1
|
Lautenbacher L, Samaras P, Muller J, Grafberger A, Shraideh M, Rank J, Fuchs ST, Schmidt TK, The M, Dallago C, Wittges H, Rost B, Krcmar H, Kuster B, Wilhelm M. ProteomicsDB: toward a FAIR open-source resource for life-science research. Nucleic Acids Res 2022; 50:D1541-D1552. [PMID: 34791421 PMCID: PMC8728203 DOI: 10.1093/nar/gkab1026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
ProteomicsDB (https://www.ProteomicsDB.org) is a multi-omics and multi-organism resource for life science research. In this update, we present our efforts to continuously develop and expand ProteomicsDB. The major focus over the last two years was improving the findability, accessibility, interoperability and reusability (FAIR) of the data as well as its implementation. For this purpose, we release a new application programming interface (API) that provides systematic access to essentially all data in ProteomicsDB. Second, we release a new open-source user interface (UI) and show the advantages the scientific community gains from such software. With the new interface, two new visualizations of protein primary, secondary and tertiary structure as well an updated spectrum viewer were added. Furthermore, we integrated ProteomicsDB with our deep-neural-network Prosit that can predict the fragmentation characteristics and retention time of peptides. The result is an automatic processing pipeline that can be used to reevaluate database search engine results stored in ProteomicsDB. In addition, we extended the data content with experiments investigating different human biology as well as a newly supported organism.
Collapse
Affiliation(s)
- Ludwig Lautenbacher
- Technical University of Munich, Computational Mass Spectrometry, 85354 Freising, Bavaria, Germany
| | - Patroklos Samaras
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Julian Muller
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Andreas Grafberger
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Marwin Shraideh
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Johannes Rank
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Simon T Fuchs
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Tobias K Schmidt
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Matthew The
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
| | - Christian Dallago
- Technical University of Munich, Department for Bioinformatics and Computational Biology, 85748 Garching, Bavaria, Germany
- Technical University of Munich, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), 85748 Garching, Bavaria, Germany
| | - Holger Wittges
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Burkhard Rost
- Technical University of Munich, Department for Bioinformatics and Computational Biology, 85748 Garching, Bavaria, Germany
- Technical University of Munich, Institute for Advanced Study (TUM-IAS), 85748 Freising, Bavaria, Germany
| | - Helmut Krcmar
- Technical University of Munich, Chair for Information Systems, 85748 Garching, Bavaria, Germany
- Technical University of Munich, SAP University Competence Center, 85748 Garching, Bavaria, Germany
| | - Bernhard Kuster
- Technical University of Munich, Chair of Proteomics and Bioanalytics, 85354 Freising, Bavaria, Germany
- Technical University of Munich, Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), 85354 Freising, Bavaria, Germany
| | - Mathias Wilhelm
- Technical University of Munich, Computational Mass Spectrometry, 85354 Freising, Bavaria, Germany
| |
Collapse
|
2
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
3
|
Proteogenomics of Colorectal Cancer Liver Metastases: Complementing Precision Oncology with Phenotypic Data. Cancers (Basel) 2019; 11:cancers11121907. [PMID: 31805664 PMCID: PMC6966481 DOI: 10.3390/cancers11121907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hotspot testing for activating KRAS mutations is used in precision oncology to select colorectal cancer (CRC) patients who are eligible for anti-EGFR treatment. However, even for KRASwildtype tumors anti-EGFR response rates are <30%, while mutated-KRAS does not entirely rule out response, indicating the need for improved patient stratification. We performed proteogenomic phenotyping of KRASwildtype and KRASG12V CRC liver metastases (mCRC). Among >9000 proteins we detected considerable expression changes including numerous proteins involved in progression and resistance in CRC. We identified peptides representing a number of predicted somatic mutations, including KRASG12V. For eight of these, we developed a multiplexed parallel reaction monitoring (PRM) mass spectrometry assay to precisely quantify the mutated and canonical protein variants. This allowed phenotyping of eight mCRC tumors and six paired healthy tissues, by determining mutation rates on the protein level. Total KRAS expression varied between tumors (0.47–1.01 fmol/µg total protein) and healthy tissues (0.13–0.64 fmol/µg). In KRASG12V-mCRC, G12V-mutation levels were 42–100%, while one patient had only 10% KRASG12V but 90% KRASwildtype. This might represent a missed therapeutic opportunity: based on hotspot sequencing, the patient was excluded from anti-EGFR treatment and instead received chemotherapy, while PRM-based tumor-phenotyping indicates the patient might have benefitted from anti-EGFR therapy.
