1
|
Salgueiro V, Bertol J, Gutierrez C, Serrano-Mestre JL, Ferrer-Luzon N, Palacios A, Pasquina-Lemonche L, Espalliat A, Lerma L, Weinrick B, Lavin JL, Elortza F, Azkalgorta M, Prieto A, Buendía-Nacarino P, Luque-García JL, Neyrolles O, Cava F, Hobbs JK, Sanz J, Prados-Rosales R. Maintenance of cell wall remodeling and vesicle production are connected in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567727. [PMID: 38187572 PMCID: PMC10769192 DOI: 10.1101/2023.11.19.567727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis ( Mtb ) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR ( virR mut ) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb . We employ genetic, transcriptional, proteomics, ultrastructural and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virR mut . Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.
Collapse
|
2
|
Wang Y, Yin S, Wang S, Rong K, Meng XH, Zhou H, Jiao L, Hou D, Jiang Z, He J, Mao Z. Proteomics study the potential targets for Rifampicin-resistant spinal tuberculosis. Front Pharmacol 2024; 15:1370444. [PMID: 38694916 PMCID: PMC11061718 DOI: 10.3389/fphar.2024.1370444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: The escalating global surge in Rifampicin-resistant strains poses a formidable challenge to the worldwide campaign against tuberculosis (TB), particularly in developing countries. The frequent reports of suboptimal treatment outcomes, complications, and the absence of definitive treatment guidelines for Rifampicin-resistant spinal TB (DSTB) contribute significantly to the obstacles in its effective management. Consequently, there is an urgent need for innovative and efficacious drugs to address Rifampicin-resistant spinal tuberculosis, minimizing the duration of therapy sessions. This study aims to investigate potential targets for DSTB through comprehensive proteomic and pharmaco-transcriptomic analyses. Methods: Mass spectrometry-based proteomics analysis was employed to validate potential DSTB-related targets. PPI analysis confirmed by Immunohistochemistry (IHC) and Western blot analysis. Results: The proteomics analysis revealed 373 differentially expressed proteins (DEPs), with 137 upregulated and 236 downregulated proteins. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses delved into the DSTB-related pathways associated with these DEPs. In the context of network pharmacology analysis, five key targets-human leukocyte antigen A chain (HLAA), human leukocyte antigen C chain (HLA-C), HLA Class II Histocompatibility Antigen, DRB1 Beta Chain (HLA-DRB1), metalloproteinase 9 (MMP9), and Phospholipase C-like 1 (PLCL1)-were identified as pivotal players in pathways such as "Antigen processing and presentation" and "Phagosome," which are crucially enriched in DSTB. Moreover, pharmaco-transcriptomic analysis can confirm that 58 drug compounds can regulate the expression of the key targets. Discussion: This research confirms the presence of protein alterations during the Rifampicin-resistant process in DSTB patients, offering novel insights into the molecular mechanisms underpinning DSTB. The findings suggest a promising avenue for the development of targeted drugs to enhance the management of Rifampicin-resistant spinal tuberculosis.
Collapse
Affiliation(s)
- Yanling Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| | - Shijie Yin
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| | - Shixiong Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| | - Kuan Rong
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Xiang-He Meng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| | - Huashan Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| | - Luo Jiao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| | - Da Hou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| | - Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Healthcare Affiliated to Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics (Basel) 2022; 11:antibiotics11060816. [PMID: 35740222 PMCID: PMC9220406 DOI: 10.3390/antibiotics11060816] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
The worldwide scenario of antibiotic resistance and the falling number of funds for the development of novel antibiotics have led research efforts toward the study of specific cost-effective strategies aimed at discovering drugs against microbial infections. Among the potential options, drug repositioning, which has already exhibited satisfactory results in other medical fields, came out as the most promising. It consists of finding new uses for previously approved medicines and, over the years, many “repurposed drugs” displayed some encouraging in vitro and in vivo results beyond their initial application. The principal theoretical justification for reusing already existing drugs is that they have known mechanisms of action and manageable side effects. Reuse of old drugs is now considered an interesting approach to overcome the drawbacks of conventional antibiotics. The purpose of this review is to offer the reader a panoramic view of the updated studies concerning the repositioning process of different classes of non-antibiotic drugs in the antimicrobial field. Several research works reported the ability of some non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, antipsychotics, and statins to counteract the growth of harmful microorganisms, demonstrating an interesting winning mode to fight infectious diseases caused by antimicrobial resistant bacteria.
