1
|
Lozano C, Pible O, Eschlimann M, Giraud M, Debroas S, Gaillard JC, Bellanger L, Taysse L, Armengaud J. Universal Identification of Pathogenic Viruses by Liquid Chromatography Coupled with Tandem Mass Spectrometry Proteotyping. Mol Cell Proteomics 2024; 23:100822. [PMID: 39084562 DOI: 10.1016/j.mcpro.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Accurate and rapid identification of viruses is crucial for an effective medical diagnosis when dealing with infections. Conventional methods, including DNA amplification techniques or lateral-flow assays, are constrained to a specific set of targets to search for. In this study, we introduce a novel tandem mass spectrometry proteotyping-based method that offers a universal approach for the identification of pathogenic viruses and other components, eliminating the need for a priori knowledge of the sample composition. Our protocol relies on a time and cost-efficient peptide sample preparation, followed by an analysis with liquid chromatography coupled to high-resolution tandem mass spectrometry. As a proof of concept, we first assessed our method on publicly available shotgun proteomics datasets obtained from virus preparations and fecal samples of infected individuals. Successful virus identification was achieved with 53 public datasets, spanning 23 distinct viral species. Furthermore, we illustrated the method's capability to discriminate closely related viruses within the same sample, using alphaviruses as an example. The clinical applicability of our method was demonstrated by the accurate detection of the vaccinia virus in spiked saliva, a matrix of paramount clinical significance due to its non-invasive and easily obtainable nature. This innovative approach represents a significant advancement in pathogen detection and paves the way for enhanced diagnostic capabilities.
Collapse
Affiliation(s)
- Clément Lozano
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France.
| | - Olivier Pible
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Marine Eschlimann
- Direction Générale de l'Armement Maîtrise NRBC, Vert-le-Petit, France
| | - Mathieu Giraud
- Direction Générale de l'Armement Maîtrise NRBC, Vert-le-Petit, France
| | - Stéphanie Debroas
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Laurent Bellanger
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Laurent Taysse
- Direction Générale de l'Armement Maîtrise NRBC, Vert-le-Petit, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France.
| |
Collapse
|
2
|
Ball B, Sukumaran A, Krieger JR, Geddes-McAlister J. Comparative Cross-Kingdom DDA- and DIA-PASEF Proteomic Profiling Reveals Novel Determinants of Fungal Virulence and a Putative Druggable Target. J Proteome Res 2024; 23:3917-3932. [PMID: 39140824 PMCID: PMC11385706 DOI: 10.1021/acs.jproteome.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Accurate and reliable detection of fungal pathogens presents an important hurdle to manage infections, especially considering that fungal pathogens, including the globally important human pathogen, Cryptococcus neoformans, have adapted diverse mechanisms to survive the hostile host environment and moderate virulence determinant production during coinfections. These pathogen adaptations present an opportunity for improvements (e.g., technological and computational) to better understand the interplay between a host and a pathogen during disease to uncover new strategies to overcome infection. In this study, we performed comparative proteomic profiling of an in vitro coinfection model across a range of fungal and bacterial burden loads in macrophages. Comparing data-dependent acquisition and data-independent acquisition enabled with parallel accumulation serial fragmentation technology, we quantified changes in dual-perspective proteome remodeling. We report enhanced and novel detection of pathogen proteins with data-independent acquisition-parallel accumulation serial fragmentation (DIA-PASEF), especially for fungal proteins during single and dual infection of macrophages. Further characterization of a fungal protein detected only with DIA-PASEF uncovered a novel determinant of fungal virulence, including altered capsule and melanin production, thermotolerance, and macrophage infectivity, supporting proteomics advances for the discovery of a novel putative druggable target to suppress C. neoformans pathogenicity.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | | | | |
Collapse
|
3
|
Kruk ME, Mehta S, Murray K, Higgins L, Do K, Johnson JE, Wagner R, Wendt CH, O’Connor JB, Harris JK, Laguna TA, Jagtap PD, Griffin TJ. An integrated metaproteomics workflow for studying host-microbe dynamics in bronchoalveolar lavage samples applied to cystic fibrosis disease. mSystems 2024; 9:e0092923. [PMID: 38934598 PMCID: PMC11264604 DOI: 10.1128/msystems.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.
