1
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
2
|
Tang X, Han JY, Pan C, Li CY, Zhao Y, Yi Y, Zhang YS, Zheng BX, Yue XN, Liang AH. Angelicin: A leading culprit involved in fructus Psoraleae liver injury via inhibition of VKORC1. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117917. [PMID: 38442807 DOI: 10.1016/j.jep.2024.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The adverse effects of Fructus Psoraleae (FP), especially liver injury, have attracted wide attention in recent years. AIM OF THE STUDY To establish a system to explore potential hepatotoxic targets and the chief culprit of liver injury based on clinical experience, network pharmacological method, molecular docking, and in vitro and in vivo experiments. MATERIALS AND METHODS Clinical applications and adverse reactions to FP were obtained from public literatures. Components absorbed in the blood were selected as candidates to search for potential active targets (PATs) of FP. Subsequently, potential pharmacological core targets (PPCTs) were screened through the "drug targets-disease targets" network. Non-drug active targets (NPATs) were obtained by subtracting the PPCTs from the PATs. The potential hepatotoxic targets (PHTs) of FP were the intersection targets obtained from Venn analysis using NPATs, hepatotoxic targets, and adverse drug reaction (ADR) targets provided by the databases. Then, potential hepatotoxic components and targets were obtained using the "NPATS-component" network relationship. Molecular docking and in vitro and in vivo hepatotoxicity experiments were performed to verify the targets and related components. RESULTS Overall, 234 NPATs were acquired from our analysis, and 6 targets were identified as PHTs. Results from molecular docking and in vitro and in vivo experiments showed that angelicin is the leading cause of liver injury in FP, and VKORC1 plays an important role. CONCLUSION The results indicate that six targets, especially VKORC1, are associated with the PHTs of FP, and angelicin is the leading culprit involved in FP liver injury via inhibition of VKORC1.
Collapse
Affiliation(s)
- Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jia-Yin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chun-Ying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yu-Shi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bao-Xin Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xing-Nan Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ai-Hua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Li CC, Ji P, He J, Peng YS, Wu FL, Hua YL, Yao WL, Yuan ZW, Wei YM. Screening of polysaccharides from the differently processed products of Angelica sinensis with the best liver protection effect on chicken and the intervention mechanism study based on tandem mass tag proteomics and multiple reaction monitoring approach. Biomed Chromatogr 2024; 38:e5840. [PMID: 38402901 DOI: 10.1002/bmc.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - You-Sheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Thakur S, Kumar V, Das R, Sharma V, Mehta DK. Biomarkers of Hepatic Toxicity: An Overview. CURRENT THERAPEUTIC RESEARCH 2024; 100:100737. [PMID: 38860148 PMCID: PMC11163176 DOI: 10.1016/j.curtheres.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/31/2024] [Indexed: 06/12/2024]
Abstract
Background Hepatotoxicity is the foremost issue for clinicians and the primary reason for pharmaceutical product recalls. A biomarker is a measurable and quantifiable attribute used to evaluate the efficacy of a treatment or to diagnose a disease. There are various biomarkers which are used for the detection of liver disease and the intent of liver damage. Objective This review aims to investigate the current state of hepatotoxicity biomarkers and their utility in clinical settings. Using hepatic biomarkers, the presence of liver injury, its severity, prognosis, causative agent, and type of hepatotoxicity can all be determined. Methods Relevant published articles up to 2022 were systematically retrieved from MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as drug toxicity, hepatotoxicity biomarkers, biochemical parameters, and nonalcoholic fatty liver disease. Results In clinical trials and everyday practice, biomarkers of drug-induced liver injury are essential for spotting the most severe cases of hepatotoxicity. Hence, developing novel biomarker approaches to enhance hepatotoxicity diagnosis will increase specificity and/or identify the person at risk. Importantly, early clinical studies on patients with liver illness have proved that some biomarkers such as aminotransferase, bilirubin, albumin, and bile acids are even therapeutically beneficial. Conclusions By assessing the unique signs of liver injury, health care professionals can rapidly and accurately detect liver damage and evaluate its severity. These measures contribute to ensuring prompt and effective medical intervention, hence reducing the risk of long-term liver damage and other major health concerns.
