1
|
Ajdi B, El Hidan MA, El Asbahani A, Bocquet M, Ait Hamza M, Elqdhy M, Elmourid A, Touloun O, Boubaker H, Bulet P. Taxonomic identification of Morocco scorpions using MALDI-MS fingerprints of venom proteomes and computational modeling. J Proteomics 2025; 310:105321. [PMID: 39304032 DOI: 10.1016/j.jprot.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The venom of scorpions has been the subject of numerous studies. However, their taxonomic identification is not a simple task, leading to misidentifications. This study aims to provide a practical approach for identifying scorpions based on the venom molecular mass fingerprint (MFP). Specimens (251) belonging to fifteen species were collected from different regions in Morocco. Their MFPs were acquired using MALDI-MS. These were used as a training dataset to generate predictive models and a library of mean spectral profiles using software programs based on machine learning. The computational model achieved an overall recognition capability of 99 % comprising 32 molecular signatures. The models and the library were tested using a new dataset for external validation and to evaluate their capability of identification. We recorded an accuracy classification with an average of 97 % and 98 % for the computational models and the library, respectively. To our knowledge, this is the first attempt to demonstrate the potential of MALDI-MS and MFPs to generate predictive models capable of discriminating scorpions from family to species levels, and to build a library of species-specific spectra. These promising results may represent a proof of concept towards developing a reliable approach for rapid molecular identification of scorpions in Morocco. SIGNIFICANCE OF THE STUDY: With their clinical importance, scorpions may constitute a desirable study model for many researchers. The first step in studying scorpion is systematically identifying the species of interest. However, it can be a difficult task, especially for the non-experts. The taxonomy of scorpions is primarily based on morphometric characters. In Morocco, the high number of species and subspecies mainly endemic, and the morphological similarities between different species may result in false identifications. This was observed in many reports according to the scorpion experts. In this study, we describe a reliable practical approach for identifying scorpions based on the venom molecular mass fingerprints (MFPs). By using two software programs based on machine learning, we have demonstrated that these MFPs contains sufficient inter-specific variation to differentiate between the scorpion species mentioned in this study with a good accuracy. Using a drop of venom, this new approach could be a rapid, accurate and cost saving method for taxonomic identification of scorpions in Morocco.
Collapse
Affiliation(s)
- Boujemaa Ajdi
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco; Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000 Grenoble, France; Platform BioPark Archamps, 74160 Archamps, France
| | - Moulay Abdelmonaim El Hidan
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdelhafed El Asbahani
- Laboratory of Applied Chemistry and Environment (LACAPE), Team of Bio-organic Chemistry and Natural substances, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Michel Bocquet
- Platform BioPark Archamps, 74160 Archamps, France; Apimedia, 74370 Annecy, France
| | - Mohamed Ait Hamza
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - M'barka Elqdhy
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco
| | - Abdessamad Elmourid
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, University Sultan My Slimane, Beni Mellal 23030, Morocco
| | - Oulaid Touloun
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, University Sultan My Slimane, Beni Mellal 23030, Morocco
| | - Hassan Boubaker
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000 Grenoble, France; Platform BioPark Archamps, 74160 Archamps, France.