Collapse
|
4
|
Pleiotropic actions of phenothiazine drugs are detrimental to Gram-negative bacterial persister cells. Commun Biol 2022; 5:217. [PMID: 35264714 PMCID: PMC8907348 DOI: 10.1038/s42003-022-03172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial persister cells are temporarily tolerant to bactericidal antibiotics but are not necessarily dormant and may exhibit physiological activities leading to cell damage. Based on the link between fluoroquinolone-mediated SOS responses and persister cell recovery, we screened chemicals that target fluoroquinolone persisters. Metabolic inhibitors (e.g., phenothiazines) combined with ofloxacin (OFX) perturbed persister levels in metabolically active cell populations. When metabolically stimulated, intrinsically tolerant stationary phase cells also became OFX-sensitive in the presence of phenothiazines. The effects of phenothiazines on cell metabolism and physiology are highly pleiotropic: at sublethal concentrations, phenothiazines reduce cellular metabolic, transcriptional, and translational activities; impair cell repair and recovery mechanisms; transiently perturb membrane integrity; and disrupt proton motive force by dissipating the proton concentration gradient across the cell membrane. Screening a subset of mutant strains lacking membrane-bound proteins revealed the pleiotropic effects of phenothiazines potentially rely on their ability to inhibit a wide range of critical metabolic proteins. Altogether, our study further highlights the complex roles of metabolism in persister cell formation, survival and recovery, and suggests metabolic inhibitors such as phenothiazines can be selectively detrimental to persister cells.
Collapse
|
5
|
Xiao X, Huang YQ, Tian HY, Bai J, Cheng F, Wang X, Ke ML, Chen FE. Robust, scalable construction of an electrophilic deuterated methylthiolating reagent: facile access to SCD 3-containing scaffolds. Chem Commun (Camb) 2022; 58:3015-3018. [PMID: 35147615 DOI: 10.1039/d1cc07184j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have established a practical and concise method for the straightforward access of a universal deuterated methylthiolating reagent through a one-pot gram-scale operation under mild conditions. This odourless electrophilic SCD3 reagent was widely applied to react with numerous representative nucleophiles and approached various valuable SCD3 analogues with excellent levels of deuterium content (>99% D). The divergent further transformations were smoothly carried out to obtain the significant derivatives with different oxidative states in high efficiency.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Hong-Yu Tian
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Jun Bai
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fei Cheng
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xu Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Miao-Lin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
6
|
Song L, Merceron R, Hulpia F, Lucía A, Gracia B, Jian Y, Risseeuw MDP, Verstraelen T, Cos P, Aínsa JA, Boshoff HI, Munier-Lehmann H, Savvides SN, Van Calenbergh S. Structure-aided optimization of non-nucleoside M. tuberculosis thymidylate kinase inhibitors. Eur J Med Chem 2021; 225:113784. [PMID: 34450493 PMCID: PMC10500704 DOI: 10.1016/j.ejmech.2021.113784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis thymidylate kinase (MtTMPK) has emerged as an attractive target for rational drug design. We recently investigated new families of non-nucleoside MtTMPK inhibitors in an effort to diversify MtTMPK inhibitor chemical space. We here report a new series of MtTMPK inhibitors by combining the Topliss scheme with rational drug design approaches, fueled by two co-crystal structures of MtTMPK in complex with developed inhibitors. These efforts furnished the most potent MtTMPK inhibitors in our assay, with two analogues displaying low micromolar MIC values against H37Rv Mtb. Prepared inhibitors address new sub-sites in the MtTMPK nucleotide binding pocket, thereby offering new insights into its druggability. We studied the role of efflux pumps as well as the impact of cell wall permeabilizers for selected compounds to potentially provide an explanation for the lack of correlation between potent enzyme inhibition and whole-cell activity.
Collapse
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; 3M, Zwijndrecht, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium; Eurofins Group, Poitiers, France
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; Janssen Pharmaceutica, Beerse, Belgium
| | - Ainhoa Lucía
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Begoña Gracia
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Toon Verstraelen
- Center for Melecular Modeling, Ghent University, Zwijnaarde, Ghent, 9052, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610, Antwerpen, Belgium
| | - José A Aínsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- CNRS UMR3523, Department of Structural Biology and Chemistry, Institut Pasteur, 75724, Paris Cedex 15, France
| | - Savvas N Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium.
