1
|
Weng WC, Liao HE, Chang CH, Hung SC, Du K, Tu Z, Lin CH, Ni CK. Unusual free trisaccharides in caprine colostrum discovered by logically derived sequence tandem mass spectrometry. Sci Rep 2025; 15:1586. [PMID: 39794344 PMCID: PMC11724002 DOI: 10.1038/s41598-024-81561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/27/2024] [Indexed: 01/13/2025] Open
Abstract
Free oligosaccharides in human milk have many biological functions for infant health. The reducing end of most human milk oligosaccharides is lactose, and caprine milk was reported to contain oligosaccharides structurally similar to those present in human milk. The structures of oligosaccharides were traditionally determined using nuclear magnetic resonance spectroscopy or enzyme digestion followed by various detection methods, e.g., liquid. Mass spectrometry has much higher sensitivity than nuclear magnetic resonance spectroscopy and enzyme digestion. However, conventional mass spectrometry methods only determine part of the structures of oligosaccharides, i.e., compositions and linkage positions. In this study, we used the latest developed mass spectrometry method, namely logically derived sequence tandem mass spectrometry, to determine the complete structures (i.e., composition, linkage positions, anomericities, and stereoisomers) of free neutral trisaccharides in caprine colostrum and mature milk. The high sensitivity of mass spectrometry enables us to discover oligosaccharides of low abundance. Isomers of (Hex)2HexNAc, (Hex)3, and (Hex)2Fuc which have not been reported before were identified. Many of them do not have lactose at the reducing end. Instead, the reducing end is either Glcβ-(1-4)-Glc or Glcβ-(1-4)-GlcNAc. These unusual oligosaccharides are higher in concentration and more structurally diverse in caprine colostrum than that in caprine mature milk and human milk. The structural diversity indicates more complicated biosynthetic pathways of caprine milk compared to that of human milk.
Collapse
Affiliation(s)
- Wei-Chien Weng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan
- Molecular Science and Technology, International Graduate Program, Department of Chemistry, Academia Sinica, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-En Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan
- Department of Appe of Figlied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Cheng-Hsiu Chang
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Kai Du
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
- Department of Chemistry, Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan.
| |
Collapse
|
2
|
Sun W, Tao L, Qian C, Xue PP, Du SS, Tao YN. Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants. Front Cell Infect Microbiol 2025; 14:1386421. [PMID: 39835278 PMCID: PMC11743518 DOI: 10.3389/fcimb.2024.1386421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Breast milk is an essential source of infant nutrition. It is also a vital determinant of the structure and function of the infant intestinal microbial community, and it connects the mother and infant intestinal microbiota. Human milk oligosaccharides (HMOs) are a critical component in breast milk. HMOs can reach the baby's colon entirely from milk and become a fermentable substrate for some intestinal microorganisms. HMOs can enhance intestinal mucosal barrier function and affect the intestinal function of the host through immune function, which has a therapeutic effect on specific infant intestinal diseases, such as necrotizing enterocolitis. In addition, changes in infant intestinal microbiota can reflect the maternal intestinal microbiota. HMOs are a link between the maternal intestinal microbiota and infant intestinal microbiota. HMOs affect the intestinal microbiota of infants and are related to the maternal milk microbiota. Through breastfeeding, maternal microbiota and HMOs jointly affect infant intestinal bacteria. Therefore, HMOs positively influence the establishment and balance of the infant microbial community, which is vital to ensure infant intestinal function. Therefore, HMOs can be used as a supplement and alternative therapy for infant intestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-na Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People’s Hospital
Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
3
|
Neu V, Hoffmann W, Weiß TD, Puhl M, Abikhodr A, Warnke S, Ben Faleh A, Klinck S, Pommer M, Kellner S, Maier W. Validated Multimethod Approach for Full Characterization of 2'-Fucosyl-d-lactose as an Industrially Produced Human Milk Oligosaccharide. Anal Chem 2024; 96:18615-18624. [PMID: 39540461 DOI: 10.1021/acs.analchem.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Human milk oligosaccharides are of high interest as active ingredients in infant formulas and dietary food supplements. Full characterization of members of this compound class is challenging due to the intrinsic complexity of byproducts during synthesis by fermentation. Moreover, when method validation is targeted for a regulated environment, a robust chromatographic separation of the highly polar oligosaccharides needs to be addressed, including isomers and compounds relevant for potential product adulteration. We present a combined approach of validated chromatography and NMR spectroscopy, which allows for full mass balancing of industrially produced 2'-fucosyl-d-lactose. A combination of NMR spectroscopy, mass spectrometry, and action IR spectroscopy tackles structural elucidation of monoacetylated species as a new class of byproducts.
Collapse
Affiliation(s)
- Volker Neu
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Waldemar Hoffmann
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Thomas D Weiß
- Agricultural Solutions, BASF SE, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Michael Puhl
- Chemicals and Catalysis Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ali Abikhodr
- Isospec Analytics SA, Renens CH-1020, Switzerland
| | | | | | - Sandra Klinck
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Maria Pommer
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sarah Kellner
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Walter Maier
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
5
|
Schönknecht YB, Moreno Tovar MV, Jensen SR, Parschat K. Clinical Studies on the Supplementation of Manufactured Human Milk Oligosaccharides: A Systematic Review. Nutrients 2023; 15:3622. [PMID: 37630811 PMCID: PMC10458772 DOI: 10.3390/nu15163622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are a major component of human milk. They are associated with multiple health benefits and are manufactured on a large scale for their addition to different food products. In this systematic review, we evaluate the health outcomes of published clinical trials involving the supplementation of manufactured HMOs. We screened the PubMed database and Cochrane Library, identifying 26 relevant clinical trials and five publications describing follow-up studies. The clinical trials varied in study populations, including healthy term infants, infants with medical indications, children, and adults. They tested eight different HMO structures individually or as blends in varying doses. All trials included safety and tolerance assessments, and some also assessed growth, stool characteristics, infections, gut microbiome composition, microbial metabolites, and biomarkers. The studies consistently found that HMO supplementation was safe and well tolerated. Infant studies reported a shift in outcomes towards those observed in breastfed infants, including stool characteristics, gut microbiome composition, and intestinal immune markers. Beneficial gut health and immune system effects have also been observed in other populations following HMO supplementation. Further clinical trials are needed to substantiate the effects of HMO supplementation on human health and to understand their structure and dose dependency.
