1
|
Chinabut P, Sawangkla N, Wattano S, Thavorasak T, Bootsongkorn W, Tungtrongchitr A, Ruenchit P. Formalin Inactivation of Virus for Safe Downstream Processing of Routine Stool Parasite Examination during the COVID-19 Pandemic. Diagnostics (Basel) 2023; 13:diagnostics13030466. [PMID: 36766571 PMCID: PMC9914773 DOI: 10.3390/diagnostics13030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
During the COVID-19 pandemic, the parasitology laboratories dealing with fecal samples for the diagnosis of gastrointestinal parasitic infections are confronting the unsaved virus-containing samples. To allow for safe downstream processing of the fecal samples, a protocol for preparing a fecal smear is urgently needed. Formalin was tested with or without isotonic forms for virus inactivation using porcine epidemic diarrhea virus (PEDV) as a representative, as it belongs to the Coronaviridae family. The results revealed complete inactivation activity of 10% formalin and 10% isotonic formalin on coronavirus after 5 min of treatment at room temperature. Both also inhibited Naegleria fowleri growth after 5 min of treatment at 37 °C without disruption of the structure. In addition to these key findings, it was also found that isotonic formalin could stabilize both red and white blood cells when used as a solution to prepare fecal smears comparable to the standard method, highlighting its value for use instead of 0.9% normal saline solution for the quantification of blood cells without active virus. The 10% isotonic formalin is useful to safely prepare a fecal smear for the diagnosis of parasites and other infections of the gastrointestinal tract during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Pisith Chinabut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuntiya Sawangkla
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphaluck Wattano
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weluga Bootsongkorn
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-24196484
| |
Collapse
|
2
|
Yoshinari T, Hayashi K, Hirose S, Ohya K, Ohnishi T, Watanabe M, Taharaguchi S, Mekata H, Taniguchi T, Maeda T, Orihara Y, Kawamura R, Arai S, Saito Y, Goda Y, Hara-Kudo Y. Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry Analysis for the Direct Detection of SARS-CoV-2 in Nasopharyngeal Swabs. Anal Chem 2022; 94:4218-4226. [PMID: 35238540 PMCID: PMC8903212 DOI: 10.1021/acs.analchem.1c04328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The most common diagnostic
method used for coronavirus disease-2019
(COVID-19) is real-time reverse transcription polymerase chain reaction
(PCR). However, it requires complex and labor-intensive procedures
and involves excessive positive results derived from viral debris.
We developed a method for the direct detection of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs, which
uses matrix-assisted laser desorption and ionization time-of-flight
mass spectrometry (MALDI-ToF MS) to identify specific peptides from
the SARS-CoV-2 nucleocapsid phosphoprotein (NP). SARS-CoV-2 viral
particles were separated from biological molecules in nasopharyngeal
swabs by an ultrafiltration cartridge. Further purification was performed
by an anion exchange resin, and purified NP was digested into peptides
using trypsin. The peptides from SARS-CoV-2 that were inoculated into
nasopharyngeal swabs were detected by MALDI-ToF MS, and the limit
of detection was 106.7 viral copies. This value equates
to 107.9 viral copies per swab and is approximately equivalent
to the viral load of contagious patients. Seven NP-derived peptides
were selected as the target molecules for the detection of SARS-CoV-2
in clinical specimens. The method detected between two and seven NP-derived
peptides in 19 nasopharyngeal swab specimens from contagious COVID-19
patients. These peptides were not detected in four specimens in which
SARS-CoV-2 RNA was not detected by PCR. Mutated NP-derived peptides
were found in some specimens, and their patterns of amino acid replacement
were estimated by accurate mass. Our results provide evidence that
the developed MALDI-ToF MS-based method in a combination of straightforward
purification steps and a rapid detection step directly detect SARS-CoV-2-specific
peptides in nasopharyngeal swabs and can be a reliable high-throughput
diagnostic method for COVID-19.
Collapse
Affiliation(s)
- Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Katsuhiko Hayashi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Kenji Ohya
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Satoshi Taharaguchi
- Laboratory of Microbiology, Department of Veterinary Medicine, Azabu University, 1-17-71 Fucihnobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takahide Taniguchi
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takuya Maeda
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yuta Orihara
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Rieko Kawamura
- Department of Clinical Laboratory, Saitama Medical University Hospital, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Sakura Arai
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yukihiro Goda
- Director General, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| |
Collapse
|