Collapse
Affiliation(s)
- Simran Thakur
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Kumar
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
5
|
Wei H, Wang Z, Wang Y, Ma J, Chen Y, Guo M, Li Y, Du Y, Hu F. Detection of depression marker ASS1 in urine by gold nanoparticles based dual epitope-peptides imprinted sensor. Anal Chim Acta 2023; 1273:341479. [PMID: 37423651 DOI: 10.1016/j.aca.2023.341479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Trace detection of argininosuccinate synthetase 1 (ASS1), a depression marker, in urine samples is difficult to achieve. In this work, a dual-epitope-peptides imprinted sensor for ASS1 detection in urine was constructed based on the high selectivity and sensitivity of the "epitope imprinting approach". First, two cysteine-modified epitope-peptides were immobilized onto gold nanoparticles (AuNPs) deposited on a flexible electrode (ITO-PET) by gold-sulfur bonds (Au-S), then a controlled electropolymerization of dopamine was carried out to imprint the epitope peptides. After removing epitope-peptides, the dual-epitope-peptides imprinted sensor (MIP/AuNPs/ITO-PET) which with multiple binding sites for ASS1 was obtained. Compared with single epitope-peptide, dual-epitope-peptides imprinted sensor had higher sensitivity, which presented a linear range from 0.15 to 6000 pg ml-1 with a low limit of detection (LOD = 0.106 pg mL-1, S/N = 3). It had good reproducibility (RSD = 1.74%), repeatability (RSD = 3.60%), stability (RSD = 2.98%), and good selectivity, and the sensor had good recovery (92.4%-99.0%) in urine samples. This is the first highly sensitive and selective electrochemical assay for the depression marker ASS1 in urine, which is expected to provide help for the non-invasive and objective diagnosis of depression.
Collapse
Affiliation(s)
- Hong Wei
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zixia Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Jing Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Min Guo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yuanyuan Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China; Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Yan Y, Liu Z, Xie P, Huang S, Chen J, Caddeo F, Liu X, Huang Q, Jin M, Shui L. Sensitive electrochemical assay of acetaminophen based on 3D-hierarchical mesoporous carbon nanosheets. J Colloid Interface Sci 2023; 634:509-520. [PMID: 36542979 DOI: 10.1016/j.jcis.2022.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Acetaminophen plays a key role in first-line Covid-19 cure as a supportive therapy of fever and pain. However, overdose of acetaminophen may give rise to severe adverse events such as acute liver failure in individual. In this work, 3D-hierarchical mesoporous carbon nanosheet (hMCNS) microspheres with superior properties were fabricated using simple and quick strategy and applied for sensitive quantification of acetaminophen in pharmaceutical formulation and rat plasmas after administration. The hMCNS microspheres are prepared via chemical etching of zinc oxide (ZnO) nanoparticles from a zinc-gallic acid precursor composite (Zn-GA) synthesized by high-temperature anaerobic pyrolysis. The obtained hMCNS could enhance analytes accessibility and accelerate proton transfer in the interface, hence increasing the electrochemical performance. Under optimized experimental conditions, the proposed electrochemical sensor achieves a detection limit of 3.5 nM for acetaminophen. The prepared electrochemical sensor has been successfully applied for quantification of acetaminophen in pharmaceutical formulations and the rat plasma samples before and after administration. Meanwhile, this sensor is compared with high-performance liquid chromatography (HPLC) as a reference technology, showing an excellent accuracy. Such an electrochemical sensor has great potential and economic benefits for applications in the fields of pharmaceutical assay and therapeutic drug monitoring (TDM).
