1
|
Meng C, Ma Y, Fu N, Li J, Sun B, Li Z, Wang Q, Liu P. The supplementation of L-carnitine in critically ill patients with sepsis: a systematic review and meta-analysis of randomized controlled trials. Eur J Med Res 2024; 29:488. [PMID: 39367436 PMCID: PMC11453008 DOI: 10.1186/s40001-024-02087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
OBJECTIVES The evidence suggests that L-carnitine may reduce mortality in critically ill patients with sepsis. However, the conclusions of different studies are inconsistent. A meta-analysis was conducted to evaluate the effect of L-carnitine compliance on mortality in patients with sepsis. METHODS A search of the PubMed, Embase, and Cochrane Library databases was conducted on 1 June 2024. The risk ratio (RR) was pooled with a 95% confidence interval (CI) for dichotomous data. The publications were subjected to a review in accordance with the guidelines set forth in the Cochrane Handbook and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). This study has been registered with INPLASY (number INPLASY202460086). RESULTS A total of 356 patients were included in four randomized controlled trials. The results indicated that L-carnitine supplementation was not associated with 28-day mortality in sepsis patients (RR: 0.65; 95% CI 0.33-1.28; I2 = 70%; P = 0.21). And there was no significant effect on 12-month mortality (RR: 0.72; 95% CI 0.47-1.11; I2 = 0%; P = 0.14) compared to placebo. CONCLUSIONS The use of L-carnitine was not found to be significantly correlated with 28-day or 12-month mortality in patients with sepsis.
Collapse
Affiliation(s)
- Chang Meng
- Department of Emergency, Emergency General Hospital, XiBaHe South Road 29, Chaoyang District, Beijing, 100028, People's Republic of China
| | - Yudan Ma
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100039, People's Republic of China
| | - Ning Fu
- Department of Cardiology, Hebei Yanda Hospital, Langfang, 065201, People's Republic of China
| | - Jie Li
- Department of Emergency, Emergency General Hospital, XiBaHe South Road 29, Chaoyang District, Beijing, 100028, People's Republic of China
| | - Biao Sun
- Department of Emergency, Emergency General Hospital, XiBaHe South Road 29, Chaoyang District, Beijing, 100028, People's Republic of China
| | - Zhichao Li
- Department of Emergency, Emergency General Hospital, XiBaHe South Road 29, Chaoyang District, Beijing, 100028, People's Republic of China
| | - Qing Wang
- Department of Emergency, Emergency General Hospital, XiBaHe South Road 29, Chaoyang District, Beijing, 100028, People's Republic of China.
| | - Peng Liu
- Department of Cardiology, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, 23 Yijin Huoluo West Street, Dongsheng District, Inner Mongolia, Ordos, 017000, People's Republic of China.
| |
Collapse
|
2
|
Jian J, He D, Gao S, Tao X, Dong X. Pharmacokinetics in Pharmacometabolomics: Towards Personalized Medication. Pharmaceuticals (Basel) 2023; 16:1568. [PMID: 38004434 PMCID: PMC10675232 DOI: 10.3390/ph16111568] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Indiscriminate drug administration may lead to drug therapy results with varying effects on patients, and the proposal of personalized medication can help patients to receive effective drug therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic drug monitoring (TDM), can only be implemented from a single perspective. The development of pharmacometabolomics provides a research method for the realization of precise drug administration, which integrates the environmental and genetic factors, and applies metabolomics technology to study how to predict different drug therapeutic responses of organisms based on baseline metabolic levels. The published research on pharmacometabolomics has achieved satisfactory results in predicting the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them, the pharmacokinetics related to pharmacometabolomics are used to explore individual variability in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous metabolite changes. By searching for relevant literature with the keyword "pharmacometabolomics" on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into their research. This review explains the therapeutic effects of drugs on the body from the perspective of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for advancing the implementation of personalized medication.
