1
|
Jin S, Wang Y, Hu S, Yan G. The prognostic value and immunological role of calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) in pan-cancer study. Medicine (Baltimore) 2024; 103:e40072. [PMID: 39465821 PMCID: PMC11479412 DOI: 10.1097/md.0000000000040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
A thorough assessment of calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) in pan-cancer studies is currently absent. We integrate multi-omics and clinical data to conduct a molecular landscape of CAMKK2. Gene variation results revealed abnormal high frequency mutations of CAMKK2 in uterine corpus endometrial carcinoma, while expression level analysis demonstrated relatively high expression of CAMKK2 in prostate adenocarcinoma. The aberrant expression of CAMKK2 was found to be predictive of survival outcomes in several cancer types. Additionally, we identified potential regulators of CAMKK2 expression, including miRNAs such as miR.129.1.3p, as well as small-molecule drugs such as EPZ004777, which significantly correlated with CAMKK2 expression. Single-cell transcriptome analysis of kidney renal clear cell carcinoma further revealed a significantly higher expression of CAMKK2 in and monocyte and macrophage M1. Furthermore, in the kidney renal clear cell carcinoma IMvigor210 cohort, patients ongoing immunotherapy with higher CAMKK2 expression experienced a significantly longer median overall survival, but it was observed that in bladder urothelial carcinoma GSE176307 and skin cutaneous melanoma GSE78220 cohorts, CAMKK2 might significantly prolong overall survival. Briefly, CAMKK2 emerges as a promising molecular biomarker that holds potential implications for prognostic evaluation and predicting the effectiveness of immunotherapy across cancers.
Collapse
Affiliation(s)
- Senjun Jin
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanyan Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng’an Hu
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guangzhao Yan
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ishikawa S, Umemura M, Nakakaji R, Nagasako A, Nagao K, Mizuno Y, Sugiura K, Kioi M, Mitsudo K, Ishikawa Y. EP4-induced mitochondrial localization and cell migration mediated by CALML6 in human oral squamous cell carcinoma. Commun Biol 2024; 7:567. [PMID: 38745046 PMCID: PMC11093972 DOI: 10.1038/s42003-024-06231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.
Collapse
Affiliation(s)
- Soichiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kagemichi Nagao
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuto Mizuno
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kei Sugiura
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitomu Kioi
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Singh I, Kanichery A, Kotimoole CN, Modi PK, Prasad TSK, Hoti SL. Unpacking Immune Modulation as a Site of Therapeutics Innovation for Nematode Parasite Wuchereria bancrofti: A Temporal Quantitative Phosphoproteomics Profiling of Macrophage Migration Inhibitory Factor 2. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:125-137. [PMID: 38527276 DOI: 10.1089/omi.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. Wuchereria bancrofti is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite W. bancrofti also produces two homologs of MIF (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched CDK4, CDK1, and DNAPK kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for W. bancrofti.
Collapse
Affiliation(s)
- Ishwar Singh
- Department of Neglected Tropical Diseases and Translational Research, ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of the Interdisciplinary Science, KLE Academy of Higher Education and Research, (Deemed to be University), Belagavi, Karnataka, India
| | - Anagha Kanichery
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Sugeerappa Laxamannappa Hoti
- Department of Neglected Tropical Diseases and Translational Research, ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
4
|
Gupta P, Goswami SG, Kumari G, Saravanakumar V, Bhargava N, Rai AB, Singh P, Bhoyar RC, Arvinden VR, Gunda P, Jain S, Narayana VK, Deolankar SC, Prasad TSK, Natarajan VT, Scaria V, Singh S, Ramalingam S. Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nat Commun 2024; 15:1794. [PMID: 38413594 PMCID: PMC10899644 DOI: 10.1038/s41467-024-46036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Ex vivo cellular system that accurately replicates sickle cell disease and β-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and β-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally, these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably, we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype, which reactivates fetal hemoglobin levels and rescues the disease phenotypes, thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether, we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling, drug screenings and cell and gene therapy-based applications.