Collapse
Affiliation(s)
- Yu Yan
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Zhenping Liu
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China; University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany.
| | - Peng Xie
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Shuqing Huang
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Jiamei Chen
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Francesco Caddeo
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Xin Liu
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, PR China
| | - Mingliang Jin
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China; International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, PR China
| | - Lingling Shui
- International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Dandekar T, Kunz M. Complex Systems Behave Fundamentally in a Similar Way. Bioinformatics 2023. [DOI: 10.1007/978-3-662-65036-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
8
|
Xiang Z, Jiang C, Yang J, Huang L, Jiang B, Wang X, Gao C, Li M, Meng Y, Tong L, Ling B, Wang Y, Wu J. Serum extracellular vesicle-derived ASS1 is a promising predictor for the occurrence of HEV-ALF. J Med Virol 2023; 95:e28425. [PMID: 36562411 DOI: 10.1002/jmv.28425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Development of biomarkers for predicting the occurrence of hepatitis E virus related-acute liver failure (HEV-ALF) is conducive to prevention and early intervention. Serum samples from 250 HEV-ALF patients, 250 patients with acute hepatitis E (AHE) and 250 health controls (HCs) were collected. We assessed the predictive ability of extracellular vesicle (EV)-derived argininosuccinate synthase 1 (ASS1) levels for HEV-ALF occurrence. Serum EVs were successfully isolated. EV-derived ASS1 levels in the HEV-ALF patients were significantly higher than those in the AHE patients and HCs. In HEV-ALF patients, EV-derived ASS1 levels were positively correlated with the number of failed organs and disease progression. The logistical regression showed that EV-derived ASS1 level is an independent risk factor for HEV-ALF, and orthogonal partial least squares discriminant analysis (OPLS-DA) also suggested that EV-derived ASS1 level has high predictive capability. Besides, the area under the curve (AUC) of EV-derived ASS1 level to predict HEV-ALF occurrence was 0.728 (0.684-0.772) with the sensitivity and specificity being 72.80% and 64.80%, which had a high decision-making ability. Furthermore, there existed no significant difference between the age ≥60 and age <60 groups in EV-derived ASS1 levels. Serum EV-derived ASS1 level is a promising predictor for the occurrence of HEV-ALF.
Collapse
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jiajia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, Jiangsu, China
| | - Xuanli Wang
- Jiangsu University School of Medicine, Zhenjiang, Jiangsu, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yiling Meng
- Department of Laboratory Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling Tong
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Ying Wang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | | |
Collapse
|
9
|
Yan Z, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Zhang K, Li J. Differential proteomic of plasma provides a new perspective on scientific diagnosis and drug screening for dampness heat diarrhea in calves. Front Vet Sci 2022; 9:986329. [PMID: 36204290 PMCID: PMC9530945 DOI: 10.3389/fvets.2022.986329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Dampness heat diarrhea (DHD) is one of the most common syndromes of calf diarrhea. Its complex etiology and lack of objective diagnostic criteria bring great challenges to the diagnosis and treatment of this disease. This study aims to screen some prospective diagnostic biomarkers or therapeutic targets for calves with DHD by investigating the differential protein profiles of plasma between DHD calves and clinically healthy calves by mass spectrometry-based proteomic. A total of 120 DHD calves and 90 clinically healthy calves were divided into two groups randomly, 30 DHD calves and 30 clinically healthy calves in the test group, and 90 DHD calves and 60 clinically healthy calves in the validation group. In the test group, a total of 52 proteins were differentially expressed between calves with DHD and clinically healthy calves, 13 proteins were significantly increased and 39 proteins were significantly decreased. The differentially expressed proteins were associated with the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway. In the validation group, 13 proteins were selected from 52 differential expression proteins for parallel reaction monitoring validation to verify their associations with DHD calves. The targeted proteomic results showed that fibronectin precursor (FN1) and apolipoprotein C-IV precursor (APOC4) were significantly associated with DHD in calves, and they were downregulated in sick calves. In conclusion, the differential expression of plasma proteins was associated with DHD pathogenesis in calves, and the FN1 and APOC4 might be the potential clinical biomarkers for diagnosis of DHD in calves, and the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway are the candidate targets to treat DHD in calves. Our finding provides a reference for further investigating the pathogenesis, developing techniques of diagnosis, and screening treatment drugs for DHD in calves.
