1
|
Li Y, Yang J, Guo L. Role and mechanism of Lactobacillus casei in the modulation of alcohol preference in mice. Int Immunopharmacol 2024; 141:112902. [PMID: 39178519 DOI: 10.1016/j.intimp.2024.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Prolonged alcohol consumption may lead to gastrointestinal tract dysfunction and cause abnormalities in the associated nervous system activity, thereby increasing the body's craving for alcohol. Lactobacillus casei is a probiotic that has been shown to reduce the incidence of alcohol-related diseases. However, it is unclear whether Lactobacillus casei can delay the development of alcohol dependence. METHODS The chronic intermittent active drinking method was used to establish a mouse alcohol dependence model. The mice were randomly divided into 4 treatment groups, as follows: (1) Control group: two bottles of distilled water alternately, 0.2 mL/d saline gavage. (2) Alcohol group: alternating water and alcohol, 0.2 mL/d saline gavage. (3) Low group: alternating water and alcohol, 0.2 mL/d 1 × 108CFU of Lactobacillus casei by gavage. (4) High group: alternating water and alcohol, 0.2 mL/d 1 × 109CFU of Lactobacillus casei by gavage. The daily water consumption (mL), alcohol consumption (mL) and body weight of each mouse were recorded. After that, pathological changes in the intestines, brain tissues and serum of the experimental animals were detected, while changes in the intestinal flora of the mice were analysed by 16S rRNA sequencing. RESULTS The Lactobacillus casei intervention did not produce a significant effect on body weight in alcohol-exposed mice (P>0.05), but significantly reduced alcohol preference in alcohol-exposed mice (P<0.05). Subsequent analyses showed that Lactobacillus casei significantly ameliorated intestinal, brain tissue, and systemic inflammatory responses in alcohol-exposed mice (P<0.05). 16S rRNA sequencing showed that alcohol-exposed mice treated with Lactobacillus casei exhibited a richer composition of intestinal microorganisms, such as f__Rikenellaceae, g__Alistipes_A_871400, and g__Bacteroides_H genera showed relative enrichment in the High group. CONCLUSION By showing that Lactobacillus casei slows down alcohol preference and alleviates gut and brain tissue inflammation in alcohol-exposed mice, our findings provide a possible strategy: Lactobacillus casei may be able to serve as a potential target for the prevention and treatment of alcohol dependence.
Collapse
Affiliation(s)
- Yangchun Li
- Mudanjiang Medical University, Mudanjiang, China
| | - Jinyue Yang
- Mudanjiang Medical University, Mudanjiang, China
| | - Lishuang Guo
- Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
2
|
Zhong H, Wang L, Jia F, Yan Y, Xiong F, Hidayat K, Li Y. Effect of Probiotic Fermented Milk Supplementation on Glucose and Lipid Metabolism Parameters and Inflammatory Markers in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. BIOLOGY 2024; 13:641. [PMID: 39194579 DOI: 10.3390/biology13080641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Modulating gut microbiota composition through probiotic administration has been proposed as a novel therapy for type 2 diabetes mellitus (T2DM), and fermented milk is arguably the most common and ideal probiotic carrier. The present meta-analysis was performed to assess the effects of probiotic fermented milk supplementation on glucose and lipid metabolism parameters and inflammatory markers in patients with T2DM using published data from randomized controlled trials (RCTs). The PubMed, Web of Science, and Cochrane Library databases were searched for relevant RCTs. A random-effects model was used to generate the weighted mean difference (WMD) and 95% confidence interval (95% CI). Probiotic fermented milk supplementation reduced the levels of fasting plasma glucose (MD = -17.01, 95% CI -26.43, -7.58 mg/dL; n = 7), hemoglobin A1c (MD = -0.47, 95% CI -0.74, -0.21%; n = 7), total cholesterol (MD = -5.15, 95% CI -9.52, -0.78 mg/dL; n = 7), and C-reactive protein (MD = -0.25, 95% CI -0.43, -0.08; n = 3) but did not significantly affect the levels of HOMA-IR (MD = -0.89, 95% CI -2.55, 0.78; n = 3), triglyceride (MD = -4.69, 95% CI -14.67, 5.30 mg/dL; n = 6), low-density lipoprotein cholesterol (MD = -4.25, 95% CI -8.63, 0.13 mg/dL; n = 7), high-density lipoprotein cholesterol (MD = 1.20, 95% CI -0.96, 3.36 mg/dL; n = 7), and tumor necrosis factor-alpha (MD: -0.58, 95% CI -1.47, 0.32 pg/mL; n = 2). In summary, the present findings provide a crude indication of the potential benefits of probiotic fermented milk supplementation in improving glucose and lipid metabolism and inflammation in patients with T2DM. However, more robust evidence is needed to determine the clinical significance of probiotic fermented milk in the management of T2DM.
