1
|
Naryzhny S. Puzzle of Proteoform Variety-Where Is a Key? Proteomes 2024; 12:15. [PMID: 38804277 PMCID: PMC11130821 DOI: 10.3390/proteomes12020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
One of the human proteome puzzles is an imbalance between the theoretically calculated and experimentally measured amounts of proteoforms. Considering the possibility of combinations of different post-translational modifications (PTMs), the quantity of possible proteoforms is huge. An estimation gives more than a million different proteoforms in each cell type. But, it seems that there is strict control over the production and maintenance of PTMs. Although the potential complexity of proteoforms due to PTMs is tremendous, available information indicates that only a small part of it is being implemented. As a result, a protein could have many proteoforms according to the number of modification sites, but because of different systems of personal regulation, the profile of PTMs for a given protein in each organism is slightly different.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Leningrad Region, Gatchina 188300, Russia
| |
Collapse
|
2
|
Ronzhina NL, Zorina ES, Zavialova MG, Legina OK, Naryzhny SN. Variability of haptoglobin beta-chain proteoforms. BIOMEDITSINSKAIA KHIMIIA 2024; 70:114-124. [PMID: 38711411 DOI: 10.18097/pbmc20247002114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Existing knowledge on changes of the haptoglobin (Hp) molecule suggests that it may exist in multiple proteoforms, which obviously exhibit different functions. Using two-dimensional electrophoresis (2DE) in combination with mass spectrometry and immunodetection, we have analyzed blood plasma samples from both healthy donors and patients with primary grade IV glioblastoma (GBM), and obtained a detailed composite 2DE distribution map of β-chain proteoforms, as well as the full-length form of Hp (zonulin). Although the total level of plasma Hp exceeded normal values in cancer patients (especially patients with GBM), the presence of particuar proteoforms, detected by their position on the 2DE map, was very individual. Variability was found in both zonulin and the Hp β-chain. The presence of an alkaline form of zonulin in plasma can be considered a conditional, but insufficient, GBM biomarker. In other words, we found that at the level of minor proteoforms of Hp, even in normal conditions, there was a high individual variability. On the one hand, this raises questions about the reasons for such variability, if it is present not only in Hp, but also in other proteins. On the other hand, this may explain the discrepancy between the number of experimentally detected proteoforms and the theoretically possible ones not only in Hp, but also in other proteins.
Collapse
Affiliation(s)
- N L Ronzhina
- B.P. Konstantinov Petersburg Institute of Nuclear Physics, National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| | - E S Zorina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - O K Legina
- B.P. Konstantinov Petersburg Institute of Nuclear Physics, National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| | - S N Naryzhny
- B.P. Konstantinov Petersburg Institute of Nuclear Physics, National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| |
Collapse
|
3
|
Naryzhny S. Quantitative Aspects of the Human Cell Proteome. Int J Mol Sci 2023; 24:8524. [PMID: 37239870 PMCID: PMC10218018 DOI: 10.3390/ijms24108524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The number and identity of proteins and proteoforms presented in a single human cell (a cellular proteome) are fundamental biological questions. The answers can be found with sophisticated and sensitive proteomics methods, including advanced mass spectrometry (MS) coupled with separation by gel electrophoresis and chromatography. So far, bioinformatics and experimental approaches have been applied to quantitate the complexity of the human proteome. This review analyzed the quantitative information obtained from several large-scale panoramic experiments in which high-resolution mass spectrometry-based proteomics in combination with liquid chromatography or two-dimensional gel electrophoresis (2DE) were used to evaluate the cellular proteome. It is important that even though all these experiments were performed in different labs using different equipment and calculation algorithms, the main conclusion about the distribution of proteome components (proteins or proteoforms) was basically the same for all human tissues or cells. It follows Zipf's law and has a formula N = A/x, where N is the number of proteoforms, A is a coefficient, and x is the limit of proteoform detection in terms of abundance.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10, 119121 Moscow, Russia;
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| |
Collapse
|
4
|
Fedulova L, Vasilevskaya E, Tikhonova O, Kazieva L, Tolmacheva G, Makarenko A. Proteomic Markers in the Muscles and Brain of Pigs Recovered from Hemorrhagic Stroke. Genes (Basel) 2022; 13:genes13122204. [PMID: 36553471 PMCID: PMC9777686 DOI: 10.3390/genes13122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: Stroke is the leading cause of serious long-term disability. Walking dysfunction and paresis of the upper extremities occurs in more than 80% of people who have had a stroke. (2) Methods: We studied post-genomic markers in biosamples of muscle and brain tissue from animals that underwent intracerebral hematoma and recovered after 42 days. Our purpose was to understand the biological mechanisms associated with recovery from hemorrhagic stroke. We analyzed the peptides formed after trypsinolysis of samples by HPLC-MS, and the results were processed by bioinformatics methods, including the establishment of biochemical relationships (gene to gene) using topological omics databases such as Reactome and KEGG. (3) Results: In the pig brain, unique compounds were identified which are expressed during the recovery period after traumatic injury. These are molecular factors of activated microglia, and they contribute to the functional recovery of neurons and reduce instances of hematoma, edema, and oxidative stress. Complexes of the main binding factors of the neurotrophins involved in the differentiation and survival of nerve cells were found in muscles. (4) Conclusions: A network of gene interactions has been constructed for proteins involved in the regulation of synaptic transmission, in particular presynaptic vesicular and endocytic processes. The presence of transmitters and transporters associated with stimulation of NMDA receptors at neuromuscular junctions shows the relationship between upper motor neurons and neuromuscular junctions.