Collapse
|
10
|
Diener C, Qin S, Zhou Y, Patwardhan S, Tang L, Lovejoy JC, Magis AT, Price ND, Hood L, Gibbons SM. Baseline Gut Metagenomic Functional Gene Signature Associated with Variable Weight Loss Responses following a Healthy Lifestyle Intervention in Humans. mSystems 2021; 6:e0096421. [PMID: 34519531 PMCID: PMC8547453 DOI: 10.1128/msystems.00964-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 individuals selected from a larger population enrolled in a commercial wellness program, which included healthy lifestyle coaching. Each individual in the cohort had baseline blood metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA gene sequencing data, and follow-up data on weight change. We generated additional targeted proteomics data on obesity-associated proteins in blood before and after intervention, along with baseline stool metagenomic data, for a subset of 25 individuals who showed the most extreme weight change phenotypes. We built regression models to identify baseline blood, stool, and dietary features associated with weight loss, independent of age, sex, and baseline body mass index (BMI). Many features were independently associated with baseline BMI, but few were independently associated with weight loss. Baseline diet was not associated with weight loss, and only one blood analyte was associated with changes in weight. However, 31 baseline stool metagenomic functional features, including complex polysaccharide and protein degradation genes, stress-response genes, respiration-related genes, and cell wall synthesis genes, along with gut bacterial replication rates, were associated with weight loss responses after controlling for age, sex, and baseline BMI. Together, these results provide a set of compelling hypotheses for how commensal gut microbiota influence weight loss outcomes in humans. IMPORTANCE Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to dietary interventions, but the exact functional determinants underlying this phenomenon remain unclear. In this study, we set out to better understand interactions between baseline BMI, metabolic health, diet, gut microbiome functional profiles, and subsequent weight changes in a human cohort that underwent a healthy lifestyle intervention. Overall, our results suggest that the microbiota may influence host weight loss responses through variable bacterial growth rates, dietary energy harvest efficiency, and immunomodulation.
Collapse
Affiliation(s)
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Li Tang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Jennifer C. Lovejoy
- Institute for Systems Biology, Seattle, Washington, USA
- Lifestyle Medicine Institute, Redlands, California, USA
| | | | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Onegevity (a division of Thorne HealthTech), New York, New York, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- eScience Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Pailleux F, Maes P, Jaquinod M, Barthelon J, Darnaud M, Lacoste C, Vandenbrouck Y, Gilquin B, Louwagie M, Hesse AM, Kraut A, Garin J, Leroy V, Zarski JP, Bruley C, Couté Y, Samuel D, Ichai P, Faivre J, Brun V. Mass Spectrometry-Based Proteomics Reveal Alcohol Dehydrogenase 1B as a Blood Biomarker Candidate to Monitor Acetaminophen-Induced Liver Injury. Int J Mol Sci 2021; 22:ijms222011071. [PMID: 34681731 PMCID: PMC8540689 DOI: 10.3390/ijms222011071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10–48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.
Collapse
Affiliation(s)
- Floriane Pailleux
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Pauline Maes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Michel Jaquinod
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Justine Barthelon
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
| | - Marion Darnaud
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Benoît Gilquin
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
| | - Mathilde Louwagie
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Alexandra Kraut
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Jérôme Garin
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Vincent Leroy
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
- Institute for Advanced Biosciences, Université Grenoble Alpes, CNRS, INSERM U1209, 38000 Grenoble, France
| | - Jean-Pierre Zarski
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
- Institute for Advanced Biosciences, Université Grenoble Alpes, CNRS, INSERM U1209, 38000 Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Didier Samuel
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Ichai
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jamila Faivre
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, 94800 Villejuif, France
- Correspondence: (J.F.); (V.B.)
| | - Virginie Brun
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
- Correspondence: (J.F.); (V.B.)
