1
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2024:revneuro-2024-0081. [PMID: 39240134 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C Y Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
2
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
3
|
Richards CM, McRae SA, Ranger AL, Klegeris A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev Neurosci 2023; 34:533-558. [PMID: 36368030 DOI: 10.1515/revneuro-2022-0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023]
Abstract
The four core histones H2A, H2B, H3, H4, and the linker histone H1 primarily bind DNA and regulate gene expression within the nucleus. Evidence collected mainly from the peripheral tissues illustrates that histones can be released into the extracellular space by activated or damaged cells. In this article, we first summarize the innate immune-modulatory properties of extracellular histones and histone-containing complexes, such as nucleosomes, and neutrophil extracellular traps (NETs), described in peripheral tissues. There, histones act as damage-associated molecular patterns (DAMPs), which are a class of endogenous molecules that trigger immune responses by interacting directly with the cellular membranes and activating pattern recognition receptors (PRRs), such as toll-like receptors (TLR) 2, 4, 9 and the receptor for advanced glycation end-products (RAGE). We then focus on the available evidence implicating extracellular histones as DAMPs of the central nervous system (CNS). It is becoming evident that histones are present in the brain parenchyma after crossing the blood-brain barrier (BBB) or being released by several types of brain cells, including neurons, microglia, and astrocytes. However, studies on the DAMP-like effects of histones on CNS cells are limited. For example, TLR4 is the only known molecular target of CNS extracellular histones and their interactions with other PRRs expressed by brain cells have not been observed. Nevertheless, extracellular histones are implicated in the pathogenesis of a variety of neurological disorders characterized by sterile neuroinflammation; therefore, detailed studies on the role these proteins and their complexes play in these pathologies could identify novel therapeutic targets.
Collapse
Affiliation(s)
- Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Athena L Ranger
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
4
|
Sunna S, Bowen C, Zeng H, Rayaprolu S, Kumar P, Bagchi P, Dammer EB, Guo Q, Duong DM, Bitarafan S, Natu A, Wood L, Seyfried NT, Rangaraju S. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines. Mol Cell Proteomics 2023; 22:100546. [PMID: 37061046 PMCID: PMC10205547 DOI: 10.1016/j.mcpro.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Different brain cell types play distinct roles in brain development and disease. Molecular characterization of cell-specific mechanisms using cell type-specific approaches at the protein (proteomic) level can provide biological and therapeutic insights. To overcome the barriers of conventional isolation-based methods for cell type-specific proteomics, in vivo proteomic labeling with proximity-dependent biotinylation of cytosolic proteins using biotin ligase TurboID, coupled with mass spectrometry (MS) of labeled proteins, emerged as a powerful strategy for cell type-specific proteomics in the native state of cells without the need for cellular isolation. To complement in vivo proximity labeling approaches, in vitro studies are needed to ensure that cellular proteomes using the TurboID approach are representative of the whole-cell proteome and capture cellular responses to stimuli without disruption of cellular processes. To address this, we generated murine neuroblastoma (N2A) and microglial (BV2) lines stably expressing cytosolic TurboID to biotinylate the cellular proteome for downstream purification and analysis using MS. TurboID-mediated biotinylation captured 59% of BV2 and 65% of N2A proteomes under homeostatic conditions. TurboID labeled endolysosome, translation, vesicle, and signaling proteins in BV2 microglia and synaptic, neuron projection, and microtubule proteins in N2A neurons. TurboID expression and biotinylation minimally impacted homeostatic cellular proteomes of BV2 and N2A cells and did not affect lipopolysaccharide-mediated cytokine production or resting cellular respiration in BV2 cells. MS analysis of the microglial biotin-labeled proteins captured the impact of lipopolysaccharide treatment (>500 differentially abundant proteins) including increased canonical proinflammatory proteins (Il1a, Irg1, and Oasl1) and decreased anti-inflammatory proteins (Arg1 and Mgl2).