Collapse
Affiliation(s)
- Monica E. Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katherine Do
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reid Wagner
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chris H. Wendt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - John B. O’Connor
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Theresa A. Laguna
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Do K, Mehta S, Wagner R, Bhuming D, Rajczewski AT, Skubitz APN, Johnson JE, Griffin TJ, Jagtap PD. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. mSphere 2024; 9:e0079323. [PMID: 38780289 PMCID: PMC11332332 DOI: 10.1128/msphere.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification, and prioritization of microbial proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant [to generate peptide-spectral matches (PSMs) and quantification], PepQuery2 (to verify the quality of PSMs), Unipept (for taxonomic and functional annotation), and MSstatsTMT (for statistical analysis). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies. IMPORTANCE Clinical metaproteomics has immense potential to offer functional insights into the microbiome and its contributions to human disease. However, there are numerous challenges in the metaproteomic analysis of clinical samples, including handling of very large protein sequence databases for sensitive and accurate peptide and protein identification from mass spectrometry data, as well as taxonomic and functional annotation of quantified peptides and proteins to enable interpretation of results. To address these challenges, we have developed a novel clinical metaproteomics workflow that provides customized bioinformatic identification, verification, quantification, and taxonomic and functional annotation. This bioinformatic workflow is implemented in the Galaxy ecosystem and has been used to characterize diverse clinical sample types, such as nasopharyngeal swabs and bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness and availability for use by the research community via analysis of residual fluid from cervical swabs.
Collapse
Affiliation(s)
- Katherine Do
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reid Wagner
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dechen Bhuming
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew T. Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amy P. N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Do K, Mehta S, Wagner R, Bhuming D, Rajczewski AT, Skubitz APN, Johnson JE, Griffin TJ, Jagtap PD. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568121. [PMID: 38045370 PMCID: PMC10690215 DOI: 10.1101/2023.11.21.568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, which are usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification and prioritization of microbial and host proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant (to generate peptide-spectral matches (PSMs) and quantification), PepQuery2 (to verify the quality of PSMs), and Unipept and MSstatsTMT (for taxonomy and functional annotation). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies.
Collapse
|
6
|
Mehta S, Bernt M, Chambers M, Fahrner M, Föll MC, Gruening B, Horro C, Johnson JE, Loux V, Rajczewski AT, Schilling O, Vandenbrouck Y, Gustafsson OJR, Thang WCM, Hyde C, Price G, Jagtap PD, Griffin TJ. A Galaxy of informatics resources for MS-based proteomics. Expert Rev Proteomics 2023; 20:251-266. [PMID: 37787106 DOI: 10.1080/14789450.2023.2265062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Continuous advances in mass spectrometry (MS) technologies have enabled deeper and more reproducible proteome characterization and a better understanding of biological systems when integrated with other 'omics data. Bioinformatic resources meeting the analysis requirements of increasingly complex MS-based proteomic data and associated multi-omic data are critically needed. These requirements included availability of software that would span diverse types of analyses, scalability for large-scale, compute-intensive applications, and mechanisms to ease adoption of the software. AREAS COVERED The Galaxy ecosystem meets these requirements by offering a multitude of open-source tools for MS-based proteomics analyses and applications, all in an adaptable, scalable, and accessible computing environment. A thriving global community maintains these software and associated training resources to empower researcher-driven analyses. EXPERT OPINION The community-supported Galaxy ecosystem remains a crucial contributor to basic biological and clinical studies using MS-based proteomics. In addition to the current status of Galaxy-based resources, we describe ongoing developments for meeting emerging challenges in MS-based proteomic informatics. We hope this review will catalyze increased use of Galaxy by researchers employing MS-based proteomics and inspire software developers to join the community and implement new tools, workflows, and associated training content that will add further value to this already rich ecosystem.
Collapse
Affiliation(s)
- Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthias Bernt
- Helmholtz Centre for Environmental Research - UFZ, Department Computational Biology, Leipzig, Germany
| | | | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Bjoern Gruening
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Carlos Horro
- Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - James E Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Andrew T Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - W C Mike Thang
- Queensland Cyber Infrastructure Foundation (QCIF), Australia
- Institute of Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation (QCIF), Australia
- Sippy Downs, University of the Sunshine Coast, Australia
| | - Gareth Price
- Queensland Cyber Infrastructure Foundation (QCIF), Australia
- Institute of Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|