1
|
Wu D, Robinson CV. Native Top-Down Mass Spectrometry Reveals a Role for Interfacial Glycans on Therapeutic Cytokine and Hormone Assemblies. Angew Chem Int Ed Engl 2022; 61:e202213170. [PMID: 36260431 PMCID: PMC10100379 DOI: 10.1002/anie.202213170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top-down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O-glycan stabilizes tumor necrosis factor-α trimer. On the contrary, interferon-β1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N-glycans on the follicle-stimulating hormone α subunit. We found that the interfacial N-glycan, at Asn52 of the α subunit, interacts extensively with the β subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.
Collapse
Affiliation(s)
- Di Wu
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| | - Carol V. Robinson
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
2
|
Wu D, Robinson CV. Native Top-Down Mass Spectrometry Reveals a Role for Interfacial Glycans on Therapeutic Cytokine and Hormone Assemblies. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202213170. [PMID: 38504999 PMCID: PMC10947189 DOI: 10.1002/ange.202213170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top-down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O-glycan stabilizes tumor necrosis factor-α trimer. On the contrary, interferon-β1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N-glycans on the follicle-stimulating hormone α subunit. We found that the interfacial N-glycan, at Asn52 of the α subunit, interacts extensively with the β subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.
Collapse
Affiliation(s)
- Di Wu
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| | - Carol V. Robinson
- Department of ChemistryUniversity of OxfordOxfordOX1 3QZUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
3
|
Patabandige MW, Pfeifer LD, Nguyen HT, Desaire H. Quantitative clinical glycomics strategies: A guide for selecting the best analysis approach. MASS SPECTROMETRY REVIEWS 2022; 41:901-921. [PMID: 33565652 PMCID: PMC8601598 DOI: 10.1002/mas.21688] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
Glycans introduce complexity to the proteins to which they are attached. These modifications vary during the progression of many diseases; thus, they serve as potential biomarkers for disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Understanding the strengths and weaknesses of different quantitative glycomics analysis methods is important for selecting the best strategy to analyze glycosylation changes in any given set of clinical samples. To provide guidance towards selecting the proper approach, we discuss four widely used quantitative glycomics analysis platforms, including fluorescence-based analysis of released N-linked glycans and three different varieties of MS-based analysis: liquid chromatography (LC)-mass spectrometry (MS) analysis of glycopeptides, matrix-assisted laser desorption ionization-time of flight MS, and LC-ESI-MS analysis of released N-linked glycans. These methods' strengths and weaknesses are compared, particularly associated with the figures of merit that are important for clinical biomarker studies, including: the initial sample requirements, the methods' throughput, sample preparation time, the number of species identified, the methods' utility for isomer separation and structural characterization, method-related challenges associated with quantitation, repeatability, the expertise required, and the cost for each analysis. This review, therefore, provides unique guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering insights on the available analysis technologies.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Leah D. Pfeifer
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Hanna T. Nguyen
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
4
|
Butnev VY, May JV, Brown AR, Sharma T, Butnev VY, White WK, Harvey DJ, Bousfield GR. Human FSH Glycoform α-Subunit Asparagine 52 Glycans: Major Glycan Structural Consistency, Minor Glycan Variation in Abundance. Front Endocrinol (Lausanne) 2022; 13:767661. [PMID: 36329887 PMCID: PMC9623679 DOI: 10.3389/fendo.2022.767661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH), an α/β heterodimeric glycoprotein hormone, consists of functionally significant variants resulting from the presence or absence of either one of two FSHβ subunit N-glycans. The two most abundant variants are fully-glycosylated FSH24 (based on 24 kDa FSHβ band in Western blots) and hypo-glycosylated FSH21 (21 kDa band, lacks βAsn24 glycans). Due to its ability to bind more rapidly to the FSH receptor and occupy more FSH binding sites than FSH24, hypo-glycosylated FSH21 exhibits greater biological activity. Endoglycosidase F1-deglycosylated FSH bound to the complete extracellular domain of the FSH receptor crystallized as a trimeric complex. It was noted that a single biantennary glycan attached to FSHα Asn52 might preemptively fill the central pocket in this complex and prevent the other two FSH ligands from binding the remaining ligand-binding sites. As the most active FSH21 preparations possessed more rapidly migrating α-subunit bands in Western blots, we hypothesized that Asn52 glycans in these preparations were small enough to enable greater FSH21 receptor occupancy in the putative FSHR trimer model. Highly purified hFSH oligosaccharides derived from each FSH subunit, were characterized by electrospray ionization-ion mobility-collision-induced dissociation (ESI-IM-CID) mass spectrometry. FSHβ glycans typically possessed core-linked fucose and were roughly one third bi-antennary, one third tri-antennary and one third tetra-antennary. FSHα oligosaccharides largely lacked core fucose and were bi- or tri-antennary. Those αAsn52 glycans exhibiting tetra-antennary glycan m/z values were found to be tri-antennary, with lactosamine repeats accounting for the additional mass. Selective αAsn52 deglycosylation of representative pituitary hFSH glycoform Superdex 75 gel filtration fractions followed by ESI-IM-CID mass spectrometry revealed tri-antennary glycans predominated even in the lowest molecular weight FSH glycoforms. Accordingly, the differences in binding capacity of the same receptor preparation to different FSH glycoforms are likely the organization of the FSH receptor in cell membranes, rather than the αAsn52 oligosaccharide.