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Christine Bowen
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Hollis Zeng
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Prateek Kumar
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Qi Guo
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Duc M Duong
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Res 2023; 1807:148315. [PMID: 36878343 DOI: 10.1016/j.brainres.2023.148315] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Microglia are the resident immune cells of the brain which regulate both the innate and adaptive neuroimmune responses in health and disease. In response to specific endogenous and exogenous stimuli, microglia transition to one of their reactive states characterized by altered morphology and function, including their secretory profile. A component of the microglial secretome is cytotoxic molecules capable of causing damage and death to nearby host cells, thus contributing to the pathogenesis of neurodegenerative disorders. Indirect evidence from secretome studies and measurements of mRNA expression using diverse microglial cell types suggest different stimuli may induce microglia to secrete distinct subsets of cytotoxins. We demonstrate the accuracy of this hypothesis directly by challenging murine BV-2 microglia-like cells with eight different immune stimuli and assessing secretion of four potentially cytotoxic molecules, including nitric oxide (NO), tumor necrosis factor α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), and glutamate. Lipopolysaccharide (LPS) and a combination of interferon (IFN)-γ plus LPS induced secretion of all toxins studied. IFN-β, IFN-γ, polyinosinic:polycytidylic acid (poly I:C), and zymosan A upregulated secretion of subsets of these four cytotoxins. LPS and IFN-γ, alone or in combination, as well as IFN-β induced toxicity of BV-2 cells towards murine NSC-34 neuronal cells, while ATP, N-formylmethionine-leucyl-phenylalanine (fMLP), and phorbol 12-myristate 13-acetate (PMA) did not affect any parameters studied. Our observations contribute to a growing body of knowledge on the regulation of the microglial secretome, which may inform future development of novel therapeutics for neurodegenerative diseases, where dysregulated microglia are key contributors to pathogenesis.
Collapse
|
6
|
Wenzel TJ, Murray TE, Noyovitz B, Narayana K, Gray TE, Le J, He J, Simtchouk S, Gibon J, Alcorn J, Mousseau DD, Zandberg WF, Klegeris A. Cardiolipin released by microglia can act on neighboring glial cells to facilitate the uptake of amyloid-β (1-42). Mol Cell Neurosci 2023; 124:103804. [PMID: 36592800 DOI: 10.1016/j.mcn.2022.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiolipin is a mitochondrial phospholipid that is also detected in serum inferring its extracellular release; however, this process has not been directly demonstrated for any of the brain cell types. Nevertheless, extracellular cardiolipin has been shown to modulate several neuroimmune functions of microglia and astrocytes, including upregulation of their endocytic activity. Low cardiolipin levels are associated with brain aging, and may thus hinder uptake of amyloid-β (Αβ) in Alzheimer's disease. We hypothesized that glial cells are one of the sources of extracellular cardiolipin in the brain parenchyma where this phospholipid interacts with neighboring cells to upregulate the endocytosis of Αβ. Liquid chromatography-mass spectrophotometry identified 31 different species of cardiolipin released from murine BV-2 microglial cells and revealed this process was accelerated by exposure to Aβ42. Extracellular cardiolipin upregulated internalization of fluorescently-labeled Aβ42 by primary murine astrocytes, human U118 MG astrocytic cells, and murine BV-2 microglia. Increased endocytic activity in the presence of extracellular cardiolipin was also demonstrated by studying uptake of Aβ42 and pHrodo™ Bioparticles™ by human induced pluripotent stem cells (iPSCs)-derived microglia, as well as iPSC-derived human brain organoids containing microglia, astrocytes, oligodendrocytes and neurons. Our observations indicate that Aβ42 augments the release of cardiolipin from microglia into the extracellular space, where it can act on microglia and astrocytes to enhance their endocytosis of Aβ42. Our observations suggest that the reduced glial uptake of Aβ due to the decreased levels of cardiolipin could be at least partially responsible for the extracellular accumulation of Aβ in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Benjamin Noyovitz
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Kamal Narayana
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Taylor E Gray
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Jennifer Le
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jim He
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Svetlana Simtchouk
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
7
|
Lilienberg J, Apáti Á, Réthelyi JM, Homolya L. Microglia modulate proliferation, neurite generation and differentiation of human neural progenitor cells. Front Cell Dev Biol 2022; 10:997028. [PMID: 36313581 PMCID: PMC9606406 DOI: 10.3389/fcell.2022.997028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 10/10/2024] Open
Abstract
Microglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied. In the present work, we investigated how microglial cells affect the proliferation and neurite outgrowth of human stem cell-derived NPCs, and how microglia stimulation with proinflammatory or anti-inflammatory agents modulates this interaction. We found that naïve microglia slightly diminish NPC proliferation and have no effect on neurite outgrowth. In contrast, proinflammatory stimulated microglia promote both proliferation and neurite generation, whereas microglia stimulated with anti-inflammatory cytokines augment neurite outgrowth leaving NPC proliferation unaffected. We also studied how microglia influence neurite development and differentiation of hippocampal dentate gyrus granule cells differentiated from NPCs. We found that proinflammatory stimulated microglia inhibit axonal development but facilitate dendrite generation in these differentiating neurons. Our results elucidate a fine-tuned modulatory effect of microglial cells on cell types crucial for neural regeneration, opening perspectives for novel regenerative therapeutic interventions.