| |
Collapse
|
2
|
Fan X, Zhao H, Zang H, Dong S, Qiu J, Song Y, Li K, Jiang H, Wu Y, Lü Y, Zhou D, Fu Z, Chen D, Guo R. Extensive influence of microsporidian infection on sucrose solution consumption, antioxidant enzyme activity, cell structure, and lifespan of Asian honeybees. Front Immunol 2024; 15:1404766. [PMID: 39628478 PMCID: PMC11611804 DOI: 10.3389/fimmu.2024.1404766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Apis cerana is the original host of Vairimorpha (Nosema) ceranae, a widespread fungal parasite that causes bee nosemosis, which severely threatens the health of bee colonies and the sustainable development of the apiculture industry. To evaluate the impact of V. ceranae infection on A. c. cerana workers, V. ceranae spores were purified and used to inoculate newly emerged workers to evaluate the effects of V. ceranae infection. This was followed by an in-depth investigation of V. ceranae spore load and host sucrose solution consumption. Activities of four major antioxidant enzymes (SOD, PPO, CAT, and GST) were determined. Paraffin sections of the host midgut tissue were prepared and subjected to microscopic observation. The survival rates of V. ceranae-inoculated and uninoculated workers were analyzed. The results showed that spore load gradually increased and peaked at 12 dpi. The consumption of workers in the V. ceranae-inoculated group was extremely significant higher (P < 0.0001) than that of workers in the un-inoculated group. The results of antioxidant enzyme activity were suggestive of positive host defense via catalase (CAT) and glutathione-S-transferase (GST) in the middle stage of infection, as well as the negative fungal impact on superoxide dismutase (SOD) and polyphenol oxidase (PPO) at the whole stage of infection, reflecting the complex host-parasite interaction. Additionally, we observed a disruption in the structure of the host midgut epithelial cells. Moreover, the survival rate of workers in V. ceranae-inoculated groups was nearly always lower than that of workers in the uninoculated groups. These results demonstrate a consistent increase in spore load with the proliferation of V. ceranae, leading to persistent energetic stress and midgut epithelial cell structural damage to the host, ultimately resulting in a shortened lifespan for the host. Our findings enhance the current understanding of the interactions between A. cerana and V. ceranae as well as provide a solid basis for exploring the mechanisms underlying host response and V. ceranae infection.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haodong Zhao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shunan Dong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibin Jiang
- Bee Pollination and Product Safety Research Laboratory, Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Ying Wu
- Bee Pollination and Product Safety Research Laboratory, Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Yang Lü
- Bee Research Institute, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Dingding Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongmin Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Askri D, Pottier M, Arafah K, Voisin SN, Hodge S, Stout JC, Dominik C, Schweiger O, Tamburini G, Pereira-Peixoto MH, Klein AM, López VM, De la Rúa P, Cini E, Potts SG, Schwarz JM, Knauer AC, Albrecht M, Raimets R, Karise R, di Prisco G, Ivarsson K, Svensson GP, Ronsevych O, Knapp JL, Rundlöf M, Onorati P, de Miranda JR, Bocquet M, Bulet P. A blood test to monitor bee health across a European network of agricultural sites of different land-use by MALDI BeeTyping mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172239. [PMID: 38583620 DOI: 10.1016/j.scitotenv.2024.172239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective "blood test" for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.
Collapse
Affiliation(s)
- Dalel Askri
- Platform BioPark Archamps, Archamps, France.
| | | | | | | | - Simon Hodge
- School of Natural Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Christophe Dominik
- Helmholtz Centre for Environmental Research - UFZ, Dep. Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Oliver Schweiger
- Helmholtz Centre for Environmental Research - UFZ, Dep. Community Ecology, Theodor-Lieser-Strasse 4, 06120 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | - Vicente Martínez López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK
| | - Janine M Schwarz
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Anina C Knauer
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Matthias Albrecht
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Risto Raimets
- Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - Reet Karise
- Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - Gennaro di Prisco
- CREA Research Centre for Agriculture and Environment, 40128 Bologna, Italy; Institute for Sustainable Plant Protection, The Italian National Research Council, Napoli, Italy
| | - Kjell Ivarsson
- Federation of Swedish Farmers (LRF), 105 33 Stockholm, Sweden
| | | | | | | | - Maj Rundlöf
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | | | - Philippe Bulet
- CR, University Grenoble Alpes, IAB INSERM 1209, CNRS UMR5309, Grenoble, France
| |
Collapse
|
4
|
Sbaghdi T, Garneau JR, Yersin S, Chaucheyras-Durand F, Bocquet M, Moné A, El Alaoui H, Bulet P, Blot N, Delbac F. The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam. Microorganisms 2024; 12:192. [PMID: 38258019 PMCID: PMC10819737 DOI: 10.3390/microorganisms12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.
Collapse
Affiliation(s)
- Thania Sbaghdi
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France;
- Microbiologie Environnement Digestif et Santé, INRAE, Université Clermont Auvergne, F-63122 Saint-Genès Champanelle, France
| | | | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, F-38000 Grenoble, France;
- Platform BioPark Archamps, ArchParc, F-74160 Archamps, France
| | - Nicolas Blot
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Frédéric Delbac
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| |
Collapse
|