| |
Collapse
|
7
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
8
|
Neurotransmitter System-Targeting Drugs Antagonize Growth of the Q Fever Agent, Coxiella burnetii, in Human Cells. mSphere 2021; 6:e0044221. [PMID: 34232075 PMCID: PMC8386451 DOI: 10.1128/msphere.00442-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is a highly infectious, intracellular, Gram-negative bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis. C. burnetii is transmitted to humans via aerosols and has long been considered a potential biological warfare agent. Although antibiotics, such as doxycycline, effectively treat acute Q fever, a recently identified antibiotic-resistant strain demonstrates the ability of C. burnetii to resist traditional antimicrobials, and chronic disease is extremely difficult to treat with current options. These findings highlight the need for new Q fever therapeutics, and repurposed drugs that target eukaryotic functions to prevent bacterial replication are of increasing interest in infectious disease. To identify this class of anti-C. burnetii therapeutics, we screened a library of 727 FDA-approved or late-stage clinical trial compounds using a human macrophage-like cell model of infection. Eighty-eight compounds inhibited bacterial replication, including known antibiotics, antipsychotic or antidepressant treatments, antihistamines, and several additional compounds used to treat a variety of conditions. The majority of identified anti-C. burnetii compounds target host neurotransmitter system components. Serotoninergic, dopaminergic, and adrenergic components are among the most highly represented targets and potentially regulate macrophage activation, cytokine production, and autophagy. Overall, our screen identified multiple host-directed compounds that can be pursued for potential use as anti-C. burnetii drugs. IMPORTANCECoxiella burnetii causes the debilitating disease Q fever in humans. This infection is difficult to treat with current antibiotics and can progress to long-term, potentially fatal infection in immunocompromised individuals or when treatment is delayed. Here, we identified many new potential treatment options in the form of drugs that are either FDA approved or have been used in late-stage clinical trials and target human neurotransmitter systems. These compounds are poised for future characterization as nontraditional anti-C. burnetii therapies.
Collapse
|
9
|
Huang CM, Li J, Ai JJ, Liu XY, Rao W, Wang SY. Visible-Light-Promoted Cross-Coupling Reactions of Aryldiazonium Salts with S-Methyl- d3 Sulfonothioate or Se-Methyl- d3 Selenium Sulfonate: Synthesis of Trideuteromethylated Sulfides, Sulfoxides, and Selenides. Org Lett 2020; 22:9128-9132. [PMID: 33147971 DOI: 10.1021/acs.orglett.0c03562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel visible-light-photocatalytic deuterated thiomethylation/methylselenation of aryldiazonium salts utilizing S/Se-methyl-d3 sulfonothioate has been developed. The mild conditions and the various functional groups provide a green protocol for the efficient and rapid introduction of the S-CD3 or Se-CD3 group with useful levels of deuterium content (>91% D). Trideuteromethyl sulfoxides have also been successfully chemoselectively observed by simple atmospheric changes under photocatalytic conditions.
Collapse
Affiliation(s)
- Cheng-Mi Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jing-Jing Ai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Nanjing Forest University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
de Carvalho CCCR, Teixeira R, Fernandes P. Mycobacterium vaccae Adaptation to Disinfectants and Hand Sanitisers, and Evaluation of Cross-Tolerance with Antimicrobials. Antibiotics (Basel) 2020; 9:antibiotics9090544. [PMID: 32867093 PMCID: PMC7559525 DOI: 10.3390/antibiotics9090544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium vaccae is being considered as an adjuvant to antituberculosis therapy, tested for the treatment of autoimmune diseases, and as an anti-depressive agent. This bacterium is ubiquitous in the environment and the widespread use of disinfectants and sanitisers may lead to its adaptation to these compounds. In the present study, M. vaccae cells adapted to these compounds mainly by making adjustments in their lipid composition and net surface charge. The modifications in the lipid composition led to changes in membrane permeability which resulted in increased tolerance towards levofloxacin, thioridazine, and omeprazole.
Collapse
Affiliation(s)
- Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB–Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (R.T.); (P.F.)
- Correspondence: ; Tel.: +351-21-841-9594
| | - Raquel Teixeira
- Department of Bioengineering, iBB–Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (R.T.); (P.F.)
| | - Pedro Fernandes
- Department of Bioengineering, iBB–Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (R.T.); (P.F.)
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
| |
Collapse
|
11
|
Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10:4970. [PMID: 31672993 PMCID: PMC6823465 DOI: 10.1038/s41467-019-12956-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.