Collapse
Affiliation(s)
- Julianna Lilienberg
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - János M. Réthelyi
- Molecular Psychiatry and in vitro Disease Modelling Research Group, National Brain Research Project, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Revealing therapeutic targets and mechanism of baicalin for anti-chronic gastritis using proteomic analysis of the gastric tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123214. [DOI: 10.1016/j.jchromb.2022.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
|
9
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Lindhout IA, Murray TE, Richards CM, Klegeris A. Potential neurotoxic activity of diverse molecules released by microglia. Neurochem Int 2021; 148:105117. [PMID: 34186114 DOI: 10.1016/j.neuint.2021.105117] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023]
Abstract
Microglia are the professional immune cells of the brain, which support numerous physiological processes. One of the defensive functions provided by microglia involves secretion of cytotoxins aimed at destroying invading pathogens. It is also recognized that the adverse activation of microglia in diseased brains may lead to secretion of cytotoxic molecules, which could be damaging to the surrounding cells, including neurons. Several of these toxins, such as reactive oxygen and nitrogen species, L-glutamate, and quinolinic acid, are widely recognized and well-studied. This review is focused on a structurally diverse group of less-established microglia neurotoxins, which were selected by applying the two criteria that these molecules 1) can be released by microglia, and 2) have the potential to be directly harmful to neurons. The following 11 molecules are discussed in detail: amyloid beta peptides (Aβ); cathepsin (Cat)B and CatD; C-X-C motif chemokine ligand (CXCL)10 and CXCL12 (5-67); high mobility group box (HMGB)1; lymphotoxin (LT)-α; matrix metalloproteinase (MMP)-2 and MMP-9; platelet-activating factor (PAF); and prolyl endopeptidase (PEP). Molecular mechanisms of their release by microglia and neurotoxicity, as well as available evidence implicating their involvement in human neuropathologies are summarized. Further studies on several of the above molecules are warranted to confirm either their microglial origin in the brain or direct neurotoxic effects. In addition, investigations into the differential secretion patterns of neurotoxins by microglia in response to diverse stimuli are required. This research could identify novel therapeutic targets for neurological disorders involving adverse microglial activation.
Collapse
Affiliation(s)
- Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
11
|
Jiang R, Wu X, Xiao Y, Kong D, Li Y, Wang H. Tween 20 regulate the function and structure of transmembrane proteins of Bacillus cereus: Promoting transmembrane transport of fluoranthene. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123707. [PMID: 33264891 DOI: 10.1016/j.jhazmat.2020.123707] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are degraded by the highly efficient degrading bacterium Bacillus cereus. Transmembrane transport is highly important in PAH degradation by bacteria. Surfactants are the key substances that promote PAH adsorption, uptake and transmembrane transport by Bacillus cereus. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) approach was used for high-throughput screening of key functional proteins during transmembrane fluoranthene transport by Bacillus cereus treated with Tween 20. In addition, SWISS-MODEL was used to simulate the tertiary structures of key transmembrane proteins and analyze how Tween 20 promotes transmembrane transport. Transmembrane fluoranthene transport into Bacillus cereus requires transmembrane proteins and energy. Tween 20 was observed to improve bacterial motility and transmembrane protein expression. The interior of representative transmembrane proteins is mostly composed of hydrophobic β-sheets while amphipathic α-helices are primarily distributed at their periphery. The primary reason for this configuration may be α-helices promote the aggregation of surfactants and the phospholipid bilayer and the β-sheets promote surfactant insertion into the phospholipid bilayer to enhance PAH transport into Bacillus cereus. Investigating the effect of Tween 20 on Bacillus cereus transmembrane proteins during transmembrane fluoranthene transport is important for understanding the mechanism of PAH degradation by microorganisms.
Collapse
Affiliation(s)
- Ruhan Jiang
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Xiaoxiong Wu
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yaqian Xiao
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Dekang Kong
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, Guangxi Normal University, 541004, Guilin, Guangxi, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, Guangxi, China.