Collapse
Affiliation(s)
- Pragya Gupta
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangam Giri Goswami
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geeta Kumari
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vinodh Saravanakumar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Nupur Bhargava
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Praveen Singh
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - V R Arvinden
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Padma Gunda
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Vanya Kadla Narayana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Sayali C Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Vivek T Natarajan
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Sivaprakash Ramalingam
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Chen Y, Whitefield B, Nevius E, Hill M, DelRosario J, Sinitsyna N, Shanmugasundaram V, Mukherjee D, Shi L, Mayne CG, Rousseau AM, Bernard SM, Buenviaje J, Khambatta G, El Samin M, Wallace M, Nie Z, Sivakumar P, Hamann LG, McDonnell DP, D'Agostino LA. Identification of Small Molecule Inhibitors and Ligand Directed Degraders of Calcium/Calmodulin Dependent Protein Kinase Kinase 1 and 2 (CaMKK1/2). J Med Chem 2023; 66:15750-15760. [PMID: 38009718 DOI: 10.1021/acs.jmedchem.3c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets. We sought to generate selective inhibitors and degraders to understand the biological impact of inhibiting catalytic activity and scaffolding and the potential therapeutic benefits of targeting CaMKK2. We report herein selective, ligand-efficient inhibitors and ligand-directed degraders of CaMKK2 that were used to probe immune and tumor intrinsic biology. These molecules provide two distinct strategies for ablating CaMKK2 signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Young Chen
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Brandon Whitefield
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Erin Nevius
- Bristol Myers Squibb, 424 Dexter Ave. N. Seattle, Seattle, Washington 98109, United States
| | - Mark Hill
- Bristol Myers Squibb, 424 Dexter Ave. N. Seattle, Seattle, Washington 98109, United States
| | - Joselyn DelRosario
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Nadia Sinitsyna
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | | | - Debarati Mukherjee
- Dept of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Lihong Shi
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | | | - Anne-Marie Rousseau
- Bristol Myers Squibb, 424 Dexter Ave. N. Seattle, Seattle, Washington 98109, United States
| | - Steffen M Bernard
- Celgene, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Jennifer Buenviaje
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Gody Khambatta
- Bristol Myers Squibb, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Miriam El Samin
- Bristol Myers Squibb, 200 Cambridge Park Drive, Cambridge, Massachusetts 02142, United States
| | - Michael Wallace
- Celgene, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Zhe Nie
- Celgene, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Pallavur Sivakumar
- Bristol Myers Squibb, 424 Dexter Ave. N. Seattle, Seattle, Washington 98109, United States
| | - Lawrence G Hamann
- Bristol Myers Squibb, 200 Cambridge Park Drive, Cambridge, Massachusetts 02142, United States
| | - Donald P McDonnell
- Dept of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | | |
Collapse
|
6
|
Zhang H, Dong X, Ding X, Liu G, Yang F, Song Q, Sun H, Chen G, Li S, Li Y, Wang M, Guo T, Zhang Z, Li B, Yang L. Bufalin targeting CAMKK2 inhibits the occurrence and development of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. J Transl Med 2023; 21:900. [PMID: 38082327 PMCID: PMC10714474 DOI: 10.1186/s12967-023-04613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. METHODS IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/β-catenin pathway. SKL2001, an activator of β-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/β-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Street, Weifang, 261041, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6, Tongfu Road, Qingdao, 266034, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Li C, Hao J, Qiu H, Xin H. CaMKK2 alleviates myocardial ischemia/reperfusion injury by inhibiting oxidative stress and inflammation via the action on the AMPK-AKT-GSK-3β/Nrf2 signaling cascade. Inflamm Res 2023:10.1007/s00011-023-01756-6. [PMID: 37338678 DOI: 10.1007/s00011-023-01756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) can regulate numerous biological processes and is implicated in diverse pathological processes. Yet its role in myocardial ischemia/reperfusion (MI/R) injury remains unknown. This project explored the possible functions and mechanisms of CaMKK2 in MI/R injury. METHODS A rat model of MI/R in vivo was established using the left anterior descending coronary artery ligation method. Rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) in vitro to establish a cell model. Overexpression of CaMKK2 was achieved by infecting recombinant adeno-associated virus or adenovirus expressing CaMKK2. Real-time quantitative PCR, immunoblotting, TTC staining, TUNEL assay, ELISA, oxidative stress detection assays, flow cytometry, and CCK-8 assay were carried out. RESULTS A decline in CaMKK2 levels was induced by MI/R in vivo or H/R in vitro. Up-modulation of CaMKK2 in rats ameliorated the cardiac injury evoked by MI/R injury accompanied by suppression of cardiac apoptosis, oxidative stress, and proinflammatory response. Rat cardiomyocytes with CaMKK2 overexpression were also protected from H/R damage by inhibiting apoptosis, oxidative stress, and proinflammatory response. CaMKK2 overexpression led to increased phosphorylation of AMPK, AKT, and GSK-3β, and enhanced activation of Nrf2 under MI/R or H/R conditions. Inhibition of AMPK abolished CaMKK2-mediated Nrf2 activation and relevant cardioprotective effect. Restraint of Nrf2 also diminished CaMKK2-mediated relevant cardioprotective effect. CONCLUSIONS Up-regulation of CaMKK2 provides a therapeutic benefit in the rat model of MI/R injury by boosting the Nrf2 pathway through regulation of AMPK/AKT/GSK-3β, which suggests CaMKK2 as a new molecular target for the treatment of MI/R injury.
