1
|
Liska O, Boross G, Rocabert C, Szappanos B, Tengölics R, Papp B. Principles of metabolome conservation in animals. Proc Natl Acad Sci U S A 2023; 120:e2302147120. [PMID: 37603743 PMCID: PMC10468614 DOI: 10.1073/pnas.2302147120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Metabolite levels shape cellular physiology and disease susceptibility, yet the general principles governing metabolome evolution are largely unknown. Here, we introduce a measure of conservation of individual metabolite levels among related species. By analyzing multispecies tissue metabolome datasets in phylogenetically diverse mammals and fruit flies, we show that conservation varies extensively across metabolites. Three major functional properties, metabolite abundance, essentiality, and association with human diseases predict conservation, highlighting a striking parallel between the evolutionary forces driving metabolome and protein sequence conservation. Metabolic network simulations recapitulated these general patterns and revealed that abundant metabolites are highly conserved due to their strong coupling to key metabolic fluxes in the network. Finally, we show that biomarkers of metabolic diseases can be distinguished from other metabolites simply based on evolutionary conservation, without requiring any prior clinical knowledge. Overall, this study uncovers simple rules that govern metabolic evolution in animals and implies that most tissue metabolome differences between species are permitted, rather than favored by natural selection. More broadly, our work paves the way toward using evolutionary information to identify biomarkers, as well as to detect pathogenic metabolome alterations in individual patients.
Collapse
Affiliation(s)
- Orsolya Liska
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, 6728Szeged, Hungary
- National Laboratory of Biotechnology, Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
- Doctoral School of Biology, University of Szeged, 6726Szeged, Hungary
| | - Gábor Boross
- National Laboratory of Biotechnology, Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
- Department of Biology, Stanford University, Stanford, City of Palo Alto, CA94305-5020
| | - Charles Rocabert
- National Laboratory of Biotechnology, Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
- Inria, 78150Rocquencourt, 69100Villeurbanne, France
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, 00014Helsinki, Finland
- Institute for Computational Cell Biology, Heinrich-Heine Universität, 40225Düsseldorf, Germany
| | - Balázs Szappanos
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, 6728Szeged, Hungary
- National Laboratory of Biotechnology, Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
- Department of Biotechnology, University of Szeged, 6726Szeged, Hungary
| | - Roland Tengölics
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, 6728Szeged, Hungary
- National Laboratory of Biotechnology, Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
- Metabolomics Lab, Core facilities, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
| | - Balázs Papp
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, 6728Szeged, Hungary
- National Laboratory of Biotechnology, Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
- National Laboratory for Health Security, Biological Research Centre, Eötvös Loránd Research Network, 6726Szeged, Hungary
| |
Collapse
|
2
|
Vitamin B6 Deficiency Promotes Loss of Heterozygosity (LOH) at the Drosophila warts (wts) Locus. Int J Mol Sci 2022; 23:ijms23116087. [PMID: 35682766 PMCID: PMC9181336 DOI: 10.3390/ijms23116087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor for more than 200 enzymes involved in many metabolic pathways. Moreover, PLP has antioxidant properties and quenches the reactive oxygen species (ROS). Accordingly, PLP deficiency causes chromosome aberrations in Drosophila, yeast, and human cells. In this work, we investigated whether PLP depletion can also cause loss of heterozygosity (LOH) of the tumor suppressor warts (wts) in Drosophila. LOH is usually initiated by DNA breakage in heterozygous cells for a tumor suppressor mutation and can contribute to oncogenesis inducing the loss of the wild-type allele. LOH at the wts locus results in epithelial wts homozygous tumors easily detectable on adult fly cuticle. Here, we found that PLP depletion, induced by two PLP inhibitors, promotes LOH of wts locus producing significant frequencies of wts tumors (~7% vs. 2.3%). In addition, we identified the mitotic recombination as a possible mechanism through which PLP deficiency induces LOH. Moreover, LOH of wts locus, induced by PLP inhibitors, was rescued by PLP supplementation. These data further confirm the role of PLP in genome integrity maintenance and indicate that vitamin B6 deficiency may impact on cancer also by promoting LOH.