| |
Collapse
|
12
|
Martinez-Huenchullan SF, Shipsey I, Hatchwell L, Min D, Twigg SM, Larance M. Blockade of High-Fat Diet Proteomic Phenotypes Using Exercise as Prevention or Treatment. Mol Cell Proteomics 2020; 20:100027. [PMID: 33594989 PMCID: PMC7950115 DOI: 10.1074/mcp.tir120.002343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022] Open
Abstract
The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the overconsumption of a high-fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regimen for animals on either a HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and downregulation of SERPINA1E and complement factor D (CFD; adipsin). Some of these changes were significantly reverted using exercise as a preventative measure but not as a treatment regimen. To determine if either the intensity or duration of exercise influenced the outcome, we compared high-intensity interval training and endurance running. Endurance running slightly outperformed high-intensity interval training exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the HFD, including SERPINA7, apolipoprotein E, SERPINA1E, and CFD. Finally, we compared the changes induced by overconsumption of a HFD with previous data from mice fed on an isocaloric high-saturated fatty acid or polyunsaturated fatty acid diet. This identified several common changes, including not only increased apolipoprotein C-II and apolipoprotein E but also highlighted changes specific for overconsumption of a HFD (fructose-bisphosphate aldolase B, SERPINA7, and CFD), saturated fatty acid-based diets (SERPINA1E), or polyunsaturated fatty acid-based diets (haptoglobin). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by HFD consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Faculty of Medicine, School of Physical Therapy, Austral University of Chile, Valdivia, Chile
| | - Isaac Shipsey
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Luke Hatchwell
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Danqing Min
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia
| | - Stephen M Twigg
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, New South Wales, Australia.
| | - Mark Larance
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Wei W, Riley NM, Yang AC, Kim JT, Terrell SM, Li VL, Garcia-Contreras M, Bertozzi CR, Long JZ. Cell type-selective secretome profiling in vivo. Nat Chem Biol 2020; 17:326-334. [PMID: 33199915 PMCID: PMC7904581 DOI: 10.1038/s41589-020-00698-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
Abstract
Secreted polypeptides are a fundamental biochemical axis of intercellular and endocrine communication. However, a global understanding of composition and dynamics of cellular secretomes in intact mammalian organisms has been lacking. Here, we introduce a proximity biotinylation strategy that enables labeling, detection, and enrichment of secreted polypeptides in a cell type-selective manner in mice. We generate a proteomic atlas of hepatocyte, myocyte, pericyte, and myeloid cell secretomes by direct purification of biotinylated secreted proteins from blood plasma. Our secretome dataset validates known cell type-protein pairs, reveals secreted polypeptides that distinguish between cell types, and identifies new cellular sources for classical plasma proteins. Lastly, we uncover a dynamic and previously undescribed nutrient-dependent reprogramming of the hepatocyte secretome characterized by increased unconventional secretion of the cytosolic enzyme BHMT. This secretome profiling strategy enables dynamic and cell-type dissection of the plasma proteome and the secreted polypeptides that mediate intercellular signaling.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Nicholas M Riley
- Stanford ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Andrew C Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joon T Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Marta Garcia-Contreras
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Gryshchenko VA, Minina VS. Marker changes of blood plasma proteinogram in rats with toxic hepatitis. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, there has been a pronounced tendency to increase in the incidence of drug-induced liver damage due to the growing expansion of the pharmaceutical market, which is also observed in the case of incorrect administration of nonsteroidal anti-inflammatory drugs (NSAIDs). In this case, the violation of the functional state of the body has a negative effect on synthetic processes, which in combination with the protein system of tissues significantly affects the metabolic homeostasis of the body. Therefore, the aim of the study was to determine marker changes in the plasma protein spectrum in laboratory rats with diclofenac-induced hepatitis and the effectiveness of reparative therapy based on milk phospholipids. The drug form of toxic hepatitis in laboratory animals was induced according to the author’s model by oral administration of diclofenac sodium (NSAID group) at a dose of 12.5 mg/kg, once a day for 14 days. Thus, in rats with toxic hepatitis there was a probable decrease in plasma total protein content by 15.6% compared with control, indicating a violation of protein-synthesizing function of the liver. With the introduction into the body of clinically healthy and sick animals of the liposomal form of the bioadditive "FLP-MD" based on milk phospholipids, the level of total protein in blood plasma corresponded to control values. As a result of the study of the plasma protein spectrum of Wistar rats, the four most sensitive indicators, which undergo significant probable changes in absolute and relative units of measurement with the development of toxic diclofenac-induced hepatitis, are protein fractions with molecular weights of 180–190, 150–170, 60 and 54–58 kDa and four markers of the effectiveness of restoring the protein-synthesizing function of the liver with the use of corrective therapy, in particular, bioadditives "FLP-MD" – 900, 180–190, 68–70 kDa and the value of A/G ratio, which is important for implementation in applied veterinary medicine, especially in the diagnosis of NSAID hepatopathy, supplementing the picture of its pathogenesis at the molecular level and testing the effectiveness of newly created drugs of hepatoprotective profile.
