1
|
Tang D, Du B, Wang X, Nian F, Shi Z. Supplementation of amylase or amylase + xylanase improves performance and metabolism of broilers fed with diets containing newly harvested maize. Anim Biotechnol 2023; 34:4316-4336. [PMID: 36691753 DOI: 10.1080/10495398.2022.2149544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
How supplementation with amylase or amylase + xylanase in newly harvested maize-based diets affects broiler nutrient metabolism and performance is unclear. Thus, this study evaluated whether the supplementation of amylase (CN) or amylase + xylanase (CAX) improves performance and metabolism of broilers fed with newly harvested maize-based diets during a 6-week production. The results showed that the body weight gain of broilers fed with CA or CAX diet was higher than that with the control (CN) diet at 1-21 d of age; however, an opposite trend was observed for feed/gain (p < 0.05). Furthermore, 150, 64 and 35 different metabolites were found between CA/CN, CAX/CN and CAX/CA, respectively. Overall, amylase supplementation improved broiler growth performance at 1-21 d of age, and the positive effects of amylase on nutrient utilization were mostly related to nicotinate, retinol and glutathione metabolism improvement. Moreover, CAX diet increased apparent metabolizable energy and growth performance of broilers at 22-42 d of age, and the difference might be related to sphingolipid, porphyrin and chlorophyll metabolism regulation. The findings prove amylase + xylanase supplementation is an effective method to improve the nutritional value of newly harvested maize for broilers.
Collapse
Affiliation(s)
- Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Baolong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Xuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Fang Nian
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
2
|
Yang P, Deng F, Yuan M, Chen M, Zeng L, Ouyang Y, Chen X, Zhao B, Yang Z, Tian Z. Metabolomics reveals the defense mechanism of histidine supplementation on high-salt exposure-induced hepatic oxidative stress. Life Sci 2023; 314:121355. [PMID: 36596407 DOI: 10.1016/j.lfs.2022.121355] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
AIMS This study mainly evaluated the protective mechanism of histidine against the hepatic oxidative stress after high-salt exposure (HSE) through combined analysis of non-targeted metabolomics and biological metabolic networks. MATERIALS AND METHODS Dahl salt-sensitive (SS) rats were fed with normal-salt diet or HSE ± histidine in addition to drinking water for 14 days. Gas chromatography-mass spectrometry was used to analyze the hepatic metabolites. The metabolic profile was analyzed by SIMCA-14.1, the metabolic correlation network was performed using Gephi-0.9.2, and pathway enrichment was analyzed using MetaboAnalyst 5.0 online website. KEY FINDINGS Results indicated that HSE disturbed the hepatic metabolic profile, generated abnormal liver metabolism and exacerbated oxidative stress. Histidine supplementation significantly reversed the hepatic metabolic profile. Of note, 14 differential metabolic pathways were enriched after histidine supplementation, most of which played an important role in ameliorating redox and nitric oxide (NO) metabolism. Histidine administration decreased the levels of hydroperoxide and malondialdehyde, and increased the activities of antioxidant enzymes (Catalase, Superoxide Dismutase, Glutathione S-transferase and Glutathione reductases). Histidine effectively enhanced the endogenous synthesis of glutathione by increasing the levels of glutamate and cysteine, thereby enhancing the antioxidant capacity of the glutathione system. After histidine administration, lysine, glutamate, and hypotaurine owned a higher metabolic centrality in the correlation network. In addition, histidine could also effectively increase the endogenous synthesis of NO by enhancing the L-arginine/NO pathway. SIGNIFICANCE This study offers new insights into the metabolic mechanisms underlying the antioxidant protective effect of histidine on the liver.
Collapse
Affiliation(s)
- Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fenfen Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengdi Yuan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangbo Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Potential contribution of early endothelial progenitor cell (eEPC)-to-macrophage switching in the development of pulmonary plexogenic lesion. Respir Res 2022; 23:290. [PMID: 36274148 PMCID: PMC9590182 DOI: 10.1186/s12931-022-02210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion development remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by differentiating into macrophages in the setting of chronic inflammation. Methods The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evaluated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation of plexiform lesions. Results Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to macrophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activation (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, resulting in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in plexiform lesion density. Conclusions This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of plexiform lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02210-7.
