1
|
Poncha KF, Paparella AT, Young NL. Normalized and Directional Interplay Scoring for the Interrogation of Proteoform Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624157. [PMID: 39605462 PMCID: PMC11601473 DOI: 10.1101/2024.11.18.624157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Histone proteoforms, often presenting multiple co-occurring post-translational modifications (PTMs), are central to chromatin regulation and gene expression. A proteoform is a specific form of a protein that includes variations arising from genetic changes, alternative RNA splicing, proteolytic processing, and PTMs. Genomic context-dependent histone proteoforms define the histone code, influencing cellular phenotype by dictating interactions with DNA and chromatin-associated proteins. Understanding the dynamics of histone proteoforms is essential for elucidating chromatin-based regulatory mechanisms. Advances in middle-down and top-down proteomics methods enable accurate identification and quantitation of hundreds to thousands of proteoforms in a single run. However, the resulting data complexity presents significant challenges for analysis and visualization. Here, we introduce new computational methods to analyze the dynamics of histone PTMs and demonstrate their use in mouse organs during aging. We have developed and benchmarked two novel PTM crosstalk scores. The score that we term 'Normalized Interplay' addresses limitations of the original crosstalk score 'Interplay' providing a more complete and accurate measure of PTM crosstalk. The second score, 'delta I' or Directional Interplay is an asymmetric measure quantifying the magnitude and directionality of crosstalk between PTMs. Applying our two-stage scoring approach to data from CrosstalkDB, a community resource that curates proteoform-level data, reveals the dynamics of histone H3 modifications during aging. The source code is available under an Apache license at https://github.com/k-p4/ptm_interplay_scoring.
Collapse
Affiliation(s)
- Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
| | - Alyssa T. Paparella
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2
|
Fuller C, Jeanne Dit Fouque K, Valadares Tose L, Vitorino FNL, Garcia BA, Fernandez-Lima F. Online, Bottom-up Characterization of Histone H4 4-17 Isomers. Anal Chem 2024; 96:17165-17173. [PMID: 39422312 PMCID: PMC11526794 DOI: 10.1021/acs.analchem.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The "Histone Code" is comprised of specific types and positions of post-translational modifications (PTMs) which produce biological signals for gene regulation and have potential as biomarkers for medical diagnostics. Previous work has shown that electron-based fragmentation improves the sequence coverage and confidence of labile PTM position assignment. Here, we evaluated two derivatization methods (e.g., irreversible - propionylation and reversible-citraconylation) for bottom-up analysis of histone H4 4-17 proteoforms using online liquid chromatography (LC), trapped ion mobility spectrometry (TIMS), and electron-based dissociation (ExD) in tandem with mass spectrometry. Two platforms were utilized: a custom-built LC-TIMS-q-ExD-ToF MS/MS based on a Bruker Impact and a commercial μLC-EAD-ToF MS/MS SCIEX instrument. Complementary LC-TIMS preseparation of H4 4-17 0-4ac positional isomer standards showed that they can be resolved in their endogenous form, while positional isomers cannot be fully resolved in their propionylated form; online LC-ExD-MS/MS provided high sequence coverage (>90%) for all H4 4-17 (0-4ac) proteoforms in both instrumental platforms. When applied to model cancer cells treated with a histone deacetylase inhibitor (HeLa + HDACi), both derivatization methods and platforms detected and confirmed H4 4-17 (0-4ac) proteolytic peptides based on their fragmentation pattern. Moreover, a larger number of HeLa + HDACi H4 4-17 proteoforms were observed combining LC-TIMS and LC-q-ExD-ToF MS/MS due to the positional isomer preseparation in the LC-TIMS domain of citraconylated H4 4-17 (0-4ac) peptides.