Collapse
|
12
|
Zhang B, Fan Z, Guo Z, Xi C. Reduction of CO2 with NaBH4/I2 for the Conversion of Thiophenols to Aryl Methyl Sulfides. J Org Chem 2019; 84:8661-8667. [DOI: 10.1021/acs.joc.9b01180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengning Fan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Jeon AB, Ackart DF, Li W, Jackson M, Melander RJ, Melander C, Abramovitch RB, Chicco AJ, Basaraba RJ, Obregón-Henao A. 2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Sci Rep 2019; 9:1513. [PMID: 30728417 PMCID: PMC6365497 DOI: 10.1038/s41598-018-38064-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
There is an urgent need to develop new drugs against tuberculosis. In particular, it is critical to target drug tolerant Mycobacterium tuberculosis (M. tuberculosis), responsible, in part, for the lengthy antibiotic regimen required for treatment. We previously postulated that the presence of in vivo biofilm-like communities of M. tuberculosis could contribute to this drug tolerance. Consistent with this hypothesis, certain 2-aminoimidazole (2-AIs) molecules with anti-biofilm activity were shown to revert mycobacterial drug tolerance in an in vitro M. tuberculosis biofilm model. While exploring their mechanism of action, it was serendipitously observed that these 2-AI molecules also potentiated β-lactam antibiotics by affecting mycobacterial protein secretion and lipid export. As these two bacterial processes are energy-dependent, herein it was evaluated if 2-AI compounds affect mycobacterial bioenergetics. At low concentrations, 2B8, the lead 2-AI compound, collapsed both components of the proton motive force, similar to other cationic amphiphiles. Interestingly, however, the minimum inhibitory concentration of 2B8 against M. tuberculosis correlated with a higher drug concentration determined to interfere with the mycobacterial electron transport chain. Collectively, this study elucidates the mechanism of action of 2-AIs against M. tuberculosis, providing a tool to better understand mycobacterial bioenergetics and develop compounds with improved anti-mycobacterial activity.
Collapse
Affiliation(s)
- Albert Byungyun Jeon
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, USA
- College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, Florida, 32608, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Roberta J Melander
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana, 46556, USA
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana, 46556, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Randall J Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Andrés Obregón-Henao
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, 80523, USA.
| |
Collapse
|
14
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
15
|
Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. J Proteomics 2019; 191:166-179. [DOI: 10.1016/j.jprot.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
|
16
|
Wang M, Qiao Z, Zhao J, Jiang X. Palladium-Catalyzed Thiomethylation via a Three-Component Cross-Coupling Strategy. Org Lett 2018; 20:6193-6197. [DOI: 10.1021/acs.orglett.8b02677] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Zongjun Qiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Jiaoyan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
17
|
Sharma D, Bisht D, Khan AU. Potential Alternative Strategy against Drug Resistant Tuberculosis: A Proteomics Prospect. Proteomes 2018; 6:E26. [PMID: 29843395 PMCID: PMC6027512 DOI: 10.3390/proteomes6020026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is one of the deadliest human pathogen of the tuberculosis diseases. Drug resistance leads to emergence of multidrug-resistant and extremely drug resistant strains of M. tuberculosis. Apart from principal targets of resistance, many explanations have been proposed for drug resistance but some resistance mechanisms are still unknown. Recently approved line probe assay (LPA) diagnostics for detecting the resistance to first and second line drugs are unable to diagnose the drug resistance in M. tuberculosis isolates which do not have the mutations in particular genes responsible for resistance. Proteomics and bioinformatic tools emerged as direct approaches for identification and characterization of novel proteins which are directly and indirectly involved in drug resistance that could be used as potential targets in future. In future, these novel targets might reveal new mechanism of resistance and can be used in diagnostics or as drug targets.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
18
|
Pacífico C, Fernandes P, de Carvalho CCCR. Mycobacterial Response to Organic Solvents and Possible Implications on Cross-Resistance With Antimicrobial Agents. Front Microbiol 2018; 9:961. [PMID: 29867865 PMCID: PMC5962743 DOI: 10.3389/fmicb.2018.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/24/2018] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium vaccae, a bacterium found in soil, has been receiving attention as adjuvant to antituberculosis treatment, vaccines and immunotherapies and even as antidepressant. This bacterium is also able to degrade several pollutants, including aromatic compounds. The increasing presence of organic solvents in the environment may lead to M. vaccae adapted populations. A possible relationship between solvent tolerance and decreased susceptibility to other types of chemicals, including antibiotics, may pose a problem during opportunistic infections. The present study thus aimed at assessing if solvent adapted cells presented higher tolerance to antibiotics and efflux pump inhibitors (EPIs). M. vaccae cells were able to thrive and grow in the presence of up 20% (v/v) glycerol, 5% (v/v) ethanol, 1% (v/v) methyl tert-butyl ether (MTBE) and 0.1% (v/v) toluene. During adaptation to increasing concentration of ethanol and MTBE, the cells changed their fatty acid profile, zeta potential and morphology. Adapted cells acquired an improved tolerance toward the EPIs thioridazine and omeprazole, but became more susceptible to the antibiotics levofloxacin and teicoplanin when compared with non-adapted cells.