Collapse
|
4
|
Bi S, Shao J, Qu Y, Xu W, Li J, Zhang L, Shi W, Cao L. Serum metabolomics reveal pathways associated with protective effect of ginsenoside Rg3 on immune stress. Poult Sci 2022; 101:102187. [PMID: 36215740 PMCID: PMC9554815 DOI: 10.1016/j.psj.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022] Open
Abstract
Our previous study has demonstrated that administration of ginsenoside Rg3 ameliorates immune stress by inhibiting inflammatory responses, reducing oxidative damage and upregulating mRNA expression of mTOR, SOD-1, and HO-1. However, the specific mechanism in relation to the protective effect of ginsenoside Rg3 on stressed broilers especially the metabolites alteration remains obscure. The present study aimed to investigate the underlined mechanism in relation to the pathogenesis and protective effect of ginsenoside Rg3 on stressed broilers using liquid chromatograph-mass spectrometry profiling. Eighteen broiler chicks were randomly allocated to 3 treatments: Control, Model and Rg3. Chickens in Rg3 group received intraperitoneally administered 1 mg/kg Rg3 2 h before LPS challenge. Then the broilers were intraperitoneally injection of 250 µg/kg LPS at the age of 12, 14, 33, and 35 d to induce immune stress. Control group was injected with an equivalent amount of sterile saline. At the end of the experiment, the serum was obtained for metabolomics analysis. The changes in serum metabolic profiles were investigated with the application of metabolomics approach. Distinct changes in metabolite patterns in serum were observed by orthogonal partial least square-discriminate analysis. In total, 35 metabolites were identified, among which 17 differential metabolites were found between Control and Model group, and 18 differential metabolites were identified between Model and Rg3 group. Metabolic pathway analysis revealed potential serum metabolites involved in oxidative stress and inflammation, degradation of lipid and protein in broiler chicks with immune stress. In addition, the protective effect of Rg3 on the stressed chicks may be largely mediated by BCAA metabolism, apoptosis and mTOR signaling pathway. These results suggested the potential biomarkers involved in pathogenesis and prevention of stress induced by Escherichia coli lipopolysaccharide.
Collapse
|
5
|
Ito K, Miyamoto H, Matsuura M, Ishii C, Tsuboi A, Tsuji N, Nakaguma T, Nakanishi Y, Kato T, Suda W, Honda F, Ito T, Moriya S, Shima H, Michibata R, Yamada R, Takahashi Y, Koga H, Kodama H, Watanabe Y, Kikuchi J, Ohno H. Noninvasive fecal metabolic profiling for the evaluation of characteristics of thermostable lactic acid bacteria, Weizmannia coagulans SANK70258, for broiler chickens. J Biosci Bioeng 2022; 134:105-115. [PMID: 35718655 DOI: 10.1016/j.jbiosc.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022]
Abstract
Weizmannia coagulans SANK70258 is a spore-forming thermostable lactic acid bacterium and an effective probiotic for the growth of livestock animals, but its growth-promoting mechanism remains unclear. Here, the composition of fecal metabolites in broilers continuously administered with W. coagulans SANK70258 was assessed under a regular program with antibiotics, which was transiently given for 6 days after birth. Oral administration of W. coagulans to broiler chicks tended to increase the average daily gain of body weights thereafter. The composition of fecal metabolites in the early chick stage (Day 10 after birth) was dramatically altered by the continuous exposure. The levels of short-chain fatty acids (SCFAs) propionate and butyrate markedly increased, while those of acetate, one of the SCFAs, and lactate were reduced. Simultaneously, arabitol, fructose, mannitol, and erythritol, which are carbohydrates as substrates for gut microbes to produce SCFAs, also increased along with altered correlation. Correlation network analyses classified the modularity clusters (|r| > 0.7) among carbohydrates, SCFAs, lactate, amino acids, and the other metabolites under the two conditions. The characteristic diversities by the exposure were visualized beyond the perspective associated with differences in metabolite concentrations. Further, enrichment pathway analyses showed that metabolic composition related to biosynthesis and/or metabolism for SCFAs, amino acids, and energy were activated. Thus, these observations suggest that W. coagulans SANK70258 dramatically modulates the gut metabolism of the broiler chicks, and the metabolomics profiles during the early chick stages may be associated with growth promotion.