Collapse
|
4
|
Nguyen CDL, Malchow S, Reich S, Steltgens S, Shuvaev KV, Loroch S, Lorenz C, Sickmann A, Knobbe-Thomsen CB, Tews B, Medenbach J, Ahrends R. A sensitive and simple targeted proteomics approach to quantify transcription factor and membrane proteins of the unfolded protein response pathway in glioblastoma cells. Sci Rep 2019; 9:8836. [PMID: 31222112 PMCID: PMC6586633 DOI: 10.1038/s41598-019-45237-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Many cellular events are driven by changes in protein expression, measurable by mass spectrometry or antibody-based assays. However, using conventional technology, the analysis of transcription factor or membrane receptor expression is often limited by an insufficient sensitivity and specificity. To overcome this limitation, we have developed a high-resolution targeted proteomics strategy, which allows quantification down to the lower attomol range in a straightforward way without any prior enrichment or fractionation approaches. The method applies isotope-labeled peptide standards for quantification of the protein of interest. As proof of principle, we applied the improved workflow to proteins of the unfolded protein response (UPR), a signaling pathway of great clinical importance, and could for the first time detect and quantify all major UPR receptors, transducers and effectors that are not readily detectable via antibody-based-, SRM- or conventional PRM assays. As transcription and translation is central to the regulation of UPR, quantification and determination of protein copy numbers in the cell is important for our understanding of the signaling process as well as how pharmacologic modulation of these pathways impacts on the signaling. These questions can be answered using our newly established workflow as exemplified in an experiment using UPR perturbation in a glioblastoma cell lines.
Collapse
Affiliation(s)
- Chi D L Nguyen
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Sebastian Malchow
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Stefan Reich
- Translational Control Group, Biochemistry I, University of Regensburg, 93053, Regensburg, Germany
| | - Sascha Steltgens
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Konstantin V Shuvaev
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Christin Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, 44801, Germany.,College of Physical Sciences, University of Aberdeen, Old Aberdeen, AB24 3UE, UK
| | - Christiane B Knobbe-Thomsen
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and DKFZ, 69120, Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion, DKFZ, 69120, Heidelberg, Germany
| | - Jan Medenbach
- Translational Control Group, Biochemistry I, University of Regensburg, 93053, Regensburg, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.
