worsening of cell conditions. In principle, this could impact cell responsivity against exogenous stressors, including photostimulation. However, these aspects have usually been neglected in previous experiments. In this work, we investigated whether cell passages could affect membrane properties (such as polarity and fluidity). We applied optical spectroscopy and electrophysiological measurements in two different biological models: (i) an epithelial immortalized cell line (HEK-293T cells) and (ii) liposomes. Different numbers of cell passages were compared to a different morphology in the liposome membrane. We demonstrated that cell membranes show a significant decrease in ordered domains upon increasing the passage number. Furthermore, we observed that cell responsivity against external stressors is markedly different between aged and non-aged cells. Firstly, we noted that the thermal-disordering effect that is usually observed in membranes is more evident in aged cells than in non-aged ones. We then set up a photostimulation experiment by using a membrane-targeted azobenzene as a phototransducer (Ziapin2). As an example of a functional consequence of such a condition, we showed that the rate of isomerization of an intramembrane molecular transducer is significantly impaired in aged cells. The reduction in the photoisomerization rate translates in cells with a sustained reduction of the Ziapin2-related hyperpolarization of the membrane potential and an overall increase in the molecule fluorescence. Overall, our results suggest that membrane stimulation strongly depends on membrane order, highlighting the importance of cell passage during the characterization of the stimulation tools. This study can shine light on the correlation between aging and the development of diseases driven by membrane degradation as well as on the different cell responsivities against external stressors, such as temperature and photostimulation.
Collapse
Affiliation(s)
- Vito Vurro
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
| | - Matteo Moschetta
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
| | - Gaia Bondelli
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| | - Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
| | - Arianna Magni
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| | - Valentina Sesti
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| | - Chiara Bertarelli
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Cosimo D’Andrea
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20134 Milan, Italy; (V.V.); (M.M.); (S.S.); (A.M.); (V.S.); (G.M.P.); (C.B.); (C.D.)
- Department of Physics, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Weiskirchen S, Schröder SK, Buhl EM, Weiskirchen R. A Beginner's Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells 2023; 12:682. [PMID: 36899818 PMCID: PMC10000895 DOI: 10.3390/cells12050682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
The cultivation of cells in a favorable artificial environment has become a versatile tool in cellular and molecular biology. Cultured primary cells and continuous cell lines are indispensable in investigations of basic, biomedical, and translation research. However, despite their important role, cell lines are frequently misidentified or contaminated by other cells, bacteria, fungi, yeast, viruses, or chemicals. In addition, handling and manipulating of cells is associated with specific biological and chemical hazards requiring special safeguards such as biosafety cabinets, enclosed containers, and other specialized protective equipment to minimize the risk of exposure to hazardous materials and to guarantee aseptic work conditions. This review provides a brief introduction about the most common problems encountered in cell culture laboratories and some guidelines on preventing or tackling respective problems.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
6
|
Luo X, Chang S, Xiao S, Peng Y, Gao Y, Hu F, Liang J, Xu Y, Du K, Chen Y, Qin J, Meltzer SJ, Deng S, Feng X, Fan X, Hou G, Jin Z, Zhang X. PAD4-dependent citrullination of nuclear translocation of GSK3β promotes colorectal cancer progression via the degradation of nuclear CDKN1A. Neoplasia 2022; 33:100835. [PMID: 36113195 PMCID: PMC9483803 DOI: 10.1016/j.neo.2022.100835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Peptidylarginine deiminase 4 (PAD4), a Ca2+-dependent enzyme, catalyzes the conversion of arginine to citrulline and has been strongly associated with many malignant tumors. However, the molecular mechanisms of PAD4 in the development and progression of colorectal cancer (CRC) remain unclearly defined. In our study, PAD4 expression was increased in CRC tissues and cells, and was closely related to tumor size, lymph node metastasis. Moreover, the transcription factor KLF9 directly bound to PADI4 gene promoter, leading to overexpression of PAD4 in CRC cells, which augmented cell growth and migration. We revealed that PAD4 interacted with and citrullinated glycogen synthase kinase-3β (GSK3β) in CRC cells, and GSK3β Arg-344 was the dominating PAD4-citrullination site. Furthermore, IgL2 and catalytic domains of PAD4 directly bound to the kinase domain of GSK3β in CRC cells. Mechanistically, PAD4 promoted the transport of GSK3β from the cytoplasm to the nucleus, thereby increasing the ubiquitin-dependent proteasome degradation of nuclear cyclin-dependent kinase inhibitor 1 (CDKN1A). Our study is the first to reveal the details of a critical PAD4/GSK3β/CDKN1A signaling axis for CRC progression, and provides evidence that PAD4 is a potential diagnosis biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Shanshan Chang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Siyu Xiao