Collapse
|
15
|
Leuchsenring AB, Karlsson C, Bundgaard L, Malmström J, Heegaard PMH. Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected pigs. J Proteomics 2020; 227:103904. [PMID: 32702520 DOI: 10.1016/j.jprot.2020.103904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Serum amyloid A (SAA) is a well-described acute phase protein induced during the acute phase response (APR) to infection. Four isoform specific genes are found in most mammals. Depending on species, SAA3 and SAA4 are generally preferentially expressed extrahepatically whereas SAA1 and SAA2 are hepatic isoforms dominating the SAA serum pool. Little is known about how specific infections affect the serum SAA isoform profile, as SAA isoform discriminating antibodies are not generally available. An antibody independent, quantitative targeted MS method (Selected Reaction Monitoring, SRM) based on available information on porcine SAA isoform genes was developed and used to profile SAA in serum samples from pigs experimentally infected with Staphylococcus aureus (Sa). While results suggest SAA2 as the main circulating porcine SAA isoform, induced around 10 times compared to non-infected controls, total SAA serum concentrations reached only around 4 μg/mL, much lower than established previously by immunoassays. This might suggest that SAA isoform variants not detected by the SRM method might be present in porcine serum. The assay allows monitoring host responses to experimental infections, infectious diseases and inflammation states in the pig at an unprecedented level of detail. It can also be used in a non-calibrated (relative quantification) format. SIGNIFICANCE: We developed an SRM MS method which for the first time allowed the specific quantification of each of the circulating porcine SAA isoforms (SAA2, SAA3, SAA4). It was found that SAA2 is the dominating circulating isoform of SAA in the pig and that, during the acute phase response to Sa infection SAA2, SAA3 and SAA4 are induced approx. 10, 15 and 2 times, respectively. Absolute levels of the isoforms as determined by SRM MS were much lower than reported previously for total SAA quantified by immunosassays, suggesting the existence of hitherto non-described SAA variants. SRM MS holds great promise for the study of the basic biology of SAA isoforms with the potential to study an even broader range of SAA variants.
Collapse
Affiliation(s)
- Anna Barslund Leuchsenring
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Christofer Karlsson
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Johan Malmström
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Peter M H Heegaard
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
16
|
Zhou Y, Qin S, Sun M, Tang L, Yan X, Kim TK, Caballero J, Glusman G, Brunkow ME, Soloski MJ, Rebman AW, Scavarda C, Cooper D, Omenn GS, Moritz RL, Wormser GP, Price ND, Aucott JN, Hood L. Measurement of Organ-Specific and Acute-Phase Blood Protein Levels in Early Lyme Disease. J Proteome Res 2020; 19:346-359. [PMID: 31618575 PMCID: PMC7981273 DOI: 10.1021/acs.jproteome.9b00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lyme disease results from infection of humans with the spirochete Borrelia burgdorferi. The first and most common clinical manifestation is the circular, inflamed skin lesion referred to as erythema migrans; later manifestations result from infections of other body sites. Laboratory diagnosis of Lyme disease can be challenging in patients with erythema migrans because of the time delay in the development of specific diagnostic antibodies against Borrelia. Reliable blood biomarkers for the early diagnosis of Lyme disease in patients with erythema migrans are needed. Here, we performed selected reaction monitoring, a targeted mass spectrometry-based approach, to measure selected proteins that (1) are known to be predominantly expressed in one organ (i.e., organ-specific blood proteins) and whose blood concentrations may change as a result of Lyme disease, or (2) are involved in acute immune responses. In a longitudinal cohort of 40 Lyme disease patients and 20 healthy controls, we identified 10 proteins with significantly altered serum levels in patients at the time of diagnosis, and we also developed a 10-protein panel identified through multivariate analysis. In an independent cohort of patients with erythema migrans, six of these proteins, APOA4, C9, CRP, CST6, PGLYRP2, and S100A9, were confirmed to show significantly altered serum levels in patients at time of presentation. Nine of the 10 proteins from the multivariate panel were also verified in the second cohort. These proteins, primarily innate immune response proteins or proteins specific to liver, skin, or white blood cells, may serve as candidate blood biomarkers requiring further validation to aid in the laboratory diagnosis of early Lyme disease.