Collapse
Affiliation(s)
- Liliya Fedulova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Ekaterina Vasilevskaya
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | | | - Laura Kazieva
- Institute of Biomedical Chemistry, 119121 Mosow, Russia
| | - Galina Tolmacheva
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
- Correspondence: ; Tel.: +7-495-676-9511-(128)
| | - Alexandr Makarenko
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
5
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
6
|
Abundance of plasma proteins in response to divergent ratios of dietary ω6:ω3 fatty acids in gestating and lactating sows using a quantitative proteomics approach. J Proteomics 2022; 260:104562. [DOI: 10.1016/j.jprot.2022.104562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
|
7
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Zavialova M, Zgoda V, Klopov N, Legina O, Pantina R. Evaluation of Haptoglobin and Its Proteoforms as Glioblastoma Markers. Int J Mol Sci 2021; 22:6533. [PMID: 34207114 PMCID: PMC8234662 DOI: 10.3390/ijms22126533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that plays a critical role in tissue protection and the prevention of oxidative damage. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein and is the subject of research as a potential biomarker of many diseases, including malignant neoplasms. The Human Hp gene is polymorphic and controls the synthesis of three major phenotypes-homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). Glioblastoma multiform (GBM) is the most malignant primary brain tumor. In our study, we have analyzed the state of Hp proteoforms in plasma and cells using 1D (SDS-PAGE) and 2D electrophoresis (2DE) with the following mass spectrometry (LC ES-MS/MS) or Western blotting. We found that the levels of α2- and β-chain proteoforms are up-regulated in the plasma of GBM patients. An unprocessed form of Hp2-2 (PreHp2-2, zonulin) with unusual biophysical parameters (pI/Mw) was also detected in the plasma of GBM patients and glioblastoma cells. Altogether, this data shows the possibility to use proteoforms of haptoglobin as a potential GBM-specific plasma biomarker.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Natalia Ronzhina
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
| | - Fedor Kabachenko
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Maria Zavialova
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
| | - Nikolai Klopov
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Olga Legina
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Rimma Pantina
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| |
Collapse
|
8
|
Kiseleva O, Zgoda V, Naryzhny S, Poverennaya E. Empowering Shotgun Mass Spectrometry with 2DE: A HepG2 Study. Int J Mol Sci 2020; 21:E3813. [PMID: 32471280 PMCID: PMC7312985 DOI: 10.3390/ijms21113813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
One of the major goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to catalog and annotate a myriad of heterogeneous proteoforms, produced by ca. 20 thousand genes. To achieve a detailed and personalized understanding into proteomes, we suggest using a customized RNA-seq library of potential proteoforms, which includes aberrant variants specific to certain biological samples. Two-dimensional electrophoresis coupled with high-performance liquid chromatography allowed us to downgrade the difficulty of biological mixing following shotgun mass spectrometry. To benchmark the proposed pipeline, we examined heterogeneity of the HepG2 hepatoblastoma cell line proteome. Data are available via ProteomeXchange with identifier PXD018450.
Collapse
Affiliation(s)
- Olga Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (V.Z.); (S.N.); (E.P.)
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (V.Z.); (S.N.); (E.P.)
| | - Stanislav Naryzhny
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (V.Z.); (S.N.); (E.P.)