Collapse
|
6
|
Hanisch FG. Revised structure model of norovirus-binding fucoidan from Undaria pinnatifida: oligofucose chains branch off from a β6-galactane. Glycobiology 2023; 33:556-566. [PMID: 37184243 DOI: 10.1093/glycob/cwad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Fucoidans are discussed as antiviral agents, and fucoidan from Undaria pinnatifida (UpF), in particular has gained interest as potential food additive in antinoroviral strategies. As the competitive blocking activity of antinoroviral agents increases with the valency of terminal nonreducing fucose on the competitor, an effective processing of fucoidans to inhibitory oligosaccharides will depend on basic structural features of the polysaccharide. We demonstrate increased antiviral binding activity of processed low-mass UpF generated by hydrothermal degradation contrasting with decreased efficacy of low-mass fucoidan from Fucus vesiculosus. As this finding is in conflict with current structural models of UpF, we undertook a re-investigation of the glycan backbone in UpF. Applying solvolytical desulfation combined with enzymatic cleavage of low-mass fucoidan by endo-β6-galactanase and terminal labeling of oligosaccharides by deutero-reduction and bis-5-phenyl-3-methyl-1-pyrazolone (PMP) substitution, evidence from mass spectrometry and methylation linkage analysis of the oligosaccharides indicates that fucoses and galactoses in the glycan backbone are organized in homomeric blocks, where oligo-fucoses branch off from a galactane-type core: Fuc(1-3Fuc)n1-3[Gal(1-6Gal)n1-6]Gal(1-6Gal)n.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany
| |
Collapse
|
7
|
Weng WC, Liao HE, Huang SP, Tsai ST, Hsu HC, Liew CY, Gannedi V, Hung SC, Ni CK. Unusual free oligosaccharides in human bovine and caprine milk. Sci Rep 2022; 12:10790. [PMID: 35750794 PMCID: PMC9232581 DOI: 10.1038/s41598-022-15140-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Free oligosaccharides are abundant macronutrients in milk and involved in prebiotic functions and antiadhesive binding of viruses and pathogenic bacteria to colonocytes. Despite the importance of these oligosaccharides, structural determination of oligosaccharides is challenging, and milk oligosaccharide biosynthetic pathways remain unclear. Oligosaccharide structures are conventionally determined using a combination of chemical reactions, exoglycosidase digestion, nuclear magnetic resonance spectroscopy, and mass spectrometry. Most reported free oligosaccharides are highly abundant and have lactose at the reducing end, and current oligosaccharide biosynthetic pathways in human milk are proposed based on these oligosaccharides. In this study, a new mass spectrometry technique, which can identify linkages, anomericities, and stereoisomers, was applied to determine the structures of free oligosaccharides in human, bovine, and caprine milk. Oligosaccharides that do not follow the current biosynthetic pathways and are not synthesized by any discovered enzymes were found, indicating the existence of undiscovered biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Wei-Chien Weng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-En Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hsu-Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University and Taiwan International Graduate Program of Molecular Science and Technology, Academia Sinica, Taipei, 10617, Taiwan
| | | | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Hanisch FG, Aydogan C, Schroten H. Fucoidan and Derived Oligo-Fucoses: Structural Features with Relevance in Competitive Inhibition of Gastrointestinal Norovirus Binding. Mar Drugs 2021; 19:591. [PMID: 34822462 PMCID: PMC8617971 DOI: 10.3390/md19110591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Norovirus infections belong to the most common causes of human gastroenteritis worldwide and epidemic outbreaks are responsible for hundreds of thousands of deaths annually. In humans, noroviruses are known to bind to gastrointestinal epithelia via recognition of blood-group active mucin-type O-glycans. Considering the involvement of l-α-fucose residues in these glycans, their high valency on epithelial surfaces far surpasses the low affinity, though specific interactions of monovalent milk oligosaccharides. Based on these findings, we attempted to identify polyfucoses (fucans) with the capacity to block binding of the currently most prevalent norovirus strain GII.4 (Sydney, 2012, JX459908) to human and animal gastrointestinal mucins. We provide evidence that inhibitory effects on capsid binding are exerted in a competitive manner by α-fucosyl residues on Fucus vesiculosus fucoidan, but also on the galacto-fucan from Undaria pinnatifida and their oligo-fucose processing products. Insight into novel structural aspects of fucoidan and derived oligosaccharides from low-mass Undaria pinnatifida were revealed by GCMS and MALDI mass spectrometry. In targeting noroviral spread attenuation, this study provides first steps towards a prophylactic food additive that is produced from algal species.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Medical Faculty, Institute of Biochemistry II, University of Cologne, 50931 Köln, Germany
| | - Cem Aydogan
- PhytoNet AG, 8834 Schindellegi-Feusisberg, Switzerland;
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University Children’s Hospital Mannheim, 68167 Mannheim, Germany;
| |
Collapse
|