Collapse
Affiliation(s)
- Cassandra
N. Fuller
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Lilian Valadares Tose
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisca N. L. Vitorino
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin A. Garcia
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
3
|
Fuller CN, Valadares Tose L, Vitorino FNL, Bhanu NV, Panczyk EM, Park MA, Garcia BA, Fernandez-Lima F. Bottom-up Histone Post-translational Modification Analysis using Liquid Chromatography, Trapped Ion Mobility Spectrometry, and Tandem Mass Spectrometry. J Proteome Res 2024; 23:3867-3876. [PMID: 39177337 DOI: 10.1021/acs.jproteome.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The amino acid position within a histone sequence and the chemical nature of post-translational modifications (PTMs) are essential for elucidating the "Histone Code". Previous work has shown that PTMs induce specific biological responses and are good candidates as biomarkers for diagnostics. Here, we evaluate the analytical advantages of trapped ion mobility (TIMS) with parallel accumulation-serial fragmentation (PASEF) and tandem mass spectrometry (MS/MS) for bottom-up proteomics of model cancer cells. The study also considered the use of nanoliquid chromatography (LC) and traditional methods: LC-TIMS-PASEF-ToF MS/MS vs nLC-TIMS-PASEF-ToF MS/MS vs nLC-MS/MS. The addition of TIMS and PASEF-MS/MS increased the number of detected peptides due to the added separation dimension. All three methods showed high reproducibility and low RSD in the MS domain (<5 ppm). While the LC, nLC and TIMS separations showed small RSD across samples, the accurate mobility (1/K0) measurements (<0.6% RSD) increased the confidence of peptide assignments. Trends were observed in the retention time and mobility concerning the number and type of PTMs (e.g., ac, me1-3) and their corresponding unmodified, propionylated peptide that aided in peptide assignment. Mobility separation permitted the annotation of coeluting structural and positional isomers and compared with nLC-MS/MS showed several advantages due to reduced chemical noise.
Collapse
Affiliation(s)
- Cassandra N Fuller
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Lilian Valadares Tose
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisca N L Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Erin M Panczyk
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
4
|
Phillips M, Malone KL, Boyle BW, Montgomery C, Kressy IA, Joseph FM, Bright KM, Boyson SP, Chang S, Nix JC, Young NL, Jeffers V, Frietze S, Glass KC. Impact of Combinatorial Histone Modifications on Acetyllysine Recognition by the ATAD2 and ATAD2B Bromodomains. J Med Chem 2024; 67:8186-8200. [PMID: 38733345 PMCID: PMC11149620 DOI: 10.1021/acs.jmedchem.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.
Collapse
Affiliation(s)
- Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Kiera L Malone
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Brian W Boyle
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Cameron Montgomery
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Isabelle A Kressy
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Faith M Joseph
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kathleen M Bright
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Sunsik Chang
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, California 94720, United States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| |
Collapse
|
5
|
Taylor BC, Steinthal LH, Dias M, Yalamanchili HK, Ochsner SA, Zapata GE, Mehta NR, McKenna NJ, Young NL, Nuotio-Antar AM. Histone proteoform analysis reveals epigenetic changes in adult mouse brown adipose tissue in response to cold stress. Epigenetics Chromatin 2024; 17:12. [PMID: 38678237 PMCID: PMC11055387 DOI: 10.1186/s13072-024-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses of RNA-Seq data uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. RESULTS Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression datasets suggest a role for epigenetic modification of DNA in regulation of gene expression in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. CONCLUSIONS Our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.
Collapse
Affiliation(s)
- Bethany C Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Loic H Steinthal
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Michelle Dias
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hari Krishna Yalamanchili
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gladys E Zapata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Nitesh R Mehta
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicolas L Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Alli M Nuotio-Antar
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Taylor BC, Steinthal LH, Dias M, Yalamanchili HK, Ochsner SA, Zapata GE, Mehta NR, McKenna NJ, Young NL, Nuotio-Antar AM. Histone proteoform analysis reveals epigenetic changes in adult mouse brown adipose tissue in response to cold stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.30.551059. [PMID: 38328142 PMCID: PMC10849524 DOI: 10.1101/2023.07.30.551059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28.8°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression data suggest a role for epigenetic modification of DNA in gene regulation in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. Taken together, our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.
Collapse
Affiliation(s)
- Bethany C. Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
| | - Loic H. Steinthal
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Michelle Dias
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX
| | - Hari K. Yalamanchili
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Gladys E. Zapata
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Nitesh R. Mehta
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Nicolas L. Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
7
|
Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem 2023; 95:9090-9096. [PMID: 37252723 PMCID: PMC11149911 DOI: 10.1021/acs.analchem.3c01534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The high-throughput quantification of intact proteoforms using a label-free approach is typically performed on proteins in the 0-30 kDa mass range extracted from whole cell or tissue lysates. Unfortunately, even when high-resolution separation of proteoforms is achieved by either high-performance liquid chromatography or capillary electrophoresis, the number of proteoforms that can be identified and quantified is inevitably limited by the inherent sample complexity. Here, we benchmark label-free quantification of proteoforms of Escherichia coli by applying gas-phase fractionation (GPF) via field asymmetric ion mobility spectrometry (FAIMS). Recent advances in Orbitrap instrumentation have enabled the acquisition of high-quality intact and fragmentation mass spectra without the need for averaging time-domain transients prior to Fourier transform. The resulting speed improvements allowed for the application of multiple FAIMS compensation voltages in the same liquid chromatography-tandem mass spectrometry experiment without increasing the overall data acquisition cycle. As a result, the application of FAIMS to label-free quantification based on intact mass spectra substantially increases the number of both identified and quantified proteoforms without penalizing quantification accuracy in comparison to traditional label-free experiments that do not adopt GPF.