Collapse
Affiliation(s)
- Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Alan R Brown
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Tarak Sharma
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Vladimir Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - William K White
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - David J Harvey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| |
Collapse
|
5
|
Pregnancy and neonatal outcomes in fresh and frozen cycles using blastocysts derived from ovarian stimulation with follitropin delta. J Assist Reprod Genet 2021; 38:2651-2661. [PMID: 34254211 PMCID: PMC8581102 DOI: 10.1007/s10815-021-02271-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To describe the pregnancy and neonatal outcomes using fresh and vitrified/warmed blastocysts obtained from ovarian stimulation with follitropin delta in controlled trials versus follitropin alfa. METHODS This investigation evaluated the outcome from 2719 fresh and frozen cycles performed in 1326 IVF/ICSI patients who could start up to three ovarian stimulations in the ESTHER-1 (NCT01956110) and ESTHER-2 (NCT01956123) trials, covering 1012 fresh cycles and 341 frozen cycles with follitropin delta and 1015 fresh cycles and 351 frozen cycles with follitropin alfa. Of the 1326 first cycle patients, 513 continued to cycle 2 and 188 to cycle 3, and 441 patients started frozen cycles after the fresh cycles. Pregnancy follow-up was continued until 4 weeks after birth. RESULTS The overall cumulative take-home baby rate after up to three stimulation cycles was 60.3% with follitropin delta and 60.7% with follitropin alfa (-0.2% [95% CI: -5.4%; 5.0%]), of which the relative contribution was 72.8% from fresh cycles and 27.2% from frozen cycles in each treatment group. Across the fresh cycles, the ongoing implantation rate was 32.1% for follitropin delta and 32.1% for follitropin alfa, while it was 27.6% and 27.8%, respectively, for the frozen cycles. Major congenital anomalies among the live-born neonates up until 4 weeks were reported at an incidence of 1.6% with follitropin delta and 1.8% with follitropin alfa (-0.2% [95% CI: -1.9%; 1.5%]). CONCLUSIONS Based on comparative trials, the pregnancy and neonatal outcomes from fresh and frozen cycles provide reassuring data on the efficacy and safety of follitropin delta. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01956110 registered on 8 October 2013; NCT01956123 registered on 8 October 2013.
Collapse
|
6
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Cannarella R, La Vignera S, Condorelli RA, Mongioì LM, Calogero AE. FSH dosage effect on conventional sperm parameters: a meta-analysis of randomized controlled studies. Asian J Androl 2021; 22:309-316. [PMID: 31274479 PMCID: PMC7275804 DOI: 10.4103/aja.aja_42_19] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicle-stimulating hormone (FSH) represents a therapeutic option in normogonadotropic patients with idiopathic oligozoospermia. The aim of this review was to evaluate the possible dose- and drug-dependent efficacy of FSH treatment on conventional sperm parameters. We performed a comprehensive systematic review via a meta-analysis of all available randomized controlled trials, in which FSH administration was compared with placebo or no treatment when administered to normogonadotropic patients with idiopathic oligozoospermia. Of the 971 articles that were retrieved, 5 were finally included, including a total of 372 patients and 294 controls. Overall, FSH treatment was effective in ameliorating the sperm concentration, total count, progressive motility, but not normal forms. On the basis of the weekly dosage, the studies were classified into those using low (175–262.5 IU per week), intermediate (350–525 IU per week), and high (700–1050 IU per week) doses. At low doses, FSH improved only sperm motility. At intermediate doses, FSH ameliorated sperm concentration and morphology. Total sperm count and progressive motility showed a trend toward the increase. At high doses, FSH increased sperm concentration, total sperm count, and progressive motility. Sperm morphology showed a trend toward the increase. Finally, both highly purified FSH (hpFSH) and recombinant human FSH (rhFSH) improved sperm concentration, total sperm count, progressive motility, but not morphology. No different efficacy was observed between these two preparations. This meta-analysis provides evidence in favor of high FSH doses. The FSH efficacy was not related to the preparation type (recombinant vs highly purified). Further studies are needed to evaluate the effectiveness of long-standing treatment regimes.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
8
|