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
12
|
Lu Y, Pang J, Wang G, Hu X, Li X, Li G, Wang X, Yang X, Li C, You X. Quantitative proteomics approach to investigate the antibacterial response of Helicobacter pylori to daphnetin, a traditional Chinese medicine monomer. RSC Adv 2021; 11:2185-2193. [PMID: 35424199 PMCID: PMC8693750 DOI: 10.1039/d0ra06677j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium related to the development of peptic ulcers and stomach cancer. An increasing number of infected individuals are found to harbor antibiotic-resistant H. pylori, which results in treatment failure. Daphnetin, a traditional Chinese medicine, has a broad spectrum of antibacterial activity without the development of bacterial resistance. However, the antibacterial mechanisms of daphnetin have not been elucidated entirely. To better understand the mechanisms of daphnetin's effect on H. pylori, a label-free quantitative proteomics approach based on an EASY-nLC 1200 system coupled with an Orbitrap Fusion Lumos mass spectrometer was established to investigate the key protein differences between daphnetin- and non-daphnetin-treated H. pylori. Using the criteria of greater than 1.5-fold changes and adjusted p value <0.05, proteins related to metabolism, membrane structure, nucleic acid and protein synthesis, ion binding, H. pylori colonization and infection, stress reaction, flagellar assembly and so on were found to be changed under daphnetin pressure. And the changes of selected proteins in expression level were confirmed by targeted proteomics. These new data provide us a more comprehensive horizon of the proteome changes in H. pylori that occur in response to daphnetin.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
13
|
Yang B, Li R, Liu PN, Geng X, Mooney BP, Chen C, Cheng J, Fritsche KL, Beversdorf DQ, Lee JC, Sun GY, Greenlief CM. Quantitative Proteomics Reveals Docosahexaenoic Acid-Mediated Neuroprotective Effects in Lipopolysaccharide-Stimulated Microglial Cells. J Proteome Res 2020; 19:2236-2246. [PMID: 32302149 PMCID: PMC7282485 DOI: 10.1021/acs.jproteome.9b00792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The high levels of docosahexaenoic
acid (DHA) in cell membranes
within the brain have led to a number of studies exploring its function.
These studies have shown that DHA can reduce inflammatory responses
in microglial cells. However, the method of action is poorly understood.
Here, we report the effects of DHA on microglial cells stimulated
with lipopolysaccharides (LPSs). Data were acquired using the parallel
accumulation serial fragmentation method in a hybrid trapped ion mobility-quadrupole
time-of-flight mass spectrometer. Over 2800 proteins are identified
using label-free quantitative proteomics. Cells exposed to LPSs and/or
DHA resulted in changes in cell morphology and expression of 49 proteins
with differential abundance (greater than 1.5-fold change). The data
provide details about pathways that are influenced in this system
including the nuclear factor κ-light-chain-enhancer of the activated
B cells (NF-κB) pathway. Western blots and enzyme-linked immunosorbent
assay studies are used to help confirm the proteomic results. The
MS data are available at ProteomeXchange.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Runting Li
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States
| | - Pei N Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Xue Geng
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Brian P Mooney
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia 65211, Missouri, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia 65211, Missouri, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, Missouri, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, University of Missouri, Columbia 65211, Missouri, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| |
Collapse
|
14
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
15
|
Kim YG, Woo J, Park J, Kim S, Lee YS, Kim Y, Kim SJ. Quantitative Proteomics Reveals Distinct Molecular Signatures of Different Cerebellum-Dependent Learning Paradigms. J Proteome Res 2020; 19:2011-2025. [PMID: 32181667 DOI: 10.1021/acs.jproteome.9b00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cerebellum improves motor performance by adjusting motor gain appropriately. As de novo protein synthesis is essential for the formation and retention of memories, we hypothesized that motor learning in the opposite direction would induce a distinct pattern of protein expression in the cerebellum. We conducted quantitative proteomic profiling to compare the level of protein expression in the cerebellum at 1 and 24 h after training from mice that underwent different paradigms of cerebellum-dependent oculomotor learning from specific directional changes in motor gain. We quantified a total of 43 proteins that were significantly regulated in each of the three learning paradigms in the cerebellum at 1 and 24 h after learning. In addition, functional enrichment analysis identified protein groups that were differentially enriched or depleted in the cerebellum at 24 h after the three oculomotor learnings, suggesting that distinct biological pathways may be engaged in the formation of three oculomotor memories. Weighted correlation network analysis discovered groups of proteins significantly correlated with oculomotor memory. Finally, four proteins (Snca, Sncb, Cttn, and Stmn1) from the protein group correlated with the learning amount after oculomotor training were validated by Western blot. This study provides a comprehensive and unbiased list of proteins related to three cerebellum-dependent motor learning paradigms, suggesting the distinct nature of protein expression in the cerebellum for each learning paradigm. The proteomics data have been deposited to the ProteomeXchange Consortium with identifiers <PXD008433>.