Collapse
Affiliation(s)
- Hao Zhong
- School of Medicine, Nankai University, Tianjin 310071, China
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo 315012, China
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo 315012, China
| | - Yongqiu Yan
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo 315012, China
| | - Feifei Xiong
- Ningbo Yufangtang Biotechnology Co., Ltd., Ningbo 315012, China
| | - Khemayanto Hidayat
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yunhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
4
|
Asahina Y, Hagi T, Kobayashi M, Narita T, Sasaki K, Tajima A, Nomura M. Expression profiles of milk proteolysis-related genes in Lactobacillus paracasei EG9, a non-starter lactic acid bacterial strain, during Gouda-type cheese ripening. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Yin X, Heeney DD, Srisengfa YT, Chen SY, Slupsky CM, Marco ML. Sucrose metabolism alters Lactobacillus plantarum survival and interactions with the microbiota in the digestive tract. FEMS Microbiol Ecol 2019; 94:4996782. [PMID: 29771345 DOI: 10.1093/femsec/fiy084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
We investigated whether sucrose metabolism by probiotic Lactobacillus plantarum influences the intestinal survival and microbial responses to this organism when administered to mice fed a sucrose-rich, Western diet. A L. plantarum mutant unable to metabolize sucrose was constructed by deleting scrB, coding for beta-fructofuranosidase, in a rifampicin-resistant strain of L. plantarum NCIMB8826. The ScrB deficient mutant survived in 8-fold higher numbers compared to the wild-type strain when measured 24 h after administration on two consecutive days. According to 16S rRNA marker gene sequencing, proportions of Faecalibacterium and Streptococcus were elevated in mice fed the L. plantarum ΔscrB mutant. Metagenome predictions also indicated those mice contained a higher abundance of lactate dehydrogenases. This was further supported by a trend in elevated fecal lactate concentrations among mice fed the ΔscrB mutant. L. plantarum also caused other changes to the fecal metabolomes including higher concentrations of glycerol in mice fed the ΔscrB mutant and increased uracil, acetate and propionate levels among mice fed the wild-type strain. Taken together, these results suggest that sucrose metabolism alters the properties of L. plantarum in the digestive tract and that probiotics can differentially influence intestinal metabolomes via their carbohydrate consumption capabilities.
Collapse
Affiliation(s)
- Xiaochen Yin
- Department of Food Science and Technology, University of California, Davis, USA
| | - Dustin D Heeney
- Department of Food Science and Technology, University of California, Davis, USA
| | - Yanin Tab Srisengfa
- Department of Food Science and Technology, University of California, Davis, USA
| | - Shin-Yu Chen
- Department of Nutrition, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, USA.,Department of Nutrition, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA
| |
Collapse
|
6
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
7
|
Huang S, Gaucher F, Cauty C, Jardin J, Le Loir Y, Jeantet R, Chen XD, Jan G. Growth in Hyper-Concentrated Sweet Whey Triggers Multi Stress Tolerance and Spray Drying Survival in Lactobacillus casei BL23: From the Molecular Basis to New Perspectives for Sustainable Probiotic Production. Front Microbiol 2018; 9:2548. [PMID: 30405593 PMCID: PMC6204390 DOI: 10.3389/fmicb.2018.02548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus casei BL23 has a recognized probiotic potential, which includes immune modulation, protection toward induced colitis, toward induced colon cancer and toward dissemination of pathogens. In L. casei, as well as in other probiotics, both probiotic and technological abilities are highly dependent (1) on the substrate used to grow bacteria and (2) on the process used to dry and store this biomass. Production and storage of probiotics, at a reasonable financial and environmental cost, becomes a crucial challenge. Food-grade media must be used, and minimal process is preferred. In this context, we have developed a “2-in-1” medium used both to grow and to dry L. casei BL23, considered a fragile probiotic strain. This medium consists in hyper-concentrated sweet whey (HCSW). L. casei BL23 grows in HCSW up to 30% dry matter, which is 6 times-concentrated sweet whey. Compared to isotonic sweet whey (5% dry matter), these growth conditions enhanced tolerance of L. casei BL23 toward heat, acid and bile salts stress. HCSW also triggered intracellular accumulation of polyphosphate, of glycogen and of trehalose. A gel-free global proteomic differential analysis further evidenced overexpression of proteins involved in pathways known to participate in stress adaptation, including environmental signal transduction, oxidative and metal defense, DNA repair, protein turnover and repair, carbohydrate, phosphate and amino acid metabolism, and in osmoadaptation. Accordingly, HCSW cultures of L. casei BL23 exhibited enhanced survival upon spray drying, a process known to drastically affect bacterial viability. This work opens new perspectives for sustainable production of dried probiotic lactobacilli, using food industry by-products and lowering energy costs.