High-level expression of biologically active human follicle stimulating hormone in the Chinese hamster ovary cell line by a pair of tricistronic and monocistronic vectors. PLoS One 2019; 14:e0219434. [PMID: 31276557 PMCID: PMC6611665 DOI: 10.1371/journal.pone.0219434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
Recombinant human follicle stimulating hormone (FSH), produced in Chinese hamster ovary (CHO) cells, is widely used for treatment of fertility disorders and is subject to biosimilars development. Cell lines with high specific productivities may simplify the FSH production process. Here, we used our previously established expression system based on vector p1.1 to create new cell lines secreting heterodimeric FSH protein. To this end, we linked open reading frames of both FSH subunits by the wild-type internal ribosome entry site from the encephalomyocarditis virus (EMCV IRES). Intact and double-negative for the dihydrofolate reductase CHO cells were stably transfected by the FSH-coding plasmids. Stably transfected intact cells showed higher level of the FSH secretion and were utilized for subsequent methotrexate-driven transgene amplification, which doubled their productivity. The excess of the free α-subunit was corrected by transfecting the cells by the additional p1.1-based plasmid encoding the β-subunit of the FSH. Clonal cell lines obtained secreted mostly the heterodimeric FSH and possessed specific productivities up to 12.3±1.7 pg/cell/day. Candidate clonal cell line C-P1.3-FSH-G4 maintained a constant specific productivity for at least 2 months of culturing without the section pressure. The resulting FSH protein conformed to the international pharmaceutical quality criteria as evidenced by the receptor binding kinetics, distribution pattern of hormone isoforms and biological activity. In conclusion, our expression system offers a simple and cost-effective approach to production of FSH.
Collapse
|
9
|
Bousfield GR, Harvey DJ. Follicle-Stimulating Hormone Glycobiology. Endocrinology 2019; 160:1515-1535. [PMID: 31127275 PMCID: PMC6534497 DOI: 10.1210/en.2019-00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHβ glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| |
Collapse
|
10
|
Singh SK, Nage N, Jagani H, Maiti M, Ranbhor RS. Glycan mapping of recombinant human follicle stimulating hormone by mass spectrometry. Reprod Biol 2018; 18:380-384. [PMID: 30344088 DOI: 10.1016/j.repbio.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/25/2022]
Abstract
In humans, regulation of reproductive functions are carried out mainly by glycoprotein hormones namely follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), luteinizing hormone (LH) and chorionic gonadotropin (CG). Since glycans play an important role in binding of gonadotropins with their respective receptors, it is important to identify associated glycans and their pharmacological properties not only for the disease manipulation but also for making more efficacious and safer recombinant versions. With the advancement of mass spectrometry, it is possible to identify minute quantity of associated glycans. Here, we studied the N-glycans of the FSH based on mass spectrometry and report one more complex glycan species in addition to twenty four previously reported glycans. The new glycan was a tetra antennary species that may have important role in binding of FSH with receptor with higher biological activity as well as lower clearance rate and higher half-life.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | - Nitin Nage
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | - Hitesh Jagani
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | - Mukul Maiti
- Sun Pharmaceutical Industries Limited, Tandalja, Vadodara, 390012, India
| | | |
Collapse
|
11
|
Gludovacz E, Maresch D, Lopes de Carvalho L, Puxbaum V, Baier LJ, Sützl L, Guédez G, Grünwald-Gruber C, Ulm B, Pils S, Ristl R, Altmann F, Jilma B, Salminen TA, Borth N, Boehm T. Oligomannosidic glycans at Asn-110 are essential for secretion of human diamine oxidase. J Biol Chem 2017; 293:1070-1087. [PMID: 29187599 DOI: 10.1074/jbc.m117.814244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/14/2017] [Indexed: 01/28/2023] Open
Abstract
N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- From the Departments of Biotechnology.,the Departments of Clinical Pharmacology and
| | | | - Leonor Lopes de Carvalho
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | - Leander Sützl
- Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Gabriela Guédez
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | | | - Robin Ristl
- the Section for Medical Statistics (IMS), Center of Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria, and
| | | | - Bernd Jilma
- the Departments of Clinical Pharmacology and
| | - Tiina A Salminen
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | |
Collapse
|
12
|