Collapse
Affiliation(s)
- Yong Gyu Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongmin Woo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Joonho Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Korea
| | - Sooyong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
16
|
Park J, Oh HJ, Han D, Wang JI, Park IA, Ryu HS, Kim Y. Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS)-Based Targeted Proteomic Surrogates for Intrinsic Subtypes in Breast Cancer: Comparative Analysis with Immunohistochemical Phenotypes. J Proteome Res 2019; 19:2643-2653. [DOI: 10.1021/acs.jproteome.9b00490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joonho Park
- Department of Biomedical Engineering, Seoul National University College of Medicine, 103 Daehak-ro, Seoul 03080, Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Seoul 03080, Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Seoul 03080, Korea
| | - Joseph I. Wang
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Seoul 03080, Korea
| | - In Ae Park
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Seoul 03080, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Seoul 03080, Korea
| | - Youngsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 103 Daehak-ro, Seoul 03080, Korea
| |
Collapse
|
17
|
Kim DK, Han D, Park J, Choi H, Park JC, Cha MY, Woo J, Byun MS, Lee DY, Kim Y, Mook-Jung I. Deep proteome profiling of the hippocampus in the 5XFAD mouse model reveals biological process alterations and a novel biomarker of Alzheimer's disease. Exp Mol Med 2019; 51:1-17. [PMID: 31727875 PMCID: PMC6856180 DOI: 10.1038/s12276-019-0326-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/20/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), which is the most common type of dementia, is characterized by the deposition of extracellular amyloid plaques. To understand the pathophysiology of the AD brain, the assessment of global proteomic dynamics is required. Since the hippocampus is a major region affected in the AD brain, we performed hippocampal analysis and identified proteins that are differentially expressed between wild-type and 5XFAD model mice via LC-MS methods. To reveal the relationship between proteomic changes and the progression of amyloid plaque deposition in the hippocampus, we analyzed the hippocampal proteome at two ages (5 and 10 months). We identified 9,313 total proteins and 1411 differentially expressed proteins (DEPs) in 5- and 10-month-old wild-type and 5XFAD mice. We designated a group of proteins showing the same pattern of changes as amyloid beta (Aβ) as the Aβ-responsive proteome. In addition, we examined potential biomarkers by investigating secretory proteins from the Aβ-responsive proteome. Consequently, we identified vitamin K-dependent protein S (PROS1) as a novel microglia-derived biomarker candidate in the hippocampus of 5XFAD mice. Moreover, we confirmed that the PROS1 level in the serum of 5XFAD mice increases as the disease progresses. An increase in PROS1 is also observed in the sera of AD patients and shows a close correlation with AD neuroimaging markers in humans. Therefore, our quantitative proteome data obtained from 5XFAD model mice successfully predicted AD-related biological alterations and suggested a novel protein biomarker for AD. A protein newly implicated in Alzheimer’s disease could serve as a diagnostic biomarker or therapeutic target. A team led by Youngsoo Kim and Inhee Mook-Jung from Seoul National University, South Korea, analyzed all the proteins expressed in the hippocampus, the brain’s memory center, in mice with and without Alzheimer’s-like disease. They identified more than 1,400 proteins differentially expressed between the mouse model of Alzheimer’s and the normal mice. Among these were 36 secretory proteins that tended to increase their levels along with build-up of amyloid-beta, the protein found in clumps in the brains of people with Alzheimer’s. Many already had known links to Alzheimer’s, but the researchers also identified a novel protein called PROS1. Blood samples from Alzheimer’s patients also showed an increase in PROS1 levels, with a close correlation with amyloid-beta build-up in the brain.
Collapse
Affiliation(s)
- Dong Kyu Kim
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Joonho Park
- Interdisciplinary Program for Bioengineering, Seoul National University, College of Engineering, Seoul, Korea
| | - Hyunjung Choi
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Jong-Chan Park
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - Moon-Yong Cha
- LG Chem Life Science R&D Campus, Drug Discovery Center, Seoul, Korea
| | - Jongmin Woo
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea. .,Interdisciplinary Program for Bioengineering, Seoul National University, College of Engineering, Seoul, Korea.