Collapse
Affiliation(s)
- Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | | | - Jingjing Huang
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Joseph B. Greer
- Proteinaceous, Inc., Evanston, Illinois 60208, United States
| | - David Bergen
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Ryan T. Fellers
- Proteinaceous, Inc., Evanston, Illinois 60208, United States
| | | | - David M. Horn
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | | | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
8
|
Joseph FM, Young NL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol 2023; 135:73-84. [PMID: 35277331 PMCID: PMC9458767 DOI: 10.1016/j.semcdb.2022.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.
Collapse
Affiliation(s)
- Faith M Joseph
- Translational Biology and Molecular Medicine Graduate Program, USA
| | - Nicolas L Young
- Translational Biology and Molecular Medicine Graduate Program, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Berthias F, Thurman HA, Wijegunawardena G, Wu H, Shvartsburg AA, Jensen ON. Top-Down Ion Mobility Separations of Isomeric Proteoforms. Anal Chem 2023; 95:784-791. [PMID: 36562749 DOI: 10.1021/acs.analchem.2c02948] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Continuing advances in proteomics highlight the ubiquity and biological importance of proteoforms─proteins with varied sequence, splicing, or distribution of post-translational modifications (PTMs). The preeminent example is histones, where the PTM pattern encodes the combinatorial language controlling the DNA transcription central to life. While the proteoforms with distinct PTM compositions are distinguishable by mass, the isomers with permuted PTMs commonly coexisting in cells generally require separation before mass-spectrometric (MS) analyses. That was accomplished on the bottom-up and middle-down levels using chromatography or ion mobility spectrometry (IMS), but proteolytic digestion obliterates the crucial PTM connectivity information. Here, we demonstrate baseline IMS resolution of intact isomeric proteoforms, specifically the acetylated H4 histones (11.3 kDa). The proteoforms with a single acetyl moiety on five alternative lysine residues (K5, K8, K12, K16, K20) known for distinct functionalities in vivo were constructed by two-step native chemical ligation and separated using trapped IMS at the resolving power up to 350 on the Bruker TIMS/ToF platform. Full resolution for several pairs was confirmed using binary mixtures and by unique fragments in tandem MS employing collision-induced dissociation. This novel capability for top-down proteoform characterization is poised to open major new avenues in proteomics and epigenetics.
Collapse
Affiliation(s)
- Francis Berthias
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230Odense M, Denmark
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Gayani Wijegunawardena
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas67260, United States
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230Odense M, Denmark
| |
Collapse
|
10
|
Seeing the complete picture: proteins in top-down mass spectrometry. Essays Biochem 2022; 67:283-300. [PMID: 36468679 DOI: 10.1042/ebc20220098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Abstract
Top-down protein mass spectrometry can provide unique insights into protein sequence and structure, including precise proteoform identification and study of protein–ligand and protein–protein interactions. In contrast with the commonly applied bottom-up approach, top-down approaches do not include digestion of the protein of interest into small peptides, but instead rely on the ionization and subsequent fragmentation of intact proteins. As such, it is fundamentally the only way to fully characterize the composition of a proteoform. Here, we provide an overview of how a top-down protein mass spectrometry experiment is performed and point out recent applications from the literature to the reader. While some parts of the top-down workflow are broadly applicable, different research questions are best addressed with specific experimental designs. The most important divide is between studies that prioritize sequence information (i.e., proteoform identification) versus structural information (e.g., conformational studies, or mapping protein–protein or protein–ligand interactions). Another important consideration is whether to work under native or denaturing solution conditions, and the overall complexity of the sample also needs to be taken into account, as it determines whether (chromatographic) separation is required prior to MS analysis. In this review, we aim to provide enough information to support both newcomers and more experienced readers in the decision process of how to answer a potential research question most efficiently and to provide an overview of the methods that exist to answer these questions.
