1
|
Cross interactions between Apolipoprotein E and amyloid proteins in neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1189-1204. [PMID: 36817952 PMCID: PMC9932299 DOI: 10.1016/j.csbj.2023.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Three common Apolipoprotein E isoforms, ApoE2, ApoE3, and ApoE4, are key regulators of lipid homeostasis, among other functions. Apolipoprotein E can interact with amyloid proteins. The isoforms differ by one or two residues at positions 112 and 158, and possess distinct structural conformations and functions, leading to isoform-specific roles in amyloid-based neurodegenerative diseases. Over 30 different amyloid proteins have been found to share similar characteristics of structure and toxicity, suggesting a common interactome. The molecular and genetic interactions of ApoE with amyloid proteins have been extensively studied in neurodegenerative diseases, but have not yet been well connected and clarified. Here we summarize essential features of the interactions between ApoE and different amyloid proteins, identify gaps in the understanding of the interactome and propose the general interaction mechanism between ApoE isoforms and amyloid proteins. Perhaps more importantly, this review outlines what we can learn from the interactome of ApoE and amyloid proteins; that is the need to see both ApoE and amyloid proteins as a basis to understand neurodegenerative diseases.
Collapse
|
2
|
Rossi M, Kai H, Baiardi S, Bartoletti-Stella A, Carlà B, Zenesini C, Capellari S, Kitamoto T, Parchi P. The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins. Acta Neuropathol Commun 2019; 7:53. [PMID: 30961668 PMCID: PMC6454607 DOI: 10.1186/s40478-019-0706-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
Current evidence indicating a role of the human prion protein (PrP) in amyloid-beta (Aβ) formation or a synergistic effect between Aβ and prion pathology remains controversial. Conflicting results also concern the frequency of the association between the two protein misfolding disorders and the issue of whether the apolipoprotein E gene (APOE) and the prion protein gene (PRNP), the major modifiers of Aβ- and PrP-related pathologies, also have a pathogenic role in other proteinopathies, including tau neurofibrillary degeneration. Here, we thoroughly characterized the Alzheimer's disease/primary age-related tauopathy (AD/PART) spectrum in a series of 450 cases with definite sporadic or genetic Creutzfeldt-Jakob disease (CJD). Moreover, we analyzed: (i) the effect of variables known to affect CJD pathogenesis and the co-occurring Aβ- and tau-related pathologies; (II) the influence of APOE genotype on CJD pathology, and (III) the effect of AD/PART co-pathology on the clinical CJD phenotype. AD/PART characterized 74% of CJD brains, with 53.3% and 8.2% showing low or intermediate-high levels of AD pathology, and 12.4 and 11.8% definite or possible PART. There was no significant correlation between variables affecting CJD (i.e., disease subtype, prion strain, PRNP genotype) and those defining the AD/PART spectrum (i.e., ABC score, Thal phase, prevalence of CAA and Braak stage), and no difference in the distribution of APOE ε4 and ε2 genotypes among CJD subtypes. Moreover, AD/PART co-pathology did not significantly affect the clinical presentation of typical CJD, except for a tendency to increase the frequency of cognitive symptoms. Altogether, the present results seem to exclude an increased prevalence AD/PART co-pathology in sporadic and genetic CJD, and indicate that largely independent pathogenic mechanisms drive AD/PART and CJD pathology even when they coexist in the same brain.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Hideaki Kai
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Benedetta Carlà
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tetsuyuki Kitamoto
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| |
Collapse
|
3
|
Processing of high-titer prions for mass spectrometry inactivates prion infectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1174-1180. [PMID: 30282615 DOI: 10.1016/j.bbapap.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
Abstract
Prions represent a class of universally fatal and transmissible neurodegenerative disorders that affect humans and other mammals. The prion agent contains a pathologically aggregated form of the host prion protein that can transmit infectivity without any bacterial or viral component and is thus difficult to inactivate using disinfection protocols designed for infectious microorganisms. Methods for prion inactivation include treatment with acids, bases, detergents, bleach, prolonged autoclaving and incineration. During these procedures, the sample is often either destroyed or damaged such that further analysis for research purposes is compromised. In this study we show that a straightforward denaturation and in-gel protease digestion protocol used to prepare prion-infected samples for mass spectroscopy leads to the loss of at least 7 logs of prion infectivity, yielding a final product that fails to transmit prion disease in vivo. We further show that the resultant sample remains suitable for mass spectrometry-based protein identifications. Thus, the procedure described can be used to prepare prion-infected samples for mass spectrometry analysis with greatly reduced biosafety concerns.
Collapse
|