| |
Collapse
|
5
|
González Coraspe JA, Weis J, Anderson ME, Münchberg U, Lorenz K, Buchkremer S, Carr S, Zahedi RP, Brauers E, Michels H, Sunada Y, Lochmüller H, Campbell KP, Freier E, Hathazi D, Roos A. Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skelet Muscle 2018; 8:28. [PMID: 30153853 PMCID: PMC6114045 DOI: 10.1186/s13395-018-0173-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. Methods We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. Results Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. Conclusions Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity. Electronic supplementary material The online version of this article (10.1186/s13395-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mary E Anderson
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ute Münchberg
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kristina Lorenz
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephanie Carr
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - René Peiman Zahedi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H4A 3T2, Canada.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Hannah Michels
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hanns Lochmüller
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK.,Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erik Freier
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Denisa Hathazi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|
6
|
Phan V, Schmidt J, Matyash V, Malchow S, Thanisch M, Lorenz C, Diepolder I, Schulz JB, Stenzel W, Roos A, Gess B. Characterization of Naïve and Vitamin C-Treated Mouse Schwann Cell Line MSC80: Induction of the Antioxidative Thioredoxin Related Transmembrane Protein 1. J Proteome Res 2018; 17:2925-2936. [PMID: 30044099 DOI: 10.1021/acs.jproteome.8b00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Schwann cells (SCs) are essential in the production of the axon-wrapping myelin sheath and provide trophic function and repair mechanisms in the peripheral nerves. Consequently, well-characterized SC in vitro models are needed to perform preclinical studies including the investigation of the complex biochemical adaptations occurring in the peripheral nervous system (PNS) under different (patho)physiological conditions. MSC80 cells represent a murine SC line used as an in vitro system for neuropathological studies. Here, we introduce the most abundant 9532 proteins identified via mass spectrometry-based protein analytics, and thus provide the most comprehensive SC protein catalogue published thus far. We cover proteins causative for inherited neuropathies and demonstrate that in addition to cytoplasmic, nuclear and mitochondrial proteins and others belonging to the protein processing machinery are very well covered. Moreover, we address the suitability of MSC80 to examine the molecular effect of a drug-treatment by analyzing the proteomic signature of Vitamin C-treated cells. Proteomic findings, immunocytochemistry, immunoblotting and functional experiments support the concept of a beneficial role of Vitamin C on oxidative stress and identified TMX1 as an oxidative stress protective factor, which might represent a promising avenue for therapeutic intervention of PNS-disorders with oxidative stress burden such as diabetic neuropathy.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V. , 44227 Dortmund , Germany
| | - Jens Schmidt
- Department of Neurology , University Hospital RWTH Aachen , Aachen , Germany
| | - Vitali Matyash
- Department of Neuropathology , Charité - Universitätsmedizin , Berlin , Germany
| | - Sebastian Malchow
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V. , 44227 Dortmund , Germany
| | - Michaela Thanisch
- Department of Neurology , University Hospital RWTH Aachen , Aachen , Germany
| | - Christin Lorenz
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V. , 44227 Dortmund , Germany
| | - Irmgard Diepolder
- Department of Neurology , University Hospital RWTH Aachen , Aachen , Germany
| | - Jörg Bernhard Schulz
- Department of Neurology , University Hospital RWTH Aachen , Aachen , Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging , Forschungszentrum Jülich GmbH and RWTH Aachen University , Aachen , Germany
| | - Werner Stenzel
- Department of Neuropathology , Charité - Universitätsmedizin , Berlin , Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V. , 44227 Dortmund , Germany
| | - Burkhard Gess
- Department of Neurology , University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
7
|
Buchkremer S, González Coraspe JA, Weis J, Roos A. Sil1-Mutant Mice Elucidate Chaperone Function in Neurological Disorders. J Neuromuscul Dis 2018; 3:169-181. [PMID: 27854219 PMCID: PMC5271578 DOI: 10.3233/jnd-160152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chaperone dysfunction leading to the build-up of misfolded proteins could frequently be linked to clinical manifestations also affecting the nervous system and the skeletal muscle. In addition, increase in chaperone function is beneficial to antagonize protein aggregation and thus represents a promising target for therapeutic concepts for many genetic and acquired chaperonopathies. However, little is known on the precise molecular mechanisms defining the cell and tissue abnormalities in the case of impaired chaperone function as well as on underlying effects in the case of compensatory up-regulation of chaperones. This scarcity of knowledge often arises from a lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. Here, we introduce the Sil1-mutant woozy mouse as a suitable model to investigate molecular and cellular mechanisms of impaired ER-chaperone function affecting the integrity of nervous system and skeletal muscle. The overlapping clinical findings in man and mouse indicate that woozy is a good copy of a human phenotype called Marinesco-Sjögren syndrome. We confirm the presence of ER-stress and expand the biochemical knowledge of altered nuclear envelope in muscle, a hallmark of SIL1-disease. In addition, our data suggest that impaired excitation-contraction coupling might be part of the SIL1-pathophysiology. Our results moreover indicate that divergent expression of pro- and anti-survival proteins is decisive for Purkinje cell survival. By summarizing the current knowledge of woozy, we focus on the suitability of this animal model to study neuroprotective co-chaperone function and to investigate the involvement of co-chaperones in the predisposition of other disorders such as diabetic neuropathy.