Collapse
Affiliation(s)
- Kayo Ito
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
| | - Makiko Matsuura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan
| | - Chitose Ishii
- Sermas Co., Ltd., Chiba 263-8522, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Arisa Tsuboi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Teruno Nakaguma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan
| | - Yumiko Nakanishi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tamotsu Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Fuyuko Honda
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Toshiyuki Ito
- Keiyo Gas Energy Solution Co. Ltd., Ichikawa, Chiba 272-0015, Japan
| | - Shigeharu Moriya
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Shima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Ryouichi Yamada
- Mitsubishi Chemical Corp., Marunouchi, Tokyo 100-8251, Japan
| | | | - Hirohisa Koga
- Mitsubishi Chemical Corp., Marunouchi, Tokyo 100-8251, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan
| | - Yuko Watanabe
- Mitsubishi Chemical Corp., Marunouchi, Tokyo 100-8251, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
6
|
Shao F, Liu R, Tan X, Zhang Q, Ye L, Yan B, Zhuang Y, Xu J. MSC Transplantation Attenuates Inflammation, Prevents Endothelial Damage and Enhances the Angiogenic Potency of Endogenous MSCs in a Model of Pulmonary Arterial Hypertension. J Inflamm Res 2022; 15:2087-2101. [PMID: 35386223 PMCID: PMC8977867 DOI: 10.2147/jir.s355479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Pulmonary arterial hypertension (PAH) is a progressive and fatal pulmonary vascular disease initiated by endothelial dysfunction. Mesenchymal stromal cells (MSCs) have been shown to ameliorate PAH in various rodent models; however, these models do not recapitulate all the histopathological alterations observed in human PAH. Broiler chickens (Gallus gallus) can develop PAH spontaneously with neointimal and plexogenic arteriopathy strikingly similar to that in human patients. Herein, we examined the protective effects of MSC transplantation on the development of PAH in this avian model. Methods Mixed-sex broilers at 15 d of age were received 2×106 MSCs or PBS intravenously. One day later, birds were exposed to cool temperature with excessive salt in their drinking water to induce PAH. Cumulative morbidity from PAH and right-to-left ventricle ratio were recorded. Lung histologic features were evaluated for the presence of endothelial damage, endothelial proliferation and plexiform lesions. Expression of proinflammatory mediators and angiogenic factors in the lung was detected. Matrigel tube formation assay was performed to determine the angiogenic potential of endogenous MSCs. Results MSC administration reduced cumulative PAH morbidity and attenuated endothelial damage, plexiform lesions and production of inflammatory mediators in the lungs. No significant difference in the expression of paracrine angiogenic factors including VEGF-A and TGF-β was determined between groups, suggesting that they are not essential for the beneficial effect of MSC transplantation. Interestingly, the endogenous MSCs from birds receiving MSC transplantation demonstrated endothelial differentiatial capacity in vitro whereas those from the mock birds did not. Conclusion Our results support the therapeutic use of MSC transplantation for PAH treatment and suggest that exogenous MSCs produce beneficial effects through modulating inflammation and endogenous MSC-mediated vascular repair.
Collapse
Affiliation(s)
- Fengjin Shao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qiaoyan Zhang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lujie Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bingxuan Yan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhuang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiaxue Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
7
|
Liu D, Qin S, Su D, Wang K, Huang Y, Huang Y, Pang Y. Metabolic Reprogramming of the Right Ventricle and Pulmonary Arteries in a Flow-Associated Pulmonary Arterial Hypertension Rat Model. ACS OMEGA 2022; 7:1273-1287. [PMID: 35036789 PMCID: PMC8757344 DOI: 10.1021/acsomega.1c05895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex devastating disease relevant to remarkable metabolic dysregulation. Although various research studies on PAH from a metabolic perspective have been emerging, pathogenesis of PAH varies in different categories. Research on metabolic reprogramming in flow-associated PAH remains insufficient. An untargeted metabolomic profiling platform was used to evaluate the metabolic profile of pulmonary arteries (PAs) as well as the right ventricle (RV) in a flow-associated PAH rat model in the present work. A total of 79 PAs and 128 RV metabolites were significantly altered in PAH rats, among which 39 metabolites were assessed as shared dysregulated metabolites in PAs and the RV. Pathway analysis elucidated that, in PAs of PAH rats, pathways of phenylalanine, tyrosine, and tryptophan biosynthesis and linoleic acid metabolism were significantly altered, while in the RV, arginine biosynthesis and linoleic acid metabolism were altered dramatically. Further integrated analysis of shared dysregulated PA and RV metabolites demonstrated that the linoleic acid metabolism and the arachidonic acid (AA) metabolism were the key pathways involved in the pathogenesis of flow-associated PAH. Results obtained from the present work indicate that the PAH pathogenesis could be mediated by widespread metabolic reprogramming. In particular, the dysregulation of AA metabolism may considerably contribute to the development of high blood flow-associated PAH.