Collapse
Affiliation(s)
- Jingai Jian
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Donglin He
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| |
Collapse
|
3
|
Turgman O, Schinkel M, Wiersinga WJ. Host Response Biomarkers for Sepsis in the Emergency Room. Crit Care 2023; 27:97. [PMID: 36941681 PMCID: PMC10027585 DOI: 10.1186/s13054-023-04367-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Oren Turgman
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Hussain H, Vutipongsatorn K, Jiménez B, Antcliffe DB. Patient Stratification in Sepsis: Using Metabolomics to Detect Clinical Phenotypes, Sub-Phenotypes and Therapeutic Response. Metabolites 2022; 12:metabo12050376. [PMID: 35629881 PMCID: PMC9145582 DOI: 10.3390/metabo12050376] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Infections are common and need minimal treatment; however, occasionally, due to inappropriate immune response, they can develop into a life-threatening condition known as sepsis. Sepsis is a global concern with high morbidity and mortality. There has been little advancement in the treatment of sepsis, outside of antibiotics and supportive measures. Some of the difficulty in identifying novel therapies is the heterogeneity of the condition. Metabolic phenotyping has great potential for gaining understanding of this heterogeneity and how the metabolic fingerprints of patients with sepsis differ based on survival, organ dysfunction, disease severity, type of infection, treatment or causative organism. Moreover, metabolomics offers potential for patient stratification as metabolic profiles obtained from analytical platforms can reflect human individuality and phenotypic variation. This article reviews the most relevant metabolomic studies in sepsis and aims to provide an overview of the metabolic derangements in sepsis and how metabolic phenotyping has been used to identify sub-groups of patients with this condition. Finally, we consider the new avenues that metabolomics could open, exploring novel phenotypes and untangling the heterogeneity of sepsis, by looking at advances made in the field with other -omics technologies.
Collapse
Affiliation(s)
- Humma Hussain
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Kritchai Vutipongsatorn
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Beatriz Jiménez
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
- Correspondence:
| |
Collapse
|
5
|
Trongtrakul K, Thonusin C, Pothirat C, Chattipakorn SC, Chattipakorn N. Past Experiences for Future Applications of Metabolomics in Critically Ill Patients with Sepsis and Septic Shocks. Metabolites 2021; 12:metabo12010001. [PMID: 35050123 PMCID: PMC8779293 DOI: 10.3390/metabo12010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
A disruption of several metabolic pathways in critically ill patients with sepsis indicates that metabolomics might be used as a more precise tool for sepsis and septic shock when compared with the conventional biomarkers. This article provides information regarding metabolomics studies in sepsis and septic shock patients. It has been shown that a variety of metabolomic pathways are altered in sepsis and septic shock, including amino acid metabolism, fatty acid oxidation, phospholipid metabolism, glycolysis, and tricarboxylic acid cycle. Based upon this comprehensive review, here, we demonstrate that metabolomics is about to change the world of sepsis biomarkers, not only for its utilization in sepsis diagnosis, but also for prognosticating and monitoring the therapeutic response. Additionally, the future direction regarding the establishment of studies integrating metabolomics with other molecular modalities and studies identifying the relationships between metabolomic profiles and clinical characteristics to address clinical application are discussed in this article. All of the information from this review indicates the important impact of metabolomics as a tool for diagnosis, monitoring therapeutic response, and prognostic assessment of sepsis and septic shock. These findings also encourage further clinical investigations to warrant its use in routine clinical settings.
Collapse
Affiliation(s)
- Konlawij Trongtrakul
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (C.P.)
| | - Chanisa Thonusin
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.T.); (N.C.)
| | - Chaicharn Pothirat
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (C.P.)
| | - Siriporn C. Chattipakorn
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.T.); (N.C.)