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”, Gatchina 188300, Russia
| | | |
Collapse
|
9
|
Naryzhny S, Klopov N, Ronzhina N, Zorina E, Zgoda V, Kleyst O, Belyakova N, Legina O. A database for inventory of proteoform profiles: "2DE-pattern". Electrophoresis 2020; 41:1118-1124. [PMID: 32307725 DOI: 10.1002/elps.201900468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 01/01/2023]
Abstract
The human proteome is composed of a diverse and heterogeneous range of gene products/proteoforms/protein species. Because of the growing amount of information about proteoforms generated by different methods, we need a convenient approach to make an inventory of the data. Here, we present a database of proteoforms that is based on information obtained by separation of proteoforms using 2DE followed by shotgun ESI-LC-MS/MS. The database's principles and structure are described. The database is called "2DE-pattern" as it contains multiple isoform-centric patterns of proteoforms separated according to 2DE principles. The database can be freely used at http://2de-pattern.pnpi.nrcki.ru.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russia.,B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Nikolay Klopov
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Natalia Ronzhina
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Elena Zorina
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russia
| | - Olga Kleyst
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Natalia Belyakova
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Olga Legina
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
10
|
Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level. Proteomes 2019; 7:proteomes7040036. [PMID: 31671630 PMCID: PMC6958347 DOI: 10.3390/proteomes7040036] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/15/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Two-dimensional gel electrophoresis (2DE) is an important and well-established technical platform enabling extensive top-down proteomic analysis. However, the long-held but now largely outdated conventional concepts of 2DE have clearly impacted its application to in-depth investigations of proteomes at the level of protein species/proteoforms. It is time to popularize a new concept of 2DE for proteomics. With the development and enrichment of the proteome concept, any given “protein” is now recognized to consist of a series of proteoforms. Thus, it is the proteoform, rather than the canonical protein, that is the basic unit of a proteome, and each proteoform has a specific isoelectric point (pI) and relative mass (Mr). Accordingly, using 2DE, each proteoform can routinely be resolved and arrayed according to its different pI and Mr. Each detectable spot contains multiple proteoforms derived from the same gene, as well as from different genes. Proteoforms derived from the same gene are distributed into different spots in a 2DE pattern. High-resolution 2DE is thus actually an initial level of separation to address proteome complexity and is effectively a pre-fractionation method prior to analysis using mass spectrometry (MS). Furthermore, stable isotope-labeled 2DE coupled with high-sensitivity liquid chromatography-tandem MS (LC-MS/MS) has tremendous potential for the large-scale detection, identification, and quantification of the proteoforms that constitute proteomes.
Collapse
|
11
|
Ershov PV, Mezentsev YV, Yablokov EO, Kaluzhskiy LA, Florinskaya AV, Gnedenko OV, Zgoda VG, Vakhrushev IV, Raeva OS, Yarygin KN, Gilep AA, Usanov SA, Medvedev AE, Ivanov AS. Direct Molecular Fishing of Protein Partners for Proteins Encoded by Genes of Human Chromosome 18 in HepG2 Cell Lysate. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J Proteomics 2019; 191:22-28. [DOI: 10.1016/j.jprot.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
|
13
|
Pavlov IY, Eneyskaya EV, Bobrov KS, Polev DE, Ivanen DR, Kopylov AT, Naryzhny SN, Kulminskaya AA. Comprehensive Analysis of Carbohydrate-Active Enzymes from the Filamentous Fungus Scytalidium candidum 3C. BIOCHEMISTRY (MOSCOW) 2018; 83:1399-1410. [PMID: 30482151 DOI: 10.1134/s000629791811010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endo-hemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thio-linkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.
Collapse
Affiliation(s)
- I Yu Pavlov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - E V Eneyskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - K S Bobrov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - D E Polev
- Resource Center for Molecular and Cell Technologies and "Centre Biobank", St. Petersburg State University, Stary Peterhof, St. Petersburg, 198504, Russia.
| | - D R Ivanen
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia
| | - A T Kopylov
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | - S N Naryzhny
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia. .,Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | - A A Kulminskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region, 188300, Russia. .,Peter the Great St. Petersburg Polytechnic University, Department of Medical Physics, St. Petersburg, 194021, Russia
| |
Collapse
|
14
|
Naryzhny SN, Zorina ES, Kopylov AT, Zgoda VG, Kleyst OA, Archakov AI. Next Steps on in Silico 2DE Analyses of Chromosome 18 Proteoforms. J Proteome Res 2018; 17:4085-4096. [PMID: 30238754 DOI: 10.1021/acs.jproteome.8b00386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the boundaries of the chromosome-centric Human Proteome Project (c-HPP) to obtain information about proteoforms coded by chromosome 18, several cell lines (HepG2, glioblastoma, LEH), normal liver, and plasma were analyzed. In our study, we have been using proteoform separation by two-dimensional electrophoresis (2DE) (a sectional analysis) and a semivirtual 2DE with following shotgun mass spectrometry using LC-ESI-MS/MS. Previously, we published a first draft of this research, where only HepG2 cells were tested. Here, we present the next step using more detailed analysis and more samples. Altogether, confident (2 significant sequences minimum) information about proteoforms of 117 isoforms coded by 104 genes of chromosome 18 was obtained. The 3D-graphs showing distribution of different proteoforms from the same gene in the 2D map were generated. Additionally, a semivirtual 2DE approach has allowed for detecting more proteoforms and estimating their pI more precisely. Data are available via ProteomeXchange with identifier PXD010142.