Collapse
Affiliation(s)
- Song Huang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Jiangsu, China.,UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Floriane Gaucher
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France.,Bioprox, Levallois-Perret, France
| | - Chantal Cauty
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Julien Jardin
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Yves Le Loir
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Romain Jeantet
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Jiangsu, China.,UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Jiangsu, China
| | - Gwénaël Jan
- UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
8
|
Cordeiro BF, Oliveira ER, da Silva SH, Savassi BM, Acurcio LB, Lemos L, Alves JDL, Carvalho Assis H, Vieira AT, Faria AMC, Ferreira E, Le Loir Y, Jan G, Goulart LR, Azevedo V, Carvalho RDDO, do Carmo FLR. Whey Protein Isolate-Supplemented Beverage, Fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the Prevention of Mucositis in Mice. Front Microbiol 2018; 9:2035. [PMID: 30258413 PMCID: PMC6143704 DOI: 10.3389/fmicb.2018.02035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a clinically important gastrointestinal inflammatory infirmity, generated by antineoplastic drugs cytotoxic effects. The inflammatory process caused by this disease frequently leads to derangements in the alimentary tract and great malaise for the patient. Novel strategies are necessary for its prevention or treatment, as currently available treatments of mucositis have several limitations in relieving its symptoms. In this context, several research groups have investigated the use of probiotic bacteria, and in particular dairy bacterial strains. Compelling evidences reveal that milk fermented by certain probiotic bacteria has the capacity to ameliorate intestinal inflammatory disorders. In addition, innovative probiotic delivery strategies, based on probiotics incorporation into protective matrices, such as whey proteins, were able to increase the therapeutic effect of probiotic strains by providing extra protection for bacteria against environmental stresses. Therefore, in this study, we evaluated the role of the whey protein isolate (WPI), when added to skim milk fermented by Lactobacillus casei BL23 (L. casei BL23) or by Propionibacterium freudenreichii CIRM-BIA138 (P. freudenreichii 138), as a protective matrix against in vitro stress challenges. In addition, we investigated the therapeutic effect of these fermented beverages in a murine model of mucositis induced by 5-Fluorouracil (5-FU). Our results demonstrated that milk supplementation with 30% (w/v) of WPI increases the survival rate of both strains when challenged with acid, bile salts, high temperature and cold storage stresses, compared to fermented skim milk without the addition of WPI. Moreover, treatment with the probiotic beverages prevented weight loss and intestinal damages in mice receiving 5-FU. We conclude that the presence of WPI maximizes the anti-inflammatory effects of L. casei BL23, but not for P. freudenreichii 138, suggesting that whey protein enhancement of probiotic activity might be strain-dependent.