Collapse
Affiliation(s)
- Cátia Pacífico
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Engineering, Universidade Lusófona, Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Banaei-Esfahani A, Nicod C, Aebersold R, Collins BC. Systems proteomics approaches to study bacterial pathogens: application to Mycobacterium tuberculosis. Curr Opin Microbiol 2017; 39:64-72. [PMID: 29032348 DOI: 10.1016/j.mib.2017.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Significant developments and improvements in basic and clinical research notwithstanding, infectious diseases still claim at least 13 million lives annually. Classical research approaches have deciphered many molecular mechanisms underlying infection. Today it is increasingly recognized that multiple molecular mechanisms cooperate to constitute a complex system that is used by a given pathogen to interfere with the biochemical processes of the host. Therefore, systems-level approaches now complement the standard molecular biology techniques to investigate pathogens and their interactions with the human host. Here we review omic studies in Mycobacterium tuberculosis, the causative agent of tuberculosis, with a particular focus on proteomic methods and their application to the bacilli. Likewise, the discussed methods are directly portable to other bacterial pathogens.
Collapse
Affiliation(s)
- Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Charlotte Nicod
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability. PLoS One 2017; 12:e0180925. [PMID: 28749949 PMCID: PMC5547695 DOI: 10.1371/journal.pone.0180925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
There is an urgent need to develop new drug treatment strategies to control the global spread of drug-sensitive and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). The ß-lactam class of antibiotics is among the safest and most widely prescribed antibiotics, but they are not effective against M. tuberculosis due to intrinsic resistance. This study shows that 2-aminoimidazole (2-AI)-based small molecules potentiate ß-lactam antibiotics against M. tuberculosis. Active 2-AI compounds significantly reduced the minimal inhibitory and bactericidal concentrations of ß-lactams by increasing M. tuberculosis cell envelope permeability and decreasing protein secretion including ß-lactamase. Metabolic labeling and transcriptional profiling experiments revealed that 2-AI compounds impair mycolic acid biosynthesis, export and linkage to the mycobacterial envelope, counteracting an important defense mechanism reducing permeability to external agents. Additionally, other important constituents of the M. tuberculosis outer membrane including sulfolipid-1 and polyacyltrehalose were also less abundant in 2-AI treated bacilli. As a consequence of 2-AI treatment, M. tuberculosis displayed increased sensitivity to SDS, increased permeability to nucleic acid staining dyes, and rapid binding of cell wall targeting antibiotics. Transcriptional profiling analysis further confirmed that 2-AI induces transcriptional regulators associated with cell envelope stress. 2-AI based small molecules potentiate the antimicrobial activity of ß-lactams by a mechanism that is distinct from specific inhibitors of ß-lactamase activity and therefore may have value as an adjunctive anti-TB treatment.
Collapse
|
21
|
Scalacci N, Brown AK, Pavan FR, Ribeiro CM, Manetti F, Bhakta S, Maitra A, Smith DL, Petricci E, Castagnolo D. Synthesis and SAR evaluation of novel thioridazine derivatives active against drug-resistant tuberculosis. Eur J Med Chem 2017; 127:147-158. [DOI: 10.1016/j.ejmech.2016.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023]
|
22
|
Amaral L, Viveiros M. Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action. Antibiotics (Basel) 2017; 6:antibiotics6010003. [PMID: 28098814 PMCID: PMC5372983 DOI: 10.3390/antibiotics6010003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
This review presents the evidence that supports the use of thioridazine (TZ) for the therapy of a pulmonary tuberculosis infection regardless of its antibiotic resistance status. The evidence consists of in vitro and ex vivo assays that demonstrate the activity of TZ against all encountered Mycobacterium tuberculosis (Mtb) regardless of its antibiotic resistance phenotype, as well as in vivo as a therapy for mice infected with multi-drug resistant strains of Mtb, or for human subjects infected with extensively drug resistant (XDR) Mtb. The mechanisms of action by which TZ brings about successful therapeutic outcomes are presented in detail.
Collapse
Affiliation(s)
- Leonard Amaral
- Insititute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged 6720, Hungary.
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal.
| |
Collapse
|