Collapse
Affiliation(s)
- Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington, USA
| | - Mingjuan Sun
- Institute for Systems Biology, Seattle, Washington, USA
- Second Military Medical University, Shanghai, China
| | - Li Tang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Juan Caballero
- Molecular and Developmental Complexity Lab, Langebio-Cinvestav, Irapuato, Guanajuato, Mexico
| | | | | | - Mark J. Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison W. Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carol Scavarda
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | - Denise Cooper
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | - Gilbert S. Omenn
- Institute for Systems Biology, Seattle, Washington, USA
- Center for Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | | | - John N. Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
- Providence St. Joseph Health, Seattle, Washington, USA
| |
Collapse
|
17
|
A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat Rev Clin Oncol 2019; 17:183-194. [DOI: 10.1038/s41571-019-0273-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
|
18
|
Yurkovich JT, Hood L. Blood Is a Window into Health and Disease. Clin Chem 2019; 65:1204-1206. [PMID: 31171530 DOI: 10.1373/clinchem.2018.299065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA; .,Providence St. Joseph Health, Renton, WA
| |
Collapse
|
19
|
McGill MR, Jaeschke H. Biomarkers of drug-induced liver injury: progress and utility in research, medicine, and regulation. Expert Rev Mol Diagn 2018; 18:797-807. [PMID: 30080986 DOI: 10.1080/14737159.2018.1508998] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The difficulty of understanding and diagnosing drug-induced liver injury (DILI) has led to proliferation of serum and genetic biomarkers. Many applications of these biomarkers have been proposed, including investigation of mechanisms, prediction of DILI during early trials or before initiation of therapy in patients, and diagnosis of DILI during therapy. Areas covered: We review the definition and categories of DILI, describe recent developments in DILI biomarker development, and provide guidance for future directions in DILI biomarker research. Expert commentary: There are major obstacles to DILI biomarker development and implementation, including the low prevalence of idiosyncratic DILI (IDILI), weak associations of IDILI with genetic variants, and lack of specificity of many biomarkers for the liver. Certain serum biomarkers, like miR-122, may have clinical utility in early-presenting patients with either intrinsic or idiosyncratic DILI in the future, while others likely will not find use. Future research should focus on implementation of biomarkers to predict later injury and outcome in early presenters with intrinsic DILI, and on development of biomarkers of adaptation and repair in the liver that can be used to determine if a liver test abnormality is likely to be clinically significant in IDILI.
Collapse
Affiliation(s)
- Mitchell R McGill
- a Department of Environmental and Occupational Health , Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,b Department of Pharmacology and Toxicology , College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Hartmut Jaeschke
- c Department of Pharmacology, Toxicology and Therapeutics , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
20
|
Hood LE. Lessons Learned as President of the Institute for Systems Biology (2000-2018). GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:1-9. [PMID: 29496591 PMCID: PMC6000253 DOI: 10.1016/j.gpb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Leroy E Hood
- Providence St. Joseph Health, Seattle, WA 98057, USA; Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Schwenk JM, Omenn GS, Sun Z, Campbell DS, Baker MS, Overall CM, Aebersold R, Moritz RL, Deutsch EW. The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays. J Proteome Res 2017; 16:4299-4310. [PMID: 28938075 PMCID: PMC5864247 DOI: 10.1021/acs.jproteome.7b00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ∼43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely mapping peptides of nine amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ∼2000 proteins. Finally, we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.