| |
Collapse
|
6
|
Sahebnasagh A, Avan R, Monajati M, Hashemi J, Habtemariam S, Negintaji S, Saghafi F. L-carnitine: Searching for New Therapeutic Strategy for Sepsis Management. Curr Med Chem 2021; 29:3300-3323. [PMID: 34789120 DOI: 10.2174/0929867328666211117092345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
In this review, we discussed the biological targets of carnitine, its effects on immune function, and how L-carnitine supplementation may help critically ill patients. L-carnitine is a potent antioxidant. L-carnitine depletion has been observed in prolonged intensive care unit (ICU) stays, while L-carnitine supplementation has beneficial effects in health promotion and regulation of immunity. It is essential for the uptake of fatty acids into mitochondria. By inhibiting the ubiquitin-proteasome system, down-regulation of apelin receptor in cardiac tissue, and reducing β-oxidation of fatty acid, carnitine may decrease vasopressor requirement in septic shock and improve clinical outcomes of this group of patients. We also have an overview of animal and clinical studies that have been recruited for evaluating the beneficial effects of L-carnitine in the management of sepsis/ septic shock. Additional clinical data are required to evaluate the optimal daily dose and duration of L-carnitine supplementation.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand. Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan. Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB. United Kingdom
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| |
Collapse
|
7
|
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, Gao W, Li Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front Pharmacol 2021; 12:760581. [PMID: 34764874 PMCID: PMC8576433 DOI: 10.3389/fphar.2021.760581] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism involves multiple biological processes. As one of the most important lipid metabolic pathways, fatty acid oxidation (FAO) and its key rate-limiting enzyme, the carnitine palmitoyltransferase (CPT) system, regulate host immune responses and thus are of great clinical significance. The effect of the CPT system on different tissues or organs is complex: the deficiency or over-activation of CPT disrupts the immune homeostasis by causing energy metabolism disorder and inflammatory oxidative damage and therefore contributes to the development of various acute and chronic inflammatory disorders and cancer. Accordingly, agonists or antagonists targeting the CPT system may become novel approaches for the treatment of diseases. In this review, we first briefly describe the structure, distribution, and physiological action of the CPT system. We then summarize the pathophysiological role of the CPT system in chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, chronic granulomatous disease, nonalcoholic fatty liver disease, hepatic ischemia–reperfusion injury, kidney fibrosis, acute kidney injury, cardiovascular disorders, and cancer. We are also concerned with the current knowledge in either preclinical or clinical studies of various CPT activators/inhibitors for the management of diseases. These compounds range from traditional Chinese medicines to novel nanodevices. Although great efforts have been made in studying the different kinds of CPT agonists/antagonists, only a few pharmaceuticals have been applied for clinical uses. Nevertheless, research on CPT activation or inhibition highlights the pharmacological modulation of CPT-dependent FAO, especially on different CPT isoforms, as a promising anti-inflammatory/antitumor therapeutic strategy for numerous disorders.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Hu
- Department of Vascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liangzhi Chen
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Jennaro TS, Puskarich MA, McCann MR, Gillies CE, Pai MP, Karnovsky A, Evans CR, Jones AE, Stringer KA. Using l-Carnitine as a Pharmacologic Probe of the Interpatient and Metabolic Variability of Sepsis. Pharmacotherapy 2020; 40:913-923. [PMID: 32688453 DOI: 10.1002/phar.2448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this review is to discuss the therapeutic use and differential treatment response to Levo-carnitine (l-carnitine) treatment in septic shock, and to demonstrate common lessons learned that are important to the advancement of precision medicine approaches to sepsis. We propose that significant interpatient variability in the metabolic response to l-carnitine and clinical outcomes can be used to elucidate the mechanistic underpinnings that contribute to sepsis heterogeneity. METHODS A narrative review was conducted that focused on explaining interpatient variability in l-carnitine treatment response. Relevant biological and patient-level characteristics considered include genetic, metabolic, and morphomic phenotypes; potential drug interactions; and pharmacokinetics (PKs). MAIN RESULTS Despite promising results in a phase I study, a recent phase II clinical trial of l-carnitine treatment in septic shock showed a nonsignificant reduction in mortality. However, l-carnitine treatment induces significant interpatient variability in l-carnitine and acylcarnitine concentrations over time. In particular, administration of l-carnitine induces a broad, dynamic range of serum concentrations and measured peak concentrations are associated with mortality. Applied systems pharmacology may explain variability in drug responsiveness by using patient characteristics to identify pretreatment phenotypes most likely to derive benefit from l-carnitine. Moreover, provocation of sepsis metabolism with l-carnitine offers a unique opportunity to identify metabolic response signatures associated with patient outcomes. These approaches can unmask latent metabolic pathways deranged in the sepsis syndrome and offer insight into the pathophysiology, progression, and heterogeneity of the disease. CONCLUSIONS The compiled evidence suggests there are several potential explanations for the variability in carnitine concentrations and clinical response to l-carnitine in septic shock. These serve as important confounders that should be considered in interpretation of l-carnitine clinical studies and broadly holds lessons for future clinical trial design in sepsis. Consideration of these factors is needed if precision medicine in sepsis is to be achieved.