Koechling W, Plaksin D, Croston GE, Jeppesen JV, Macklon KT, Andersen CY. Comparative pharmacology of a new recombinant FSH expressed by a human cell line. Endocr Connect 2017; 6:297-305. [PMID: 28450423 PMCID: PMC5510450 DOI: 10.1530/ec-17-0067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/02/2022]
Abstract
Recombinant FSH proteins are important therapeutic agents for the treatment of infertility, including follitropin alfa expressed in Chinese Hamster Ovary (CHO) cells and, more recently, follitropin delta expressed in the human cell line PER.C6. These recombinant FSH proteins have distinct glycosylation, and have distinct pharmacokinetic and pharmacodynamic profiles in women. Comparative experiments demonstrated that follitropin delta and follitropin alfa displayed the same in vitro potency at the human FSH receptor, but varied in their pharmacokinetics in mouse and rat. While follitropin delta clearance from serum depended in part on the hepatic asialoglycoprotein receptor (ASGPR), follitropin alfa clearance was unaffected by ASGPR inhibition in rat or genetic ablation in mice. The distinct properties of follitropin delta and follitropin alfa are likely to contribute to the differing pharmacokinetic and pharmacodynamic profiles observed in women and to influence their efficacy in therapeutic protocols for the treatment of infertility.
Collapse
Affiliation(s)
| | - Daniel Plaksin
- Bio-Technology General Israel LtdFerring Pharmaceuticals, Kiryat Malachi, Israel
| | | | - Janni V Jeppesen
- The Laboratory of Reproductive BiologyThe Department of Fertility at The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital and The University of Copenhagen, Copenhagen, Denmark
| | - Kirsten T Macklon
- The Laboratory of Reproductive BiologyThe Department of Fertility at The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital and The University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- The Laboratory of Reproductive BiologyThe Department of Fertility at The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital and The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Wang H, May J, Butnev V, Shuai B, May JV, Bousfield GR, Kumar TR. Evaluation of in vivo bioactivities of recombinant hypo- (FSH 21/18) and fully- (FSH 24) glycosylated human FSH glycoforms in Fshb null mice. Mol Cell Endocrinol 2016; 437:224-236. [PMID: 27561202 PMCID: PMC5048586 DOI: 10.1016/j.mce.2016.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/21/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
The hormone - specific FSHβ subunit of the human FSH heterodimer consists of N-linked glycans at Asn7 and Asn24 residues that are co-translationally attached early during subunit biosynthesis. Differences in the number of N-glycans (none, one or two) on the human FSHβ subunit contribute to macroheterogeneity in the FSH heterodimer. The resulting FSH glycoforms are termed hypo-glycosylated (FSH21/18, missing either an Asn24 or Asn7 N-glycan chain on the β - subunit, respectively) or fully glycosylated (FSH24, possessing of both Asn7 and Asn24 N-linked glycans on the β - subunit) FSH. The recombinant versions of human FSH glycoforms (FSH21/18 and FSH24) have been purified and biochemically characterized. In vitro functional studies have indicated that FSH21/18 exhibits faster FSH- receptor binding kinetics and is much more active than FSH24 in every assay tested to date. However, the in vivo bioactivity of the hypo-glycosylated FSH glycoform has never been tested. Here, we evaluated the in vivo bioactivities of FSH glycoforms in Fshb null mice using a pharmacological rescue approach. In Fshb null female mice, both hypo- and fully-glycosylated FSH elicited an ovarian weight gain response by 48 h and induced ovarian genes in a dose- and time-dependent manner. Quantification by real time qPCR assays indicated that hypo-glycosylated FSH21/18 was bioactive in vivo and induced FSH-responsive ovarian genes similar to fully-glycosylated FSH24. Western blot analyses followed by densitometry of key signaling components downstream of the FSH-receptor confirmed that the hypo-glycosylated FSH21/18 elicited a response similar to that by fully-glycosylated FSH24 in ovaries of Fshb null mice. When injected into Fshb null males, hypo-glycosylated FSH21/18 was more active than the fully-glycosylated FSH24 in inducing FSH-responsive genes and Sertoli cell proliferation. Thus, our data establish that recombinant hypo-glycosylated human FSH21/18 glycoform elicits bioactivity in vivo similar to the fully-glycosylated FSH. Our studies may have clinical implications particularly in formulating FSH-based ovarian follicle induction protocols using a combination of different human FSH glycoforms.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob May
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Viktor Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|