Collapse
|
11
|
Melani RD, Gerbasi VR, Anderson LC, Sikora JW, Toby TK, Hutton JE, Butcher DS, Negrão F, Seckler HS, Srzentić K, Fornelli L, Camarillo JM, LeDuc RD, Cesnik AJ, Lundberg E, Greer JB, Fellers RT, Robey MT, DeHart CJ, Forte E, Hendrickson CL, Abbatiello SE, Thomas PM, Kokaji AI, Levitsky J, Kelleher NL. The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells. Science 2022; 375:411-418. [PMID: 35084980 PMCID: PMC9097315 DOI: 10.1126/science.aaz5284] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively spliced sequences or posttranslational modifications. Here, we present the primary structures of ~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from 1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results, compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level biology and are more specific indicators of differentiation than their corresponding proteins, which are more broadly expressed across cell types. We demonstrate the potential for clinical application, by interrogating the BPA in the context of liver transplantation and identifying cell and proteoform signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.
Collapse
Affiliation(s)
- Rafael D. Melani
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Vincent R. Gerbasi
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Lissa C. Anderson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Jacek W. Sikora
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Timothy K. Toby
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Josiah E. Hutton
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - David S. Butcher
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Fernanda Negrão
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Henrique S. Seckler
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Kristina Srzentić
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Jeannie M. Camarillo
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Richard D. LeDuc
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Anthony J. Cesnik
- Department of Genetics, Stanford University, Stanford, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Department of Genetics, Stanford University, Stanford, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joseph B. Greer
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Ryan T. Fellers
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Matthew T. Robey
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Caroline J. DeHart
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Paul M. Thomas
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | - Josh Levitsky
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Lui KW, Ngai SM. PrSM-Level Side-by-Side Comparison of Online LC-MS Methods with Intact Histone H3 and H4 Proteoforms. J Proteome Res 2021; 20:4331-4345. [PMID: 34327993 DOI: 10.1021/acs.jproteome.1c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterogeneity of histone H3 proteoforms makes histone H3 top-down analysis challenging. To enhance the detection coverage of the proteoforms, performing liquid chromatography (LC) front-end to mass spectrometry (MS) detection is recommended. Here, using optimized electron-transfer/high-energy collision dissociation (EThcD) parameters, we have conducted a proteoform-spectrum match (PrSM)-level side-by-side comparison of reversed-phase LC-MS (RPLC-MS), "dual-gradient" weak cation-exchange/hydrophilic interaction LC-MS (dual-gradient WCX/HILIC-MS), and "organic-rich" WCX/HILIC-MS on the top-down analyses of H3.1, H3.2, and H4 proteins extracted from a HeLa cell culture. While both dual-gradient WCX/HILIC and organic-rich WCX/HILIC could resolve intact H3 and H4 proteoforms by the number of acetylations, the organic-rich method could enhance the separations of different trimethyl/acetyl near-isobaric H3 proteoforms. In comparison with RPLC-MS, both of the WCX/HILIC-MS methods enhanced the qualities of the H3 PrSMs and remarkably improved the range, reproducibility, and confidence in the identifications of H3 proteoforms.
Collapse
Affiliation(s)
- Kin-Wing Lui
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, P. R. China
| | - Sai-Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, P. R. China.,State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, P. R. China
| |
Collapse
|
13
|
Rommelfanger S, Zhou M, Shaghasi H, Tzeng SC, Evans BS, Paša-Tolić L, Umen JG, Pesavento JJ. An Improved Top-Down Mass Spectrometry Characterization of Chlamydomonas reinhardtii Histones and Their Post-translational Modifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1671-1688. [PMID: 34165968 PMCID: PMC9236284 DOI: 10.1021/jasms.1c00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/01/2023]
Abstract
We present an updated analysis of the linker and core histone proteins and their proteoforms in the green microalga Chlamydomonas reinhardtii by top-down mass spectrometry (TDMS). The combination of high-resolution liquid chromatographic separation, robust fragmentation, high mass spectral resolution, the application of a custom search algorithm, and extensive manual analysis enabled the characterization of 86 proteoforms across all four core histones H2A, H2B, H3, and H4 and the linker histone H1. All canonical H2A paralogs, which vary in their C-termini, were identified, along with the previously unreported noncanonical variant H2A.Z that had high levels of acetylation and C-terminal truncations. Similarly, a majority of the canonical H2B paralogs were identified, along with a smaller noncanonical variant, H2B.v1, that was highly acetylated. Histone H4 exhibited a novel acetylation profile that differs significantly from that found in other organisms. A majority of H3 was monomethylated at K4 with low levels of co-occuring acetylation, while a small fraction of H3 was trimethylated at K4 with high levels of co-occuring acetylation.
