1
|
Peng B, Bartkowiak K, Song F, Nissen P, Schlüter H, Siebels B. Hypoxia-Induced Adaptations of N-Glycomes and Proteomes in Breast Cancer Cells and Their Secreted Extracellular Vesicles. Int J Mol Sci 2024; 25:10216. [PMID: 39337702 PMCID: PMC11432262 DOI: 10.3390/ijms251810216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. We hypothesize that hypoxic tumors synthesize specific hypoxia-induced N-glycans in response to or as a consequence of hypoxia. This study utilized nano-LC-MS/MS to integrate quantitative proteomic and N-glycomic analyses of both cells and EVs derived from the MDA-MB-231 breast cancer cell line cultured under normoxic and hypoxic conditions. Whole N-glycome and proteome profiling revealed that hypoxia has an impact on the asparagine N-linked glycosylation patterns and on the glycolysis/gluconeogenesis proteins in cells in terms of altered N-glycosylation for their adaptation to low-oxygen conditions. Distinct N-glycan types, high-mannose glycans like Man3 and Man9, were highly abundant in the hypoxic cells. On the other hand, alterations in the sialylation and fucosylation patterns were observed in the hypoxic cells. Furthermore, hypoxia-induced EVs exhibit a signature consisting of mono-antennary structures and specific N-glycans (H4N3F1S2, H3N3F1S0, and H7N4F3S2; H8N4F1S0 and H8N6F1S2), which are significantly associated with poor prognoses for breast tumors, presumably altering the interactions within the tumor microenvironment to promote tumorigenesis and metastasis. Our findings provide an overview of the N-glycan profiles, particularly under hypoxic conditions, and offer insights into the potential biomarkers for tracking tumor microenvironment dynamics and for developing precision medicine approaches in oncology.
Collapse
Affiliation(s)
- Bojia Peng
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Paula Nissen
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| |
Collapse
|
2
|
Burch AP, Kristen Hall M, Wease D, Schwalbe RA. Reduction of N-Acetylglucosaminyltransferase-I Activity Promotes Neuroblastoma Invasiveness and EGF-Stimulated Proliferation In Vitro. INTERNATIONAL JOURNAL OF TRANSLATIONAL MEDICINE (BASEL, SWITZERLAND) 2024; 4:519-538. [PMID: 39742082 PMCID: PMC11687401 DOI: 10.3390/ijtm4030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aberrant N-glycosylation has been associated with progression of the pediatric cancer neuroblastoma (NB) but remains understudied. Here we investigated oligomannose N-glycans in NB by genetic editing of MGAT1 in a human NB cell line, BE(2)-C, called BE(2)-C(MGAT1-/-). Lectin binding studies confirmed that BE(2)-C(MGAT1-/-) had decreased complex and increased oligomannose N-glycans. The relevance of 2D and 3D cell cultures was demonstrated for cell morphology, cell proliferation, and cell invasion, thereby highlighting the necessity for 3D cell culture in investigating cancerous properties. Western blotting revealed that oligomannosylated EGFR had increased autophosphorylation. Proliferation was decreased in BE(2)-C(MGAT1-/-) using 2D and 3D cultures, but both cell lines had similar proliferation rates using 3D cultures without serum. Upon EGF treatment, BE(2)-C(MGAT1-/-), but not BE(2)-C, showed increased proliferation, and furthermore, the mutant proliferated much faster than BE(2)-C under 3D conditions. Cell spheroid invasiveness was greatly increased in BE(2)-C(MGAT1-/-) compared with BE(2)-C. Moreover, invasiveness was reduced in both cell lines with either EGF or RhoA activator treatment, regardless of the N-glycan population. Thus, this study further extends our earlier findings that oligomannose N-glycans enhance NB cell invasiveness, and that EGF stimulation of oligomannosylated EGFR greatly enhances cell proliferation rates, underlining the role of oligomannose N-glycans in the promotion of NB.
Collapse
Affiliation(s)
| | | | - Debra Wease
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Ohashi S, Takakura D, Kobayashi N, Tokuhisa M, Ichikawa Y, Kawasaki N. Comparative Analysis of Site-Specific N-glycosylation of LAMP1 from Breast Cancer Tissues. J Biochem 2024; 175:561-572. [PMID: 38215735 DOI: 10.1093/jb/mvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024] Open
Abstract
Glycosylation changes in cancer proteins have been associated with malignant transformation. However, techniques for analyzing site-specific glycosylation changes in target proteins obtained from clinical tissue samples are insufficient. To overcome these problems, we developed a targeted N-glycoproteomic approach consisting of immunoprecipitation, glycopeptide enrichment, LC/MS/MS and structural assignment using commercially available analytical software followed by manual confirmation. This approach was applied to the comparative site-specific glycosylation analysis of lysosome-associated membrane glycoprotein 1 (LAMP1) between breast cancer (BC) tumors and normal tissues adjacent to tumors. Extensive determination of glycan heterogeneity from four N-glycosylation sites (Asn84/103/249/261) in LAMP1 identified 262 glycoforms and revealed remarkable diversity in tumor glycan structures. A significant increase in N-glycoforms with multiple fucoses and sialic acids at Asn84/249 and high-mannose-type glycans at Asn103/261 were observed in the tumor. Principal component analysis revealed that tumors of different subtypes have independent distributions. This approach enables site-specific glycopeptide analysis of target glycoprotein in breast cancer tissue and become a powerful tool for characterizing tumors with different pathological features by their glycan profiles.
Collapse
Affiliation(s)
- Shoko Ohashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Daisuke Takakura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noritoshi Kobayashi
- Department of Oncology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Motohiko Tokuhisa
- Department of Oncology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yasushi Ichikawa
- Department of Oncology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Nana Kawasaki
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Liew CY, Chen JL, Lin YT, Luo HS, Hung AT, Magoling BJA, Nguan HS, Lai CPK, Ni CK. Chromatograms and Mass Spectra of High-Mannose and Paucimannose N-Glycans for Rapid Isomeric Identifications. J Proteome Res 2024; 23:939-955. [PMID: 38364797 PMCID: PMC10913092 DOI: 10.1021/acs.jproteome.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
N-Linked glycosylation is one of the most essential post-translational modifications of proteins. However, N-glycan structural determination remains challenging because of the small differences in structures between isomers. In this study, we constructed a database containing collision-induced dissociation MSn mass spectra and chromatograms of high-performance liquid chromatography for the rapid identification of high-mannose and paucimannose N-glycan isomers. These N-glycans include isomers by breaking of arbitrary numbers of glycosidic bonds at arbitrary positions of canonical Man9GlcNAc2 N-glycans. In addition, some GlcMannGlcNAc2 N-glycan isomers were included in the database. This database is particularly useful for the identification of the N-glycans not in conventional N-glycan standards. This study demonstrated the application of the database to structural assignment for high-mannose N-glycans extracted from bovine whey proteins, soybean proteins, human mammary epithelial cells, and human breast carcinoma cells. We found many N-glycans that are not expected to be generated by conventional biosynthetic pathways of multicellular eukaryotes.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 106216, Taiwan
- Molecular
Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106216, Taiwan
| | - Jien-Lian Chen
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Yen-Ting Lin
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Hong-Sheng Luo
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Taiwan Normal University, Taipei 116059, Taiwan
| | - An-Ti Hung
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bryan John Abel Magoling
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Institute
of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106216, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115201, Taiwan
| | - Hock-Seng Nguan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Charles Pin