Collapse
Affiliation(s)
- Chengliang Li
- Department of General Practice, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiajia Hao
- Department of General Practice, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Huichang Qiu
- Department of General Practice, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Hong Xin
- Healthcare Simulation Center, Department of Research, Education and Information, Guangzhou First People's Hospital, No.1 Panfu Road, Guangzhou, 510180, China.
| |
Collapse
|
8
|
Dcunha R, Kumari S, Najar MA, Aravind A, Suvarna KS, Hanumappa A, Mutalik SP, Mutalik S, Kalthur SG, Rajanikant GK, Siddiqui S, Alrumman S, Alamri SAM, Raghu SV, Adiga SK, Kannan N, Thottethodi Subrahmanya KP, Kalthur G. High doses of GrassOut Max poses reproductive hazard by affecting male reproductive function and early embryogenesis in Swiss albino mice. CHEMOSPHERE 2023:139215. [PMID: 37336444 DOI: 10.1016/j.chemosphere.2023.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or 50 mg kg-1 body weight analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d from the first day of treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim-equivalent exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-equivalent treated mice, the expression of Erβ and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-equivalent treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.
Collapse
Affiliation(s)
- Reyon Dcunha
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Keerthana Sandesh Suvarna
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Hanumappa
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Sazada Siddiqui
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | - Sulaiman Alrumman
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | | | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
9
|
Devasahayam Arokia Balaya R, Chandrasekaran J, Kanekar S, Kumar Modi P, Dagamajalu S, Gopinathan K, Raju R, Prasad TSK. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) inhibitors: a novel approach in small molecule discovery. J Biomol Struct Dyn 2023; 41:15196-15206. [PMID: 37029757 DOI: 10.1080/07391102.2023.2193999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 04/09/2023]
Abstract
The calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) plays a key role in regulation of intracellular calcium levels and signaling pathways. It is involved in activation of downstream signaling pathways that regulate various cellular processes. Dysregulation of CAMKK2 activity has been linked to various diseases including cancer, suggesting that CAMKK2 inhibitors might be beneficial in oncological, metabolic and inflammatory indications. The most pressing issues in small molecule discovery are synthesis feasibility, novel chemical structure and desired biological characteristics. To circumvent this constraint, we employed 'DrugspaceX' for rapid lead identification, followed by repositioning seven FDA-approved drugs for CAMKK2 inhibition. Further, first-level transformation (Set1 analogues) was performed in 'DrugspaceX', followed by virtual screening. The t-SNE visualization revealed that the transformations surrounding Rucaparib, Treprostinil and Canagliflozin are more promising for developing CAMKK2 inhibitors. Second, using the top-ranked Set1 analogues, Set2 analogues were generated, and virtual screening revealed the top-ranked five analogues. Among the top five Set2 analogues, DE273038_5 had the lowest docking score of -11.034 kcal/mol and SA score of 2.59, retaining the essential interactions with Hotspot residues LYS194 and VAL270 across 250 ns simulation period. When compared to the other four compounds, the ligand effectiveness score was 0.409, and the number of rotatable penalties was only three. Further, DE273038_5 after two rounds of transformations was discovered to be novel and had not been previously described in other databases. These data suggest that the new candidate DE273038_5 is likely to have inhibitory activity at the CAMKK2 active site, implying potential therapeutic use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Jaikanth Chandrasekaran