Collapse
Affiliation(s)
- Sarah
R. Rommelfanger
- Donald
Danforth Plant Science Center, St. Louis, Missouri 63132, United States
- Washington
University in St. Louis, St. Louis, Missouri 63130, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Henna Shaghasi
- Saint
Mary’s College of California, Moraga, California 94575, United States
| | - Shin-Cheng Tzeng
- Donald
Danforth Plant Science Center, St. Louis, Missouri 63132, United States
| | - Bradley S. Evans
- Donald
Danforth Plant Science Center, St. Louis, Missouri 63132, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - James G. Umen
- Donald
Danforth Plant Science Center, St. Louis, Missouri 63132, United States
- Washington
University in St. Louis, St. Louis, Missouri 63130, United States
| | - James J. Pesavento
- Saint
Mary’s College of California, Moraga, California 94575, United States
| |
Collapse
|
14
|
Holt MV, Wang T, Young NL. Expeditious Extraction of Histones from Limited Cells or Tissue Samples and Quantitative Top-Down Proteomic Analysis. Curr Protoc 2021; 1:e26. [PMID: 33534192 DOI: 10.1002/cpz1.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Histones are the primary protein component of chromatin and are involved in virtually all DNA-templated processes. Histones are abundantly post-translationally modified by a variety of chromatin-modifying machinery. These post-translational modifications (PTMs) are recognized by a range of "reader" proteins, which recruit additional proteins to specific locations on chromatin and impart precise and powerful effects on gene regulation. Each PTM typically exerts a positive or negative effect on transcription, and recent studies have shown that histone PTMs function in a combinatorial histone code: that is, histone PTMs function in combination to exert precise DNA-templated regulation. Thus, there is a need to identify and understand proteoforms, or unambiguously defined single protein molecules with all combinations of modifications. Top-down proteomics is currently the only viable approach for identifying and quantitating histone proteoforms, and mass spectrometry instruments have become sufficiently powerful to perform these quantitative analyses in a robust and high-throughput fashion. These recent innovations have enabled new experimental directions in chromatin research but have also introduced temporal and other constraints. This has led us to develop the protocols described here, which increase throughput, reduce sample requirements, and maintain robust quantitation. Although originally designed for high-throughput quantitative top-down proteomics, the protocols described here are useful for a wide range of chromatin biology applications. Starting with small amounts of cells or tissue, we describe two basic protocols for exceptionally rapid and efficient nuclei isolation, acid extraction of histones, and high-performance liquid chromatography fractionation of histones into histone families. We additionally describe the quantitative top-down proteomic analysis of histone H4 proteoforms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Nuclei isolation and acid extraction of histones from mammalian cells in culture/tissues Basic Protocol 2: HPLC fractionation of histones and histone H4 HPLC-MS/MS Support Protocol: Preparation of intact H3 histone tails by Glu-C digestion.
Collapse
Affiliation(s)
- Matthew V Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.,Current Address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Luise A, De Cecco E, Ponzini E, Sollazzo M, Mauri P, Sobott F, Legname G, Grandori R, Santambrogio C. Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry. Antioxidants (Basel) 2021; 10:antiox10060893. [PMID: 34206096 PMCID: PMC8226665 DOI: 10.3390/antiox10060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.