Collapse
Affiliation(s)
- Bárbara F. Cordeiro
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Sara H. da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Bruna M. Savassi
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Leonardo B. Acurcio
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Juliana de L. Alves
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Helder Carvalho Assis
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Angélica T. Vieira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Ana M. C. Faria
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | | | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | - Luiz R. Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Rodrigo D. de O. Carvalho
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Fillipe L. R. do Carmo
- Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
- STLO, INRA, Agrocampus Ouest, Rennes, France
| |
Collapse
|
9
|
Fomenky BE, Chiquette J, Bissonnette N, Talbot G, Chouinard PY, Ibeagha-Awemu EM. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 Incubated in Milk at Optimal and Low Temperatures. mSystems 2017; 2:mSystems00027-17. [PMID: 28951887 PMCID: PMC5605880 DOI: 10.1128/msystems.00027-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as a probiotic remain to be elucidated. In this study, we identified proteins of L. delbrueckii subsp. bulgaricus LBB.B5 that are produced in higher quantities in milk at growth-conducive and non-growth-conductive (refrigeration) temperatures compared to laboratory culture medium and further examined whether those L. delbrueckii subsp. bulgaricus cultures were affected differently in their capacity to survive transit through the murine digestive tract. This work provides novel insight into how a major, food-adapted microbe responds to its primary habitat. Such knowledge can be applied to improve starter culture and yogurt production and to elucidate matrix effects on probiotic performance. We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus-expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCELactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as a probiotic remain to be elucidated. In this study, we identified proteins of L. delbrueckii subsp. bulgaricus LBB.B5 that are synthesized in higher quantities in milk at growth-conducive and non-growth-conductive (refrigeration) temperatures compared to laboratory culture medium and further examined whether those L. delbrueckii subsp. bulgaricus cultures were affected differently in their capacity to survive transit through the murine digestive tract. This work provides novel insight into how a major, food-adapted microbe responds to its primary habitat. Such knowledge can be applied to improve starter culture and yogurt production and to elucidate matrix effects on probiotic performance.
Collapse
|
11
|
Flach J, van der Waal MB, van den Nieuwboer M, Claassen E, Larsen OFA. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Crit Rev Food Sci Nutr 2017; 58:2570-2584. [DOI: 10.1080/10408398.2017.1334624] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Joost Flach
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
- CR2O, Marconistraat 16, Rotterdam, Netherlands
| | - Mark B. van der Waal
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
- CR2O, Marconistraat 16, Rotterdam, Netherlands
| | | | - Eric Claassen
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
| | - Olaf F. A. Larsen
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
| |
Collapse
|
12
|
|
13
|
Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ, Hutkins R. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 2016; 44:94-102. [PMID: 27998788 DOI: 10.1016/j.copbio.2016.11.010] [Citation(s) in RCA: 708] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Fermented foods and beverages were among the first processed food products consumed by humans. The production of foods such as yogurt and cultured milk, wine and beer, sauerkraut and kimchi, and fermented sausage were initially valued because of their improved shelf life, safety, and organoleptic properties. It is increasingly understood that fermented foods can also have enhanced nutritional and functional properties due to transformation of substrates and formation of bioactive or bioavailable end-products. Many fermented foods also contain living microorganisms of which some are genetically similar to strains used as probiotics. Although only a limited number of clinical studies on fermented foods have been performed, there is evidence that these foods provide health benefits well-beyond the starting food materials.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science & Technology, University of California, Davis, USA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, USA
| | - Sylvie Binda
- Danone Nutricia, Centre Daniel CArasso, Avenue de la Vauve - Route Départementale 128, 91120 Palaiseau, France
| | | | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark and APC Microbiome Institute, Cork, Ireland
| | - Benoit Foligné
- Lille Inflammation Research International Center, Inserm U995, University of Lille, CHRU de Lille, France
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Remco Kort
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist and VU University Amsterdam, Department of Molecular Cell Biology, Amsterdam, The Netherlands
| | - Gonca Pasin
- California Dairy Research Foundation, 501 G Street, #203, Davis, CA 95616, USA
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie 1, 31600 Jokioinen, Finland
| | - Eddy J Smid
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, 258 Food Innovation Center, University of Nebraska - Lincoln, Lincoln, NE 68588-6205, USA.
| |
Collapse
|
14
|
Reale A, Di Renzo T, Zotta T, Preziuso M, Boscaino F, Ianniello R, Storti LV, Tremonte P, Coppola R. Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ruiz L, Hidalgo C, Blanco-Míguez A, Lourenço A, Sánchez B, Margolles A. Tackling probiotic and gut microbiota functionality through proteomics. J Proteomics 2016; 147:28-39. [DOI: 10.1016/j.jprot.2016.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
|
16
|
Pajarillo EAB, Kim SH, Lee JY, Valeriano VDV, Kang DK. Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1. Korean J Food Sci Anim Resour 2015; 35:692-702. [PMID: 26761899 PMCID: PMC4670900 DOI: 10.5851/kosfa.2015.35.5.692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022] Open
Abstract
Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactiveTM Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions.
Collapse
Affiliation(s)
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Ji-Yoon Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Korea
| | | | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|