Collapse
Affiliation(s)
- Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| | - Gilbert S. Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2218, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University, NSW, 2109. Australia
| | - Christopher M. Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | | | | |
Collapse
|
22
|
Dufresne J, Hoang T, Ajambo J, Florentinus-Mefailoski A, Bowden P, Marshall J. Freeze-dried plasma proteins are stable at room temperature for at least 1 year. Clin Proteomics 2017; 14:35. [PMID: 29093647 PMCID: PMC5659006 DOI: 10.1186/s12014-017-9170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022] Open
Abstract
Thirty human EDTA plasma samples from male and female subjects ranging in age from 24 to 74 years were collected on ice, processed ice cold and stored frozen at -80 °C, in liquid nitrogen (LN2), or freeze dried and stored at room temperature in a desiccator (FDRT) or freeze dried and stored at -20 °C for 1 year (FD-20). In a separate experiment, EDTA plasma samples were collected onto ice, processed ice cold and maintained on ice ± protease inhibitors versus incubated at room temperature for up to 96 h. Random and independent sampling by liquid chromatography and tandem mass spectrometry (LC-ESI-MS/MS), as correlated by the MASCOT, OMSSA, X!TANDEM and SEQUEST algorithms, showed that tryptic peptides from complement component 4B (C4B) were rapidly released in plasma at room temperature. Random sampling by LC-ESI-MS/MS showed that peptides from C4B were undetectable on ice, but peptides were cleaved from the mature C4B protein including NGFKSHALQLNNR within as little as 1 h at room temperature. The frequency and intensity of precursors within ± 3 m/z of the C4B peptide NGFKSHALQLNNR was confirmed by automated targeted analysis where the precursors from MS/MS spectra that correlated to the target sequence were analyzed in SQL/R. The C4B preproprotein was processed at the N terminus to release the mature chain that was cleaved on the carboxyl side of the isoprene C2 domain within a polar C terminal sequence of the mature C4B protein, to reveal the thioester reaction site, consistent with LC-ESI-MS/MS and Western blot. Random sampling showed that proteolytic peptides from complement component C4B were rarely observed with long term storage at - 80 °C in a freezer or in liquid nitrogen (LN2), freeze drying with storage at - 20 °C (FD-20 °C) or freeze drying and storage at room temperature (FDRT). Plasma samples maintained at room temperature (RT) showed at least 10-fold to 100-fold greater frequency of peptide correlation to C4B and measured peptide intensity compared to samples on ice for up to 72 h or stored at - 80 °C, LN2, FDRT or FD-20 °C for up to a year.
Collapse
Affiliation(s)
- Jaimie Dufresne
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - Trung Hoang
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - Juliet Ajambo
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | | | - Peter Bowden
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada
| | - John Marshall
- Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3 Canada.,Integrated BioBank of Luxembourg, 6 r. Nicolas-Ernest Barblé, 1210 Luxembourg, Luxembourg
| |
Collapse
|
23
|
Introducing plasma/serum glycodepletion for the targeted proteomics analysis of cytolysis biomarkers. Talanta 2017; 170:473-480. [DOI: 10.1016/j.talanta.2017.04.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 11/18/2022]
|
24
|
Wang K. The Ubiquitous Existence of MicroRNA in Body Fluids. Clin Chem 2017; 63:784-785. [DOI: 10.1373/clinchem.2016.267625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Kai Wang
- Institute for Systems Biology, Seattle, WA
| |
Collapse
|
25
|
McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI JOURNAL 2016; 15:817-828. [PMID: 28337112 PMCID: PMC5318690 DOI: 10.17179/excli2016-800] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Laboratory testing is important in the diagnosis and monitoring of liver injury and disease. Current liver tests include plasma markers of injury (e.g. aminotransferases, γ-glutamyl transferase, and alkaline phosphatase), markers of function (e.g. prothrombin time, bilirubin), viral hepatitis serologies, and markers of proliferation (e.g. α-fetoprotein). Among the injury markers, the alanine and aspartate aminotransferases (ALT and AST, respectively) are the most commonly used. However, interpretation of ALT and AST plasma levels can be complicated. Furthermore, both have poor prognostic utility in acute liver injury and liver failure. New biomarkers of liver injury are rapidly being developed, and the US Food and Drug Administration the European Medicines Agency have recently expressed support for use of some of these biomarkers in drug trials. The purpose of this paper is to review the history of liver biomarkers, to summarize mechanisms and interpretation of ALT and AST elevation in plasma in liver injury (particularly acute liver injury), and to discuss emerging liver injury biomarkers that may complement or even replace ALT and AST in the future.
Collapse
Affiliation(s)
- Mitchell R McGill
- Div. of Laboratory and Genomic Medicine, Dept. of Pathology and Immunology; Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|