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher education and Research (Deemed to be University), Chennai, India
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Kirthika Gopinathan
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher education and Research (Deemed to be University), Chennai, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
10
|
Wei JJ, Li XJ, Liu W, Chai XJ, Zhu XY, Sun PH, Liu F, Zhao YK, Huang JL, Liu YF, Zhao ST. Eucommia Polysaccharides Ameliorate Aging-Associated Gut Dysbiosis: A Potential Mechanism for Life Extension in Drosophila. Int J Mol Sci 2023; 24:ijms24065881. [PMID: 36982954 PMCID: PMC10054339 DOI: 10.3390/ijms24065881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The gut microbiota is increasingly considered to play a key role in human immunity and health. The aging process alters the microbiota composition, which is associated with inflammation, reactive oxygen species (ROS), decreased tissue function, and increased susceptibility to age-related diseases. It has been demonstrated that plant polysaccharides have beneficial effects on the gut microbiota, particularly in reducing pathogenic bacteria abundance and increasing beneficial bacteria populations. However, there is limited evidence of the effect of plant polysaccharides on age-related gut microbiota dysbiosis and ROS accumulation during the aging process. To explore the effect of Eucommiae polysaccharides (EPs) on age-related gut microbiota dysbiosis and ROS accumulation during the aging process of Drosophila, a series of behavioral and life span assays of Drosophila with the same genetic background in standard medium and a medium supplemented with EPs were performed. Next, the gut microbiota composition and protein composition of Drosophila in standard medium and the medium supplemented with EPs were detected using 16S rRNA gene sequencing analysis and quantitative proteomic analysis. Here, we show that supplementation of Eucommiae polysaccharides (EPs) during development leads to the life span extension of Drosophila. Furthermore, EPs decreased age-related ROS accumulation and suppressed Gluconobacter, Providencia, and Enterobacteriaceae in aged Drosophila. Increased Gluconobacter, Providencia, and Enterobacteriaceae in the indigenous microbiota might induce age-related gut dysfunction in Drosophila and shortens their life span. Our study demonstrates that EPs can be used as prebiotic agents to prevent aging-associated gut dysbiosis and reactive oxidative stress.
Collapse
Affiliation(s)
- Jing-Jing Wei
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Xiu-Juan Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Xue-Jun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an 710068, China
| | - Xiao-Yan Zhu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Peng-Hao Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Feng Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yong-Kang Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jun-Lang Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Ya-Fei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Shan-Ting Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
11
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|
12
|
Clostridium novyi’s Alpha-Toxin Changes Proteome and Phosphoproteome of HEp-2 Cells. Int J Mol Sci 2022; 23:ijms23179939. [PMID: 36077344 PMCID: PMC9456407 DOI: 10.3390/ijms23179939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.
Collapse
|
13
|
Nagendra AH, Najar MA, Bose B, Shenoy PS. High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128654. [PMID: 35286933 DOI: 10.1016/j.jhazmat.2022.128654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.