Collapse
Affiliation(s)
- Stephan Buchkremer
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany.,Leibniz-Institut für Analytische Wissenschaften ISAS e.V., Dortmund, Germany.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
O'Connor E, Töpf A, Zahedi RP, Spendiff S, Cox D, Roos A, Lochmüller H. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Ann N Y Acad Sci 2018; 1412:102-112. [PMID: 29315608 DOI: 10.1111/nyas.13520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare disorders that cause fatigable muscle weakness due to defective signal transmission at the neuromuscular junction, a specialized synapse between peripheral motor neurons and their target muscle fibers. There are now over 30 causative genes that have been reported for CMS. Of these, there are 10 that are associated with a limb-girdle pattern of muscle weakness and are thus classed as LG-CMS. Next-generation sequencing and advanced methods of data sharing are likely to uncover further genes that are associated with similar clinical phenotypes, contributing to better diagnosis and effective treatment of LG-CMS patients. This review highlights clinical and pathological hallmarks of LG-CMS in relation to the underlying genetic defects and pathways. Tailored animal and cell models are essential to elucidate the exact function and pathomechanisms at the neuromuscular synapse that underlie LG-CMS. The integration of genomics and proteomics data derived from these models and patients reveals new and often unexpected insights that are relevant beyond the rare genetic disorder of LG-CMS and may extend to the functioning of mammalian synapses in health and disease more generally.
Collapse
Affiliation(s)
- Emily O'Connor
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Sally Spendiff
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Cox
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Brauers E, Roos A, Kollipara L, Zahedi RP, Beckmann A, Mohanadas N, Bauer H, Häusler M, Thoma S, Kress W, Senderek J, Weis J. The Caveolin-3 G56S sequence variant of unknown significance: Muscle biopsy findings and functional cell biological analysis. Proteomics Clin Appl 2016; 11. [PMID: 27739254 PMCID: PMC5248598 DOI: 10.1002/prca.201600007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
Purpose In the era of next‐generation sequencing, we are increasingly confronted with sequence variants of unknown significance. This phenomenon is also known for variations in Caveolin‐3 and can complicate the molecular diagnosis of the disease. Here, we aimed to study the ambiguous character of the G56S Caveolin‐3 variant. Experimental design A comprehensive approach combining genetic and morphological studies of muscle derived from carriers of the G56S Caveolin‐3 variant were carried out and linked to biochemical assays (including phosphoblot studies and proteome profiling) and morphological investigations of cultured myoblasts. Results Muscles showed moderate chronic myopathic changes in all carriers of the variant. Myogenic RCMH cells expressing the G56S Caveolin‐3 protein presented irregular Caveolin‐3 deposits within the Golgi in addition to a regular localization of the protein to the plasma membrane. This result was associated with abnormal findings on the ultra‐structural level. Phosphoblot studies revealed that G56S affects EGFR‐signaling. Proteomic profiling demonstrated alterations in levels of physiologically relevant proteins which are indicative for antagonization of G56S Caveolin‐3 expression. Remarkably, some proteomic alterations were enhanced by osmotic/mechanical stress. Conclusions and clinical relevance Our studies suggest that G56S might influence the manifestation of myopathic changes upon the presence of additional cellular stress burden. Results of our studies moreover improve the current understanding of (genetic) causes of myopathic disorders classified as caveolinopathies.
Collapse
Affiliation(s)
- Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS e.V, Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS e.V, Dortmund, Germany
| | - Alf Beckmann
- Medizinisches Versorgungszentrum Dr. Eberhard und Partner, Dortmund, Germany
| | - Nilane Mohanadas
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hartmut Bauer
- Department of Neurology, Marien-Hospital, Euskirchen, Germany
| | - Martin Häusler
- Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Wolfram Kress
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Jan Senderek
- Friedrich-Baur-Institut, Neurologische Klinik und Poliklinik, Ludwig-Maximilians-University, München, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|