Collapse
Affiliation(s)
- Arianna Luise
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena De Cecco
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Martina Sollazzo
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - PierLuigi Mauri
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Frank Sobott
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
16
|
Chen D, Yang Z, Shen X, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry As an Alternative to Liquid Chromatography-Tandem Mass Spectrometry for Top-down Proteomics of Histones. Anal Chem 2021; 93:4417-4424. [PMID: 33650845 PMCID: PMC8564867 DOI: 10.1021/acs.analchem.0c04237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Top-down proteomics (TDP) is an ideal approach for deciphering the histone code and it routinely employs reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS). Because of the extreme complexity of histones regarding the number of proteoforms, new analytical tools with high-capacity separation and highly sensitive detection of proteoforms are required for TDP of histones. Here we present capillary zone electrophoresis (CZE)-MS/MS via the electro-kinetically pumped sheath-flow CE-MS interface for large-scale top-down delineation of histone proteoforms. CZE-MS/MS identified a comparable number of proteoforms to RPLC-MS/MS from a calf histone sample with more than 30-fold less sample consumption (75-ng vs. Three μg), indicating its substantially higher sensitivity. We identified about 400 histone proteoforms from the calf histone sample using two-dimensional size-exclusion chromatography (SEC)-CZE-MS/MS with less than 300-ng proteins consumed. We identified histone proteoforms carrying various tentative post-translational modifications (PTMs), for example, acetylation, methylation (mono-, di-, and tri-), phosphorylation, and succinylation. The electrophoretic mobility (μef) of unmodified histone proteoforms can be predicted accurately (R2 = 0.98) with an optimized semiempirical model based on our recent work. The results render CZE-MS/MS as a useful tool for deciphering the histone code in a proteoform-specific manner and on a global scale.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
17
|
Combinations of histone post-translational modifications. Biochem J 2021; 478:511-532. [DOI: 10.1042/bcj20200170] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Histones are essential proteins that package the eukaryotic genome into its physiological state of nucleosomes, chromatin, and chromosomes. Post-translational modifications (PTMs) of histones are crucial to both the dynamic and persistent regulation of the genome. Histone PTMs store and convey complex signals about the state of the genome. This is often achieved by multiple variable PTM sites, occupied or unoccupied, on the same histone molecule or nucleosome functioning in concert. These mechanisms are supported by the structures of ‘readers’ that transduce the signal from the presence or absence of PTMs in specific cellular contexts. We provide background on PTMs and their complexes, review the known combinatorial function of PTMs, and assess the value and limitations of common approaches to measure combinatorial PTMs. This review serves as both a reference and a path forward to investigate combinatorial PTM functions, discover new synergies, and gather additional evidence supporting that combinations of histone PTMs are the central currency of chromatin-mediated regulation of the genome.
Collapse
|
18
|
Coradin M, Mendoza MR, Sidoli S, Alpert AJ, Lu C, Garcia BA. Bullet points to evaluate the performance of the middle-down proteomics workflow for histone modification analysis. Methods 2020; 184:86-92. [PMID: 32070774 PMCID: PMC7727281 DOI: 10.1016/j.ymeth.2020.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Middle-down proteomics has emerged as the method of choice to study combinatorial histone post translational modifications (PTMs). In the common bottom-up workflow, histones are digested into relatively short peptides (4-20 aa), separated using reversed-phase chromatography and analyzed using typical proteomics methods in mass spectrometry. In middle-down, histones are cleaved into longer polypeptides (50-60 aa) mostly corresponding to their N-terminal tails, resolved using weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) and analyzed with less conventional mass spectrometry, i.e. using Electron Transfer Dissociation (ETD) for analyte fragmentation. Middle-down is not nearly as utilized as bottom-up for PTM analysis, partially due to its limited reproducibility and robustness. This has also limited the establishment of rigorous benchmarks to discriminate good vs poor quality experiments. Here, we describe critical aspects of the middle-down workflow to assist the user in evaluating the presence of biased and misleading results. Specifically, we tested the use of porous graphitic carbon (PGC) during the desalting step, demonstrating that desalting using only C18 material leads to sample loss. We also tested different salts in the WCX-HILIC buffers for their effect on retention, selectivity, and reproducibility of analysis of variants of histone tail fragments, in particular replacing ammonium ion with ethylenediammonium ion in buffer A. These substitutions had marked effects on selectivity and retention. Our results provide a streamlined way to evaluate middle-down performance to identify and quantify combinatorial histone PTMs.
Collapse
Affiliation(s)
- Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Congcong Lu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Halper M, Delsuc MA, Breuker K, van Agthoven MA. Narrowband Modulation Two-Dimensional Mass Spectrometry and Label-Free Relative Quantification of Histone Peptides. Anal Chem 2020; 92:13945-13952. [PMID: 32960586 PMCID: PMC7581016 DOI: 10.1021/acs.analchem.0c02843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Two-dimensional mass
spectrometry (2D MS) on a Fourier transform
ion cyclotron resonance (FT-ICR) mass analyzer allows for tandem mass
spectrometry without requiring ion isolation. In the ICR cell, the
precursor ion radii are modulated before fragmentation, which results
in modulation of the abundance of their fragments. The resulting 2D
mass spectrum enables a correlation between the precursor and fragment
ions. In a standard broadband 2D MS, the range of precursor ion cyclotron
frequencies is determined by the lowest mass-to-charge (m/z) ratio to be fragmented in the 2D MS experiment,
which leads to precursor ion m/z ranges that are much wider than necessary, thereby limiting the
resolving power for precursor ions and the accuracy of the correlation
between the precursor and fragment ions. We present narrowband modulation
2D MS, which increases the precursor ion resolving power by reducing
the precursor ion m/z range, with
the aim of resolving the fragment ion patterns of overlapping isotopic
distributions. In this proof-of-concept study, we compare broadband
and narrowband modulation 2D mass spectra of an equimolar mixture
of histone peptide isoforms. In narrowband modulation 2D MS, we were
able to separate the fragment ion patterns of all 13C isotopes
of the different histone peptide forms. We further demonstrate the
potential of narrowband 2D MS for label-free quantification of peptides.