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yuli Gao
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Fan Hu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jianxue Liang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yidan Xu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Kaining Du
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jiequan Qin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Shiqi Deng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Gangqiang Hou
- Department of Medical Image Center, Kangning Hospital of Shenzhen, Shenzhen, Guangdong Province, People's Republic of China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Serial Passaging of RAW 264.7 Cells Modulates Intracellular AGE Formation and Downregulates RANKL-Induced In Vitro Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23042371. [PMID: 35216486 PMCID: PMC8877082 DOI: 10.3390/ijms23042371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
The passage number of cells refers to the number of subculturing processes that the cells have undergone. The effect of passage number on morphological and phenotypical characteristics of cells is of great importance. Advanced glycation end products have also been associated with cell functionality and characteristics. Murine monocyte RAW 264.7 cells differentiate into osteoclasts upon receptor activation caused by nuclear factor-kappa-Β ligand (RANKL) treatment. This study aims to identify the role of passage number on intracellular advanced glycation end products (AGEs) formation and osteoclastogenic differentiation of RAW 264.7 cells. Western blotting was performed to check intracellular AGE formation along with fluorometric analysis using a microplate reader. Tartrate-resistant acid phosphatase (TRAP) staining was performed to check osteoclastogenic differentiation, and qPCR was realized to check the responsible mRNA expression. Immunofluorescence was used to check the morphological changes. Intracellular AGE formation was increased with passaging, and the higher passage number inhibited multinucleated osteoclastogenic differentiation. Osteoclastogenic gene expression also showed a reducing trend in higher passages, along with a significant reduction in F-actin ring size and number. Lower passages should be used to avoid the effects of cell subculturing in in vitro osteoclastogenesis study using RAW 264.7 cells.
Collapse
|
8
|
Chan HSC, Ng HK, Chan AKY, Cheng SH, Chow C, Wong N, Wong GKC. Establishment and characterization of meningioma patient-derived organoid. J Clin Neurosci 2021; 94:192-199. [PMID: 34863437 DOI: 10.1016/j.jocn.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Meningioma is a central nervous system tumor originated from arachnoid cells. 2D cell culture is widely used as a platform for tumor research as it enables us to culture cells in in vitro and a controlled environment. However, in 2D culture condition, 3D architecture of in vivo tumor mass is lost and phenotypic change may occur. Due to the drawbacks of 2D cell culture, organoid culture is seen as an alternative platform for disease modeling, drug testing and personalized medicine. The objective of this study was to establishing protocol for culturing cells from patient meningioma tissue in in vitro 3D environment. Eight meningiomas were collected for the 3D organoid culture. Cells of 5 meningioma tissues survived and proliferated. Under 3D culture condition, cell aggregates were formed and cytoplasmic processes linking the cell aggregates could be observed. In H&E staining, ovaloid cells and spindle cells were observed. Resembling cultured organoids observed under the light microscope, cell aggregates were also observed in the H&E staining. Epithelial Membrane Antigen (EMA) staining was positive. In 4 (80%) cultured organoids, low Ki67 index (≤6%) were measured. In one cultured organoid, a high Ki67 index (12.8%) was seen. The result of this study revealed the feasibility of culturing meningioma cells in in vitro 3D culture condition. Organoid technology showed its potential as an alternative platform for meningioma research.
Collapse
Affiliation(s)
- Henry Siu Cheung Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Ho Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sau Ha Cheng
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, N.T., Hong Kong, China
| | - Chit Chow
- Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, N.T., Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China.
| |
Collapse
|