Collapse
Affiliation(s)
- Dongli Liu
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Suyuan Qin
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Danyan Su
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Kai Wang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
- Department
of Pediatrics, The First Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325015, China
| | - Yanyun Huang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Yuqin Huang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Yusheng Pang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
8
|
Wu S, Yu W, Jiang X, Huang R, Zhang X, Lan J, Zhong G, Wan F, Tang Z, Hu L. Protective effects of curcumin on ATO-induced nephrotoxicity in ducks in relation to suppressed autophagy, apoptosis and dyslipidemia by regulating oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112350. [PMID: 34022626 DOI: 10.1016/j.ecoenv.2021.112350] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Arsenic trioxide (ATO) has been known as common environmental pollution, and is deemed to a threat to global public health. Curcumin (Cur) is a phytoconstituent, which has been demonstrated to have antioxidant effects. In the current experiment, we investigated the efficacy of Cur against ATO-induced kidney injury and explored the potential molecular mechanisms that have not yet been fully elucidated in ducks. The results showed that treatment with Cur attenuated ATO-induced body weight loss, reduced the content of ATO in the kidney, and improved ATO-induced kidney pathological damage. Cur also remarkably alleviated the ascent of ATO-induced MDA level and activated the Nrf2 pathway. Using the TEM, we found Cur relieved mitochondrial swelling, autolysosomes generating and nuclear damage. Simultaneously, Cur was found that it not only significantly reduced autophagy-related mRNA and protein levels (mTOR, LC3-Ⅰ, LC3-Ⅱ, Atg-5, Beclin1, Pink1 and Parkin) and but also decreased apoptosis-related mRNA and protein expression levels (cleaved caspase-3, Cytc, p53 and Bax). Furthermore, through nontargeted metabolomics analysis, we observed that lipid metabolism balance was disordered by ATO exposure, while Cur administration alleviated the disturbance of lipid metabolism. These results showed ATO could induce autophagy and apoptosis by overproducing ROS in the kidney of ducks, and Cur might relieve excessive autophagy, apoptosis and disturbance of lipid metabolism by regulating oxidative stress. Collectively, our findings explicate the potential therapeutic value of Cur as a new strategy to a variety of disorders caused by ATO exposure.
Collapse
Affiliation(s)
- Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Hautbergue T, Antigny F, Boët A, Haddad F, Masson B, Lambert M, Delaporte A, Menager JB, Savale L, Pavec JL, Fadel E, Humbert M, Junot C, Fenaille F, Colsch B, Mercier O. Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells 2021; 10:1559. [PMID: 34205639 PMCID: PMC8235667 DOI: 10.3390/cells10061559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Angèle Boët
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Réanimation des Cardiopathies Congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - François Haddad
- Cardiovascular Medicine, Stanford Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Amélie Delaporte
- Service d’Anesthésie, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France;
| | - Jean-Baptiste Menager
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Le Pavec
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Elie Fadel
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, INRAE, SPI, MetaboHUB, 91191 Gif-sur-Yvette, France; (T.H.); (C.J.); (F.F.); (B.C.)
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.A.); (A.B.); (B.M.); (M.L.); (J.-B.M.); (L.S.); (J.L.P.); (E.F.); (M.H.)