Collapse
Affiliation(s)
- Stanislav N Naryzhny
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia.,Petersburg Nuclear Physics Institute , National Research Center "Kurchatov Institute" , Leningrad Region , Gatchina 188300 , Russia
| | - Elena S Zorina
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| | - Arthur T Kopylov
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| | - Olga A Kleyst
- Petersburg Nuclear Physics Institute , National Research Center "Kurchatov Institute" , Leningrad Region , Gatchina 188300 , Russia
| | - Alexander I Archakov
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| |
Collapse
|
15
|
Liang Y, Xie SB, Wu CH, Hu Y, Zhang Q, Li S, Fan YG, Leng RX, Pan HF, Xiong HB, Ye DQ. Coagulation cascade and complement system in systemic lupus erythematosus. Oncotarget 2017; 9:14862-14881. [PMID: 29599912 PMCID: PMC5871083 DOI: 10.18632/oncotarget.23206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become 'partners in crime', contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | | | - Chang-Hao Wu
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yuan Hu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hua-Bao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| |
Collapse
|
16
|
Variety and Dynamics of Proteoforms in the Human Proteome: Aspects of Markers for Hepatocellular Carcinoma. Proteomes 2017; 5:proteomes5040033. [PMID: 29168748 PMCID: PMC5748568 DOI: 10.3390/proteomes5040033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
We have previously developed an approach, where two-dimensional gel electrophoresis (2DE) was used, followed by sectional analysis of the whole gel using high-resolution nano-liquid chromatography-mass spectrometry (ESI LC-MS/MS). In this study, we applied this approach on the panoramic analysis of proteins and their proteoforms from normal (liver) and cancer (HepG2) cells. This allowed us to detect, in a single proteome, about 20,000 proteoforms coded by more than 4000 genes. A set of 3D-graphs showing distribution of these proteoforms in 2DE maps (profiles) was generated. A comparative analysis of these profiles between normal and cancer cells showed high variability and dynamics of many proteins. Among these proteins, there are some well-known features like alpha-fetoprotein (FETA) or glypican-3 (GPC3) and potential hepatocellular carcinoma (HCC) markers. More detailed information about their proteoforms could be used for generation of panels of more specific biomarkers.
Collapse
|
17
|
Kiseleva O, Poverennaya E, Shargunov A, Lisitsa A. Proteomic Cinderella: Customized analysis of bulky MS/MS data in one night. J Bioinform Comput Biol 2017; 16:1740011. [PMID: 29216772 DOI: 10.1142/s021972001740011x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteomic challenges, stirred up by the advent of high-throughput technologies, produce large amount of MS data. Nowadays, the routine manual search does not satisfy the "speed" of modern science any longer. In our work, the necessity of single-thread analysis of bulky data emerged during interpretation of HepG2 proteome profiling results for proteoforms searching. We compared the contribution of each of the eight search engines (X!Tandem, MS-GF[Formula: see text], MS Amanda, MyriMatch, Comet, Tide, Andromeda, and OMSSA) integrated in an open-source graphical user interface SearchGUI ( http://searchgui.googlecode.com ) into total result of proteoforms identification and optimized set of engines working simultaneously. We also compared the results of our search combination with Mascot results using protein kit UPS2, containing 48 human proteins. We selected combination of X!Tandem, MS-GF[Formula: see text] and OMMSA as the most time-efficient and productive combination of search. We added homemade java-script to automatize pipeline from file picking to report generation. These settings resulted in rise of the efficiency of our customized pipeline unobtainable by manual scouting: the analysis of 192 files searched against human proteome (42153 entries) downloaded from UniProt took 11[Formula: see text]h.