Collapse
|
3
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78:6487-6503. [PMID: 34410445 PMCID: PMC8558153 DOI: 10.1007/s00018-021-03918-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
During the past decade metabolomics has emerged as one of the fastest developing branches of “-omics” technologies. Metabolomics involves documentation, identification, and quantification of metabolites through modern analytical platforms in various biological systems. Advanced analytical tools, such as gas chromatography–mass spectrometry (GC/MS), liquid chromatography–mass spectroscopy (LC/MS), and non-destructive nuclear magnetic resonance (NMR) spectroscopy, have facilitated metabolite profiling of complex biological matrices. Metabolomics, along with transcriptomics, has an influential role in discovering connections between genetic regulation, metabolite phenotyping and biomarkers identification. Comprehensive metabolite profiling allows integration of the summarized data towards manipulation of biosynthetic pathways, determination of nutritional quality markers, improvement in crop yield, selection of desired metabolites/genes, and their heritability in modern breeding. Along with that, metabolomics is invaluable in predicting the biological activity of medicinal plants, assisting the bioactivity-guided fractionation process and bioactive leads discovery, as well as serving as a tool for quality control and authentication of commercial plant-derived natural products. Metabolomic analysis of human biofluids is implemented in clinical practice to discriminate between physiological and pathological state in humans, to aid early disease biomarker discovery and predict individual response to drug therapy. Thus, metabolomics could be utilized to preserve human health by improving the nutritional quality of crops and accelerating plant-derived bioactive leads discovery through disease diagnostics, or through increasing the therapeutic efficacy of drugs via more personalized approach. Here, we attempt to explore the potential value of metabolite profiling comprising the above-mentioned applications of metabolomics in crop improvement, medicinal plants utilization, and, in the prognosis, diagnosis and management of complex diseases.
Collapse
Affiliation(s)
- Andrey S Marchev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Martina S Savova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria. .,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Lubojemska A, Stefana MI, Sorge S, Bailey AP, Lampe L, Yoshimura A, Burrell A, Collinson L, Gould AP. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biol 2021; 19:e3001230. [PMID: 33945525 PMCID: PMC8121332 DOI: 10.1371/journal.pbio.3001230] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/14/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity-related renal lipotoxicity and chronic kidney disease (CKD) are prevalent pathologies with complex aetiologies. One hallmark of renal lipotoxicity is the ectopic accumulation of lipid droplets in kidney podocytes and in proximal tubule cells. Renal lipid droplets are observed in human CKD patients and in high-fat diet (HFD) rodent models, but their precise role remains unclear. Here, we establish a HFD model in Drosophila that recapitulates renal lipid droplets and several other aspects of mammalian CKD. Cell type-specific genetic manipulations show that lipid can overflow from adipose tissue and is taken up by renal cells called nephrocytes. A HFD drives nephrocyte lipid uptake via the multiligand receptor Cubilin (Cubn), leading to the ectopic accumulation of lipid droplets. These nephrocyte lipid droplets correlate with endoplasmic reticulum (ER) and mitochondrial deficits, as well as with impaired macromolecular endocytosis, a key conserved function of renal cells. Nephrocyte knockdown of diglyceride acyltransferase 1 (DGAT1), overexpression of adipose triglyceride lipase (ATGL), and epistasis tests together reveal that fatty acid flux through the lipid droplet triglyceride compartment protects the ER, mitochondria, and endocytosis of renal cells. Strikingly, boosting nephrocyte expression of the lipid droplet resident enzyme ATGL is sufficient to rescue HFD-induced defects in renal endocytosis. Moreover, endocytic rescue requires a conserved mitochondrial regulator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α). This study demonstrates that lipid droplet lipolysis counteracts the harmful effects of a HFD via a mitochondrial pathway that protects renal endocytosis. It also provides a genetic strategy for determining whether lipid droplets in different biological contexts function primarily to release beneficial or to sequester toxic lipids.
Collapse
Affiliation(s)
- Aleksandra Lubojemska
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M. Irina Stefana
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastian Sorge
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew P. Bailey
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lena Lampe
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Azumi Yoshimura
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Alex P. Gould
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Zelentsova EA, Yanshole VV, Tsentalovich YP. A novel method of sample homogenization with the use of a microtome-cryostat apparatus. RSC Adv 2019; 9:37809-37817. [PMID: 35541765 PMCID: PMC9075820 DOI: 10.1039/c9ra06808b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Quantitative metabolomics places high demands on sample preparation, including a high degree of metabolite extraction and controlled sample weight. In respect to elastic collagen-rich tissues, the existing methods of sample homogenization poorly fit these demands due to incomplete homogenization, sample material loss, or metabolite degradation. Herein, a novel method based on the use of a microtome-cryostat apparatus is proposed. The performance of the cryotome method is compared with the results obtained with the use of a vortex bead beating. NMR-based metabolomic analysis shows that the extraction efficiency and the data scattering for both methods of sample preparation are similar. However, the heat generation during the bead beating causes the destruction of thermally-unstable compounds; besides, it may cause protein hydrolysis, leading to an artificial increase in the amino acid level. The cryotome method of sample homogenization does not cause sample heating, and it seems to be ideal for elastic tissues. A novel method of homogenization of elastic tissues does not cause sample heating and material losses.![]()
Collapse
Affiliation(s)
- Ekaterina A. Zelentsova
- International Tomography Center SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Vadim V. Yanshole
- International Tomography Center SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| |
Collapse
|