- INSERM UMR_S 999 Hypertension Pulmonaire: Physiopathologie et Nouvelles Thérapies, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, 92350 Le Plessis-Robinson, France
| |
Collapse
|
10
|
Luo L, Wu J, Lin T, Lian G, Wang H, Gao G, Xie L. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension. Aging (Albany NY) 2021; 13:11954-11968. [PMID: 33886502 PMCID: PMC8109122 DOI: 10.18632/aging.202898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Metabonomics has been widely used to analyze the initiation, progress, and development of diseases. However, application of metabonomics to explore the mechanism of pulmonary arterial hypertension (PAH) are poorly reported. This study aimed to investigate the influence of atorvastatin (Ato) on metabolic pattern of rats with pulmonary hypertension. METHODS PAH animal model was established using monocrotaline (MCT). The mean pulmonary artery pressure (mPAP) and right ventricular hypertrophy index (RVHI) were measured. The microstructure of pulmonary arterioles was observed by HE staining. Nuclear magnetic resonance was used to detect and analyze the serum metabolites. The levels of glycogen synthase kinase-3β (GSK-3β), hexokinase 2 (HK-2), sterol regulatory element-binding protein 1c (SREBP-1c), and carnitine palmitoyltransferase I (CPT-1) in the lung tissues were measured. RESULTS Ato significantly improved lung function by decreasing mPAP, RVHI, wall thickness, and wall area. Differences in metabolic patterns were observed among normal, PAH, and Ato group. The levels of GSK-3β and SREBP-1c were decreased, but HK-2 and CPT-1 were increased in the group PAH. Ato treatment markedly reversed the influence of MCT. CONCLUSION Ato significantly improved the pulmonary vascular remodeling and pulmonary hypertension of PAH rats due to its inhibition on Warburg effect and fatty acid β oxidation.
Collapse
Affiliation(s)
- Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianmin Wu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Taijie Lin
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gufeng Gao
- Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Wang WW, Feng QQ, Wang J, Wu SG, Qi GH, Zhang HJ. Cyst(e)ine fortification in low crude protein diet improves growth performance of broilers by modulating serum metabolite profile. J Proteomics 2021; 238:104154. [PMID: 33618029 DOI: 10.1016/j.jprot.2021.104154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
This study was aimed to explore the metabolomical mechanisms for the potentially ameliorative effect of cyst(e)ine (Cys) fortification on growth performance of broilers fed low crude protein (CP) diet. A total of 432 1-d-old broilers were randomly divided into 6 groups, each of which received one of the following diets: normal-CP diet (positive control, PC), low-CP diet (negative control, NC), NC diet fortified with 0.05%, 0.1%, 0.15% or 0.2% of Cys. Samples were collected on d 42. Results showed that increasing Cys fortification quadratically elevated (P < 0.05) the accumulative growth performance and leg muscle yield of broilers fed NC diet, with 0.1% being the optimal dose. Thus, samples from PC, NC and NC plus 0.1% Cys (NCC) groups were selected for further analysis. Both dietary CP reduction and fortification of 0.1% Cys in NC diet caused complex changes (P < 0.05) in serum amino acids and some other metabolites primarily involved in lipid metabolism. Multiple lipogenesis-related pathways were regulated (P < 0.05) following Cys fortification in NC diet, which could at least partially interpret the benefit of Cys fortification in NC diet on broiler performance. In conclusion, fortifying low-CP diet with 0.1% Cys promoted the growth performance of broilers probably through modulating serum metabolite profile.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian-Qian Feng
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Gao X, Zhang Z, Li X, Li C, Hao J, Luo Y, Lei M, Li J, Liu C, He K. Macitentan Attenuates Chronic Mountain Sickness in Rats by Regulating Arginine and Purine Metabolism. J Proteome Res 2020; 19:3302-3314. [PMID: 32640793 DOI: 10.1021/acs.jproteome.0c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaojian Gao
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Zeyu Zhang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Li
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Li
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianxiu Hao
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yunfu Luo
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Maoyi Lei
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Junmiao Li
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chunlei Liu
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Wang X, Jiang G, Kebreab E, Li J, Feng X, Li C, Zhang X, Huang X, Fang C, Fang R, Dai Q. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res Int 2020; 133:109126. [PMID: 32466939 DOI: 10.1016/j.foodres.2020.109126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
This study investigated the effects of breed and age on meat quality, and metabolite profiles of duck breast meat, and the relationship between changes in metabolite profiles and the meat quality. The meat quality and 1H nuclear magnetic resonance (NMR)-based metabolomics of breast meat from Pekin and Linwu ducks at 2 different ages (42 and 72d) was analyzed. The results showed that age exerted a greater effect on the observed meat quality traits of breast meat than breed, and its interaction (breed × age) effect on pH values and yellowness (b*) of duck breast meat was significant. Total of 32 metabolites were detected in breast meat of Pekin and Linwu duck. The difference of metabolite profiles in breast meat between Pekin and Linwu duck at 72 d was greater than that at 42 d, while the effects of age on metabolites of duck meat from both breeds were similar. Anserine, aspartate, and carnosine were the most relevant metabolites of duck breast meat quality, and nicotinamide in duck breast meat was negatively correlated with cooking loss. These results provide an overall perspective for bridging the gap between the breed and age on duck meat quality and metabolome, and improve the understanding of the relationship between metabolites and duck meat quality.