Collapse
Affiliation(s)
- Olga Kiseleva
- 1 Department of Bioinformatics, Institute of Biomedical Chemistry, 10/8 Pogodinskaya str., Moscow 119121, Russia
| | - Ekaterina Poverennaya
- 1 Department of Bioinformatics, Institute of Biomedical Chemistry, 10/8 Pogodinskaya str., Moscow 119121, Russia
| | - Alexander Shargunov
- 1 Department of Bioinformatics, Institute of Biomedical Chemistry, 10/8 Pogodinskaya str., Moscow 119121, Russia
| | - Andrey Lisitsa
- 1 Department of Bioinformatics, Institute of Biomedical Chemistry, 10/8 Pogodinskaya str., Moscow 119121, Russia
| |
Collapse
|
18
|
Poverennaya EV, Kiseleva OI, Ponomarenko EA, Naryzhny SN, Zgoda VG, Lisitsa AV. [Multiomics study of HepG2 cell line proteome]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:373-378. [PMID: 29080867 DOI: 10.18097/pbmc20176305373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current proteomic studies are generally focused on the most abundant proteoforms encoded by canonical nucleic sequences. Transcriptomic and proteomic data, accumulated in a variety of postgenome sources and coupled with state-of-art analytical technologies, allow to start the identification of aberrant (non-canonical) proteoforms. The main sources of aberrant proteoforms are alternative splicing, single nucleotide polymorphism, and post-translational modifications. The aim of this work was to estimate the heterogeneity of HepG2 proteome. We suggested multiomics approach, which combines transcriptomic (RNAseq) and proteomic (2DE-MS/MS) methods, as a promising strategy to explore the proteome.
Collapse
Affiliation(s)
| | - O I Kiseleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S N Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
19
|
Naryzhny S, Zgoda V, Kopylov A, Petrenko E, Archakov А. A semi-virtual two dimensional gel electrophoresis: IF-ESI LC-MS/MS. MethodsX 2017; 4:260-264. [PMID: 28913169 PMCID: PMC5587868 DOI: 10.1016/j.mex.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/25/2017] [Indexed: 01/30/2023] Open
Abstract
A method for increasing the productivity of ESI LC-MS/MS (electrospray ionization-liquid chromatography-tandem mass spectrometry) was proposed and applied. After IF (isoelectric focusing) of the sample using IPG (immobilized pH gradient) strip, the strip was cut to sections, and every section was treated according to trypsinolysis protocol for MS/MS analysis. The peptides produced were further analyzed by ESI LC-MS/MS. The procedure allows to: identify many more proteins and proteoforms compared to shotgun analysis of extracts. build a semi-virtual 2DE map of identified proteins.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow, 119121, Russia.,B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova roscha, Gatchina, Leningrad region, 188300, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow, 119121, Russia
| | - Artur Kopylov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow, 119121, Russia
| | - Elena Petrenko
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow, 119121, Russia
| | - Аlexander Archakov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow, 119121, Russia
| |
Collapse
|
20
|
Naryzhny S, Maynskova M, Zgoda V, Archakov A. Dataset of protein species from human liver. Data Brief 2017; 12:584-588. [PMID: 28540349 PMCID: PMC5430161 DOI: 10.1016/j.dib.2017.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
This article contains data related to the research article entitled "Zipf׳s law in proteomics" (Naryzhny et al., 2017) [1]. The protein composition in the human liver or hepatocarcinoma (HepG2) cells extracts was estimated using a filter-aided sample preparation (FASP) protocol. The protein species/proteoform composition in the human liver was determined by two-dimensional electrophoresis (2-DE) followed by Electrospray Ionization Liquid Chromatography-Tandem Mass Spectrometry (ESI LC-MS/MS). In the case of two-dimensional electrophoresis (2-DE), the gel was stained with Coomassie Brilliant Blue R350, and image analysis was performed with ImageMaster 2D Platinum software (GE Healthcare). The 96 sections in the 2D gel were selected and cut for subsequent ESI LC-MS/MS and protein identification. If the same protein was detected in different sections, it was considered to exist as different protein species/proteoforms. A list of human liver proteoforms detected in this way is presented.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", 1 Orlova roscha, Gatchina, Leningrad Region 188300, Russia
| | - Maria Maynskova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Alexander Archakov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| |
Collapse
|
21
|
Naryzhny S. Towards the Full Realization of 2DE Power. Proteomes 2016; 4:proteomes4040033. [PMID: 28248243 PMCID: PMC5260966 DOI: 10.3390/proteomes4040033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Here, approaches that allow disclosure of the information hidden inside and outside of two-dimensional gel electrophoresis (2DE) are described. Experimental identification methods, such as mass spectrometry of high resolution and sensitivity (MALDI-TOF MS and ESI LC-MS/MS) and immunodetection (Western and Far-Western) in combination with bioinformatics (collection of all information about proteoforms), move 2DE to the next level of power. The integration of these technologies will promote 2DE as a powerful methodology of proteomics technology.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia.
- B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Leningrad region, Gatchina 188300, Russia.
| |
Collapse
|