Collapse
Affiliation(s)
- Theodore S Jennaro
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A Puskarich
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA.,Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marc R McCann
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher E Gillies
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Institute for Data Science, Office of Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles R Evans
- Michigan Regional Comprehensive Metabolomics Resource Core (MRC2), University of Michigan, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan E Jones
- Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Abdollahi H, Abdolahi M, Sedighiyan M, Jafarieh A. The Effect of L-Carnitine on Mortality Rate in Septic Patients: A Systematic Review and Meta-Analysis on Randomized Clinical Trials. Endocr Metab Immune Disord Drug Targets 2020; 21:673-681. [PMID: 32718301 DOI: 10.2174/1871530320666200727150450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent clinical trial studies have reported that L-carnitine supplementation can reduce the mortality rate in patients with sepsis, but there are no definitive results in this context. The current systematic review and meta-analysis aimed to evaluate the effect of L-carnitine supplementation on 28-day and one-year mortality in septic patients. METHODS A systematic search conducted on Pubmed, Scopus and Cochrane Library databases up to June 2019 without any language restriction. The publications were reviewed based on the Cochrane handbook and preferred reporting items for systematic reviews and meta-analyses (PRISMA). To compare the effects of L-carnitine with placebo, Risk Ratio (RR) with 95% confidence intervals (CI) were pooled according to the random effects model. RESULTS Across five enrolled clinical trials, we found that L-carnitine supplementation reduce one-year mortality in septic patients with SOFA> 12 (RR: 0.68; 95% CI: 0.49 to 0.96; P= 0.03) but had no significant effect on reducing 28-day mortality ((RR: 0.93; 95% CI: 0.68 to 1.28; P= 0.65) compared to placebo. Finally, we observed that based on current trials, L-carnitine supplementation may not have clinically a significant effect on mortality rate. CONCLUSION L-carnitine patients with higher SOFA score can reduce the mortality rate. However, the number of trials, study duration and using a dosage of L-carnitine are limited in this context and further large prospective trials are required to clarify the effect of L-carnitine on mortality rate in septic patients.
Collapse
Affiliation(s)
- Hamed Abdollahi
- Department of Anesthesiology, Amir Alam Hospital Complexes, Sa'adi Street, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Anesthesiology, Amir Alam Hospital Complexes, Sa'adi Street, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sedighiyan
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Poursina Street, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Jafarieh
- Department of Anesthesiology, Amir Alam Hospital Complexes, Sa'adi Street, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Everett JR. Pharmacometabonomics: The Prediction of Drug Effects Using Metabolic Profiling. Handb Exp Pharmacol 2019; 260:263-299. [PMID: 31823071 DOI: 10.1007/164_2019_316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabonomics, also known as metabolomics, is concerned with the study of metabolite profiles in humans, animals, plants and other systems in order to assess their health or other status and their responses to experimental interventions. Metabonomics is thus widely used in disease diagnosis and in understanding responses to therapies such as drug administration. Pharmacometabonomics, also known as pharmacometabolomics, is a related methodology but with a prognostic as opposed to diagnostic thrust. Pharmacometabonomics aims to predict drug effects including efficacy, safety, metabolism and pharmacokinetics, prior to drug administration, via an analysis of pre-dose metabolite profiles. This article will review the development of pharmacometabonomics as a new field of science that has much promise in helping to deliver more effective personalised medicine, a major goal of twenty-first century healthcare.
Collapse
Affiliation(s)
- Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Kent, UK.
| |
Collapse
|