Collapse
Affiliation(s)
- Apoorva H Nagendra
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bipasha Bose
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - P Sudheer Shenoy
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
14
|
Thimmappa PY, Nair AS, Najar MA, Mohanty V, Shastry S, Prasad TSK, Joshi MB. Quantitative phosphoproteomics reveals diverse stimuli activate distinct signaling pathways during neutrophil activation. Cell Tissue Res 2022; 389:241-257. [PMID: 35622142 PMCID: PMC9287233 DOI: 10.1007/s00441-022-03636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Neutrophils display functional heterogeneity upon responding diversely to physiological and pathological stimulations. During type 2 diabetes (T2D), hyperglycemia constitutively activates neutrophils, leading to reduced response to infections and on the other hand, elevated metabolic intermediates such as homocysteine induce bidirectional activation of platelets and neutrophils leading to thrombosis. Hence, in the context of T2D-associated complications, we examined the influence of high glucose, homocysteine, and LPS representing effector molecules of hyperglycemia, thrombosis, and infection, respectively, on human neutrophil activation to identify distinct signaling pathways by quantitative phosphoproteomics approach. High glucose activated C-Jun-N-Terminal Kinase, NTRK1, SYK, and PRKACA kinases associated with Rho GTPase signaling and phagocytosis, whereas LPS induced AKT1, SRPK2, CSNK2A1, and TTN kinases involved in cytokine signaling and inflammatory response. Homocysteine treatment led to activatation of LRRK2, FGR, MAPK3, and PRKCD kinases which are associated with neutrophil degranulation and cytoskeletal remodeling. Diverse inducers differentially modulated phosphorylation of proteins associated with neutrophil functions such as oxidative burst, degranulation, extracellular traps, and phagocytosis. Further validation of phosphoproteomics data on selected kinases revealed neutrophils pre-cultured under high glucose showed impeded response to LPS to phosphorylate p-ERK1/2Thr202/Tyr204, p-AKTSer473, and C-Jun-N-Terminal KinaseSer63 kinases. Our study provides novel phosphoproteome signatures that may be explored to understand neutrophil biology in T2D-associated complications.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, India
| | - Varshasnatha Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
15
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
16
|
Arefian M, Antil N, Najar MA, Behera SK, Subba P, Prasad TSK. Identifying Novel Genes and Proteins Involved in Salt Stress Perception and Signaling of Rice Seedlings. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:151-164. [PMID: 35073185 DOI: 10.1089/omi.2021.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice is one of the most important crops worldwide. Crop production is constrained markedly, however, by abiotic stresses such as salinity. To elucidate early stress response signaling networks involved in rice, we report in this study an original quantitative proteomic analysis of the rice seedlings subjected to short-term salt stress. We detected 570 differentially regulated proteins (DRPs) in the root sample. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that DRPs of the root were mainly involved in membrane trafficking, kinase activity, and ion toxicity responses. Interactome analysis revealed the central role of root proteins involved in membrane trafficking in the early response to salinity, such as cell surface receptor-like kinases (RLKs), phosphatidylinositols (PIs), calcium-dependent protein kinases 1 and 5, calcineurin B-like protein-interacting proteins, protein phosphatase 2C (PP2C) inhibitors, and abscisic acid receptors (PYL5/10), indicating activation of S-type anion channel. Furthermore, the proteogenomic analysis revealed 128 unique genome search-specific peptides with high-quality mass spectromety (MS/MS) spectra. We identified 38 novel protein-coding genes, refined the annotation of 17 existing gene models, and suggested several novel stress-responsive proteins, such as RLK5, peroxidase 27, and growth-regulating factor 2. Novel peptides had an ortholog match in the curated protein sequence set of other plant species. In conclusion, this study identifies novel stress-responsive proteins and genes of rice, thus warrant future consideration as candidates for molecular breeding of stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | - Neelam Antil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | | |
Collapse
|
17
|
Deolankar SC, Najar MA, Raghu SV, Prasad TSK. Aβ42 Expressing Drosophila melanogaster Model for Alzheimer's Disease: Quantitative Proteomics Identifies Altered Protein Dynamics of Relevance to Neurodegeneration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:51-63. [PMID: 35006003 DOI: 10.1089/omi.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Production and deposition of β-amyloid peptides (Aβ) are among the major hallmarks of the pathogenesis of Alzheimer's disease (AD). Mapping the altered protein dynamics associated with Aβ accumulation and neuronal damage may open up new avenues to innovation for drug target discovery in AD. Using quantitative proteomics, we report new findings from the amyloid beta-peptide with 42 amino acids (Aβ42) expressing Drosophila melanogaster model for AD compared to that of the wild-type flies. We identified 302,241 peptide-spectrum matches with 25,641 nonredundant peptides corresponding to 7959 D. melanogaster proteins. Furthermore, we unraveled 538 significantly altered proteins in Aβ42 expressing flies. These differentially expressed proteins were enriched for biological processes associated with neuronal damage leading to AD progression. We also identified 463 unique post-translational modification events mapping to 202 proteins from the same dataset. Among these, 303 modified peptides corresponding to 246 proteins were also altered in the AD model. These modified proteins are known to be involved in the disruption of molecular functions maintaining neuronal plasticity. This study provides new molecular leads on altered protein dynamics relevant to neurodegeneration, neuroplasticity, and AD progression induced by Aβ42 toxicity. These proteins may prove useful to discover new drugs in an AD model of D. melanogaster and evaluate their efficacy and mode of molecular action in the future.