Collapse
Affiliation(s)
- Xiangrong Wang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Department of Animal Science, University of California, Davis, CA 95616, United States; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Guitao Jiang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Jinghui Li
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Xiaoyu Feng
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Chuang Li
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xu Zhang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xuan Huang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Qiuzhong Dai
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| |
Collapse
|
14
|
Liu Y, Wang R, Zheng K, Xin Y, Jia S, Zhao X. Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. Xenobiotica 2020; 50:894-905. [PMID: 31928121 DOI: 10.1080/00498254.2020.1714791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study aimed to investigate the hepatotoxicity of rats administered with chronic low-dose acrylamide (AA) by using metabonomics technology on the basis of ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). A total of 40 male Wistar rats were randomly divided into the following four groups: control, low-dose AA (0.2 mg/kg bw, non-carcinogenic end-point based on the induction of morphological nerve changes in rats), middle-dose AA (1 mg/kg bw), and high-dose AA (5 mg/kg bw). The rats continuously received AA by administering it in drinking water daily for 16 weeks. After the treatment, rat livers were collected for metabonomics analysis and histopathology examination. Principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were used to investigate the metabonomics profile changes in rat liver tissues and screen the potential biomarkers.Fourteen metabolites were identified with significant changes in intensities (increased or decreased compared with the control group) as a result of treatment (p < 0.05 or p < 0.01). These metabolites included tauro-b-muricholic acid, docosapentaenoic acid, sphingosine 1-phosphate, taurodeoxycholic acid, lysoPE(20:5), cervonyl carnitine, linoleyl carnitine, docosahexaenoic acid, lysoPC(20:4), lysoPE(18:3), PA(20:4), stearidonyl carnitine, alpha-linolenic acid, and lysoPA(18:0).Results showed that chronic exposure to AA at NOAEL (0.2 mg/kg bw) exhibited no toxic effect in rat livers at the metabolic level. AA induced oxidative stress to the liver and disrupted lipid metabolism. The results of liver histopathology examination further supported the metabonomic results.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Ruijuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Kai Zheng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Youwei Xin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Liu Y, Zhang X, Guan T, Jia S, Liu Y, Zhao X. Effects of quercetin on cadmium-induced toxicity in rat urine using metabonomics techniques. Hum Exp Toxicol 2019; 39:524-536. [PMID: 31876187 DOI: 10.1177/0960327119895811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to analyse the protective effects of quercetin on the toxicity of cadmium (Cd) using metabonomics techniques. Sixty male Sprague-Dawley rats were randomly divided into six groups (n = 10): control group (C), low-dose quercetin-treated group (Q1; 10 mg/kg bw/day), high-dose quercetin-treated group (Q2; 50 mg/kg bw/day), Cd-treated group (D; 4.89 mg/kg bw/day), low-dose quercetin plus Cd-treated group (DQ1) and high-dose quercetin plus Cd-treated group (DQ2). The rats continuously received quercetin and Cd via gavage and drinking water for 12 weeks, respectively. The rat urine samples were collected for metabonomics analysis. Finally, 10 metabolites were identified via the metabonomics profiles of the rat urine samples. Compared with the control group, the intensities of taurine, phosphocreatine, l-carnitine and uric acid were significantly decreased (p < 0.01) and those of LysoPC (18: 2 (9Z, 12Z)), guanidinosuccinic acid, dopamine, 2,5,7,8-tetramethyl-2(2'-carboxyethyl)-6-hydroxychroman and allantoic acid were significantly increased (p < 0.01) in the Cd-treated group. However, the intensities of the aforementioned metabolites had restorative changes in the high-dose quercetin plus Cd-treated groups unlike those in Cd-treated group (p < 0.01 or p < 0.05). Results indicated that quercetin exerts protective effects on Cd-induced toxicity by regulating energy and lipid metabolism, enhancing the antioxidant defence system and protecting liver and kidney function and so on.
Collapse
Affiliation(s)
- Y Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - X Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - T Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - S Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Metabonomics study of fresh bruises on an apple using the gas chromatography–mass spectrometry (GC–MS) method. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03386-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|