1
|
Castaño JD, Beaudry F. Optimization of protein identifications through the use of different chromatographic approaches and bioinformatic pipelines. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9937. [PMID: 39496564 DOI: 10.1002/rcm.9937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024]
Abstract
RATIONALE Selection of proteomic workflows for a given project can be a daunting task. This research provides a guide outlining the impact on protein identification of different steps such as chromatographic separation, data acquisition strategies, and bioinformatic pipelines. The data presented here will help experts and nonexpert proteomic users to increase proteome coverage and peptide identification. METHODS HeLa protein digests were analyzed through different C18 chromatographic columns (15 and 50 cm in length), using top 12 data-dependent acquisition (DDA), top 20 DDA, and data-independent acquisition (DIA) with a nanospray source in positive mode in a Thermo Q Exactive instrument. The raw data were analyzed using different search engines, rescoring approaches, and multi-engine searches. The results were analyzed in the context of peptide and protein identifications, precursor properties, and computation requirements to understand the differences between methods. RESULTS Our results showed that higher column lengths and top N DDA approaches were able to significantly increase protein identifications. The use of multiple search engines yielded limited gains, whereas the use of rescoring methods clearly outperformed other strategies. Finally, DIA approaches, although successful at generating new identifications, had a limited performance influenced by the previous collection of DDA data, which could prohibitively increase instrument time. Nonetheless, the use of library-free methods showed promising results. CONCLUSIONS Our results highlight the impact of different experimental approaches on proteome coverage. Changes in chromatographic columns, data acquisition, or bioinformatic analysis can significantly increase the number of protein identifications (>400%). Thus, this research provides a reference upon which to build a successful proteomic workflow with different considerations at every step.
Collapse
Affiliation(s)
- Jesus D Castaño
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Fields L, Vu NQ, Dang TC, Yen HC, Ma M, Wu W, Gray M, Li L. EndoGenius: Optimized Neuropeptide Identification from Mass Spectrometry Datasets. J Proteome Res 2024; 23:3041-3051. [PMID: 38426863 PMCID: PMC11296898 DOI: 10.1021/acs.jproteome.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Neuropeptides represent a unique class of signaling molecules that have garnered much attention but require special consideration when identifications are gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, neuropeptides share great homology within families, differing by as little as a single amino acid residue, complicating even routine analyses and necessitating optimized computational strategies for confident and accurate identifications. We present EndoGenius, a database searching strategy designed specifically for elucidating neuropeptide identifications from mass spectra by leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize reidentification. This work describes an algorithm capable of reporting more neuropeptide identifications at 1% false-discovery rate than alternative software in five Callinectes sapidus neuronal tissue types.
Collapse
Affiliation(s)
- Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Tina C. Dang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Hsu-Ching Yen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mitchell Gray
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Bouyssié D, Altıner P, Capella-Gutierrez S, Fernández JM, Hagemeijer YP, Horvatovich P, Hubálek M, Levander F, Mauri P, Palmblad M, Raffelsberger W, Rodríguez-Navas L, Di Silvestre D, Kunkli BT, Uszkoreit J, Vandenbrouck Y, Vizcaíno JA, Winkelhardt D, Schwämmle V. WOMBAT-P: Benchmarking Label-Free Proteomics Data Analysis Workflows. J Proteome Res 2024; 23:418-429. [PMID: 38038272 DOI: 10.1021/acs.jproteome.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The inherent diversity of approaches in proteomics research has led to a wide range of software solutions for data analysis. These software solutions encompass multiple tools, each employing different algorithms for various tasks such as peptide-spectrum matching, protein inference, quantification, statistical analysis, and visualization. To enable an unbiased comparison of commonly used bottom-up label-free proteomics workflows, we introduce WOMBAT-P, a versatile platform designed for automated benchmarking and comparison. WOMBAT-P simplifies the processing of public data by utilizing the sample and data relationship format for proteomics (SDRF-Proteomics) as input. This feature streamlines the analysis of annotated local or public ProteomeXchange data sets, promoting efficient comparisons among diverse outputs. Through an evaluation using experimental ground truth data and a realistic biological data set, we uncover significant disparities and a limited overlap in the quantified proteins. WOMBAT-P not only enables rapid execution and seamless comparison of workflows but also provides valuable insights into the capabilities of different software solutions. These benchmarking metrics are a valuable resource for researchers in selecting the most suitable workflow for their specific data sets. The modular architecture of WOMBAT-P promotes extensibility and customization. The software is available at https://github.com/wombat-p/WOMBAT-Pipelines.
Collapse
Affiliation(s)
- David Bouyssié
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), 31062 Toulouse, France
- Proteomics French Infrastructure, ProFI, FR 2048 Toulouse, France
| | - Pınar Altıner
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), 31062 Toulouse, France
| | | | - José M Fernández
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Yanick Paco Hagemeijer
- Department of Analytical Biochemistry, University of Groningen, Groningen Research Institute of Pharmacy, 9712 CP Groningen, The Netherlands
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, University of Groningen, Groningen Research Institute of Pharmacy, 9712 CP Groningen, The Netherlands
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, CAS, 160 00 Prague, Czech Republic
| | - Fredrik Levander
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Immunotechnology, Lund University, 22100 Lund, Sweden
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), Segrate, 20054 Milan, Italy
| | - Magnus Palmblad
- Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Wolfgang Raffelsberger
- Wolfgang Raffelsberger: Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Laura Rodríguez-Navas
- Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Dario Di Silvestre
- Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), Segrate, 20054 Milan, Italy
| | - Balázs Tibor Kunkli
- Balázs Tibor Kunkli: Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Julian Uszkoreit
- Medical Faculty, Medical Bioinformatics, Ruhr University Bochum, 44801 Bochum, Germany
- Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr University Bochum, 44801 Bochum, Germany
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yves Vandenbrouck
- Proteomics French Infrastructure, ProFI, FR 2048 Toulouse, France
- CEA, Fundamental Research Division, Proteomics French Infrastructure, 91191 Gif-sur-Yvette, France
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Wellcome Trust, Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Dirk Winkelhardt
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
5
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|