Collapse
Affiliation(s)
- Matthias Halper
- Institute for Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Marc-André Delsuc
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France.,CASC4DE, Pôle API, 300 Bd. Sébastien Grant, 67400 Illkirch-Graffenstaden, France
| | - Kathrin Breuker
- Institute for Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Maria A van Agthoven
- Institute for Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Yu D, Wang Z, Cupp-Sutton KA, Liu X, Wu S. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2502-2513. [PMID: 31755044 PMCID: PMC7539543 DOI: 10.1007/s13361-019-02315-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 05/26/2023]
Abstract
Post-translational modifications (PTMs) play critical roles in biological processes and have significant effects on the structures and dynamics of proteins. Top-down proteomics methods were developed for and applied to the study of intact proteins and their PTMs in human samples. However, the large dynamic range and complexity of human samples makes the study of human proteins challenging. To address these challenges, we developed a 2D pH RP/RPLC-MS/MS technique that fuses high-resolution separation and intact protein characterization to study the human proteins in HeLa cell lysate. Our results provide a deep coverage of soluble proteins in human cancer cells. Compared to 225 proteoforms from 124 proteins identified when 1D separation was used, 2778 proteoforms from 628 proteins were detected and characterized using our 2D separation method. Many proteoforms with critically functional PTMs including phosphorylation were characterized. Additionally, we present the first detection of intact human GcvH proteoforms with rare modifications such as octanoylation and lipoylation. Overall, the increase in the number of proteoforms identified using 2DLC separation is largely due to the reduction in sample complexity through improved separation resolution, which enables the detection of low-abundance PTM-modified proteoforms. We demonstrate here that 2D pH RP/RPLC is an effective technique to analyze complex protein samples using top-down proteomics.
Collapse
Affiliation(s)
- Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| |
Collapse
|
22
|
Holt MV, Wang T, Young NL. High-Throughput Quantitative Top-Down Proteomics: Histone H4. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2548-2560. [PMID: 31741267 DOI: 10.1007/s13361-019-02350-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Proteins physiologically exist as "proteoforms" that arise from one gene and acquire additional function by post-translational modifications (PTM). When multiple PTMs coexist on single protein molecules, top-down proteomics becomes the only feasible method of characterization; however, most top-down methods have limited quantitative capacity and insufficient throughput to truly address proteoform biology. Here we demonstrate that top-down proteomics can be quantitative, reproducible, sensitive, and high throughput. The proteoforms of histone H4 are well studied both as a challenging proteoform identification problem and due to their essential role in the regulation of all eukaryotic DNA-templated processes. Much of histone H4's function is obfuscated from prevailing methods due to combinatorial mechanisms. Starting from cells or tissues, after an optimized protein purification process, the H4 proteoforms are physically separated by on-line C3 chromatography, narrowly isolated in MS1 and sequenced with ETD fragmentation. We achieve more than 30 replicates from a single 35-mm tissue culture dish by loading 55 ng of H4 on column. Parallelization and automation yield a sustained throughput of 12 replicates per day. We achieve reproducible quantitation (average biological Pearson correlations of 0.89) of hundreds of proteoforms (about 200-300) over almost six orders of magnitude and an estimated LLoQ of 0.001% abundance. We demonstrate the capacity of the method to precisely measure well-established changes with sodium butyrate treatment of SUM159 cells. We show that the data produced by a quantitative top-down method can be amenable to parametric statistical comparisons and is capable of delineating relevant biological changes at the full proteoform level.