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Fu R, Li Q, Fan R, Zhou Q, Jin X, Cao J, Wang J, Ma Y, Yi T, Zhou M, Yao S, Gao H, Xu Z, Yang Z. iTRAQ-based secretome reveals that SiO 2 induces the polarization of RAW264.7 macrophages by activation of the NOD-RIP2-NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:92-102. [PMID: 30189374 DOI: 10.1016/j.etap.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Silicosis is characterized by inflammation and pulmonary fibrosis due to long-term inhalation of crystalline silica (SiO2). To clarify the role of macrophage polarization in the inflammatory response of silicosis, we used iTRAQ-coupled 2D LC-MS/MS to study the change in the secretome in RAW264.7 macrophages. We successfully screened 330 differentially expressed proteins, including 120 proteins with upregulated expression and 210 proteins with down-regulated expression (p < 0.05). Bioinformatics analysis showed that the differentially expressed proteins were mainly involved in biological processes, such as oxidative stress, mitochondrial damage, apoptosis and acute inflammatory response. In particular, the expression levels of mitochondrial apoptosis-related proteins, such as AKT1, BAX, HSPD1, TNF, CASP8 and DAP, were increased after SiO2 exposure. Taken together, our study indicated that SiO2 could induce macrophage polarization by activation of the NOD-RIP2-NF-κB signaling pathway in RAW264.7 macrophages. This may represent a potential mechanism in the development of silicosis.
Collapse
Affiliation(s)
- Rong Fu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China; Xinxiang Medical University, School of Public Health, Xinxiang 453003, China
| | - Qian Li
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Rong Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Qinye Zhou
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Xiaohan Jin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Jin Cao
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jiabao Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Yongqiang Ma
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Tailong Yi
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Maobin Zhou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China
| | - Sanqiao Yao
- Xinxiang Medical University, School of Public Health, Xinxiang 453003, China
| | - Hongsheng Gao
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin City 300162, China.
| | - Zhen Yang
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China.
| |
Collapse
|
19
|
Liu S, Yu F, Hu Q, Wang T, Yu L, Du S, Yu W, Li N. Development of in Planta Chemical Cross-Linking-Based Quantitative Interactomics in Arabidopsis. J Proteome Res 2018; 17:3195-3213. [DOI: 10.1021/acs.jproteome.8b00320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shichang Liu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Hu
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tingliang Wang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lujia Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shengwang Du
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weichuan Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
20
|
Dekker LJM, Zeneyedpour L, Snoeijers S, Joore J, Leenstra S, Luider TM. Determination of Site-Specific Phosphorylation Ratios in Proteins with Targeted Mass Spectrometry. J Proteome Res 2018; 17:1654-1663. [PMID: 29457462 DOI: 10.1021/acs.jproteome.7b00911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We show that parallel reaction monitoring (PRM) can be used for exact quantification of phosphorylation ratios of proteins using stable-isotope-labeled peptides. We have compared two different PRM approaches on a digest of a U87 cell culture, namely, direct-PRM (tryptic digest measured by PRM without any further sample preparation) and TiO2-PRM (tryptic digest enriched with TiO2 cartridges, followed by PRM measurement); these approaches are compared for the following phosphorylation sites: neuroblast differentiation-associated protein (AHNAK S5480-p), calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D T337-p), and epidermal growth factor receptor (EGFR S1166-p). A reproducible percentage of phosphorylation could be determined (CV 6-13%) using direct-PRM or TiO2-PRM. In addition, we tested the approaches in a cell culture experiment in which U87 cells were deprived of serum. As a "gold standard" we included immune precipitation of EGFR followed by PRM (IP-PRM). For EGFR (S1166) and AHNAK (S5480) a statistical significant change in the percentage of phosphorylation could be observed as a result of serum deprivation; for EGFR (S1166) this change was observed for both TiO2-PRM and IP-PRM. The presented approach has the potential to multiplex and to quantify the ratio of phosphorylation in a single analysis.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Erasmus MC , Department of Neurology , Wytemaweg 80 , 3015 CN Rotterdam , The Netherlands
| | - Lona Zeneyedpour
- Erasmus MC , Department of Neurology , Wytemaweg 80 , 3015 CN Rotterdam , The Netherlands
| | | | - Jos Joore
- Pepscope , Dantelaan 83 , 3533 VB Utrecht , The Netherlands
| | - Sieger Leenstra
- Erasmus MC , Department of Neurosurgery , 3015 CN Rotterdam , The Netherlands
| | - Theo M Luider
- Erasmus MC , Department of Neurology , Wytemaweg 80 , 3015 CN Rotterdam , The Netherlands
| |
Collapse
|