Collapse
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalore, India
| | | |
Collapse
|
18
|
Sabbir MG, Taylor CG, Zahradka P. CAMKK2 regulates mitochondrial function by controlling succinate dehydrogenase expression, post-translational modification, megacomplex assembly, and activity in a cell-type-specific manner. Cell Commun Signal 2021; 19:98. [PMID: 34563205 PMCID: PMC8466908 DOI: 10.1186/s12964-021-00778-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/14/2021] [Indexed: 01/08/2023] Open
Abstract
Background The calcium (Ca2+)/calmodulin (CAM)-activated kinase kinase 2 (CAMKK2)-signaling regulates several physiological processes, for example, glucose metabolism and energy homeostasis, underlying the pathogenesis of metabolic diseases. CAMKK2 exerts its biological function through several downstream kinases, therefore, it is expected that depending on the cell-type-specific kinome profile, the metabolic effects of CAMKK2 and its underlying mechanism may differ. Identification of the cell-type-specific differences in CAMKK2-mediated glucose metabolism will lead to unravelling the organ/tissue-specific role of CAMKK2 in energy metabolism. Therefore, the objective of this study was to understand the cell-type-specific regulation of glucose metabolism, specifically, respiration under CAMKK2 deleted conditions in transformed human embryonic kidney-derived HEK293 and hepatoma-derived HepG2 cells. Methods Cellular respiration was measured in terms of oxygen consumption rate (OCR). OCR and succinate dehydrogenase (SDH) enzyme activity were measured following the addition of substrates. In addition, transcription and proteomic and analyses of the electron transport system (ETS)-associated proteins, including mitochondrial SDH protein complex (complex-II: CII) subunits, specifically SDH subunit B (SDHB), were performed using standard molecular biology techniques. The metabolic effect of the altered SDHB protein content in the mitochondria was further evaluated by cell-type-specific knockdown or overexpression of SDHB. Results CAMKK2 deletion suppressed cellular respiration in both cell types, shifting metabolic phenotype to aerobic glycolysis causing the Warburg effect. However, isolated mitochondria exhibited a cell-type-specific enhancement or dampening of the respiratory kinetics under CAMKK2 deletion conditions. This was mediated in part by the cell-type-specific effect of CAMKK2 loss-of-function on transcription, translation, post-translational modification (PTM), and megacomplex assembly of nuclear-encoded mitochondrial SDH enzyme complex subunits, specifically SDHB. The cell-type-specific increase or decrease in SDHs protein levels, specifically SDHB, under CAMKK2 deletion condition resulted in an increased or decreased enzymatic activity and CII-mediated respiration. This metabolic phenotype was reversed by cell-type-specific knockdown or overexpression of SDHB in respective CAMKK2 deleted cell types. CAMKK2 loss-of-function also affected the overall assembly of mitochondrial supercomplex involving ETS-associated proteins in a cell-type-specific manner, which correlated with differences in mitochondrial bioenergetics. Conclusion This study provided novel insight into CAMKK2-mediated cell-type-specific differential regulation of mitochondrial function, facilitated by the differential expression, PTMs, and assembly of SDHs into megacomplex structures.![]() Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00778-z.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Room R2034 - 351 Taché Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Alzo Biosciences Inc., San Diego, CA, USA.
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Room R2034 - 351 Taché Avenue, Winnipeg, MB, R2H 2A6, Canada.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Room R2034 - 351 Taché Avenue, Winnipeg, MB, R2H 2A6, Canada.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
19
|
Najar MA, Aravind A, Dagamajalu S, Sidransky D, Ashktorab H, Smoot DT, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Hyperactivation of MEK/ERK pathway by Ca 2+ /calmodulin-dependent protein kinase kinase 2 promotes cellular proliferation by activating cyclin-dependent kinases and minichromosome maintenance protein in gastric cancer cells. Mol Carcinog 2021; 60:769-783. [PMID: 34437731 DOI: 10.1002/mc.23343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.
Collapse
Affiliation(s)
- Mohd A Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, District of Columbia, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, Tennessee, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant K Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|