Collapse
Affiliation(s)
- Matthew V Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Abstract
Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
Collapse
|
24
|
Gargano AFG, Shaw JB, Zhou M, Wilkins CS, Fillmore TL, Moore RJ, Somsen GW, Paša-Tolić L. Increasing the Separation Capacity of Intact Histone Proteoforms Chromatography Coupling Online Weak Cation Exchange-HILIC to Reversed Phase LC UVPD-HRMS. J Proteome Res 2018; 17:3791-3800. [PMID: 30226781 PMCID: PMC6220366 DOI: 10.1021/acs.jproteome.8b00458] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Top-down proteomics is an emerging
analytical strategy to characterize
combinatorial protein post-translational modifications (PTMs). However,
sample complexity and small mass differences between chemically closely
related proteoforms often limit the resolution attainable by separations
employing a single liquid chromatographic (LC) principle. In particular,
for ultramodified proteins like histones, extensive and time-consuming
fractionation is needed to achieve deep proteoform coverage. Herein,
we present the first online nanoflow comprehensive two-dimensional
liquid chromatography (nLC×LC) platform top-down mass spectrometry
analysis of histone proteoforms. The described two-dimensional LC
system combines weak cation exchange chromatography under hydrophilic
interaction LC conditions (i.e., charge- and hydrophilicity-based
separation) with reversed phase liquid chromatography (i.e., hydrophobicity-based
separation). The two independent chemical selectivities were run at
nanoflows (300 nL/min) and coupled online with high-resolution mass
spectrometry employing ultraviolet photodissociation (UVPD-HRMS).
The nLC×LC workflow increased the number of intact protein masses
observable relative to one-dimensional approaches and allowed characterization
of hundreds of proteoforms starting from limited sample quantities
(∼1.5 μg).
Collapse
Affiliation(s)
- Andrea F G Gargano
- Center for Analytical Sciences Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Vrije Universiteit Amsterdam , Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , de Boelelaan 1085 , 1081HV Amsterdam , The Netherlands
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Christopher S Wilkins
- Biological Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Thomas L Fillmore
- Biological Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Ronald J Moore
- Biological Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Govert W Somsen
- Center for Analytical Sciences Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands.,Vrije Universiteit Amsterdam , Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , de Boelelaan 1085 , 1081HV Amsterdam , The Netherlands
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
25
|
Simithy J, Sidoli S, Garcia BA. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 2018. [PMID: 29512899 DOI: 10.1002/pmic.201700309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin fiber is the control panel of eukaryotic cells. Chromatin is mostly composed of DNA, which contains the genetic instruction for cell phenotype, and histone proteins, which provide the scaffold for chromatin folding and part of the epigenetic inheritance. Histone writers/erasers "flag" chromatin regions by catalyzing/removing covalent histone post-translational modifications (PTMs). Histone PTMs chemically contribute to chromatin relaxation or compaction and recruit histone readers to modulate DNA readout. The precursors of protein PTMs are mostly small metabolites. For instance, acetyl-CoA is used for acetylation, ATP for phosphorylation, and S-adenosylmethionine for methylation. Interestingly, PTMs such as acetylation can occur at neutral pH also without their respective enzyme when the precursor is sufficiently concentrated. Therefore, it is essential to differentially quantify the contribution of histone writers/erasers versus the effect of local concentration of metabolites to understand the primary regulation of histone PTM abundance. Aberrant phenotypes such as cancer cells have misregulated metabolism and thus the composition and the modulation of chromatin is not only driven by enzymatic tuning. In this review, the latest advances in mass spectrometry (MS) to analyze histone PTMs and the most adopted quantification methods for related metabolites, both necessary to understand PTM relative changes, are discussed.
Collapse
Affiliation(s)
- Johayra Simithy
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
28
|
Khan A, Eikani CK, Khan H, Iavarone AT, Pesavento JJ. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications. J Proteome Res 2017; 17:23-32. [PMID: 29198113 DOI: 10.1021/acs.jproteome.7b00780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.
Collapse
Affiliation(s)
- Aliyya Khan
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Carlo K Eikani
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Hana Khan
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California , Berkeley, California 94720, United States
| | - James J Pesavento
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| |
Collapse
|
29
|
Abstract
This review by Vo ngoc et al. expands the view of the RNA polymerase II core promoter, which is comprised of classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
30
|
Ma J, Dai Q, Li X, Zhu X, Ma T, Qiao X, Shen S, Liu X. Dipentaerythritol penta-/hexa-acrylate based-highly cross-linked hybrid monolithic column: Preparation and its applications for ultrahigh efficiency separation of proteins. Anal Chim Acta 2017; 963:143-152. [DOI: 10.1016/j.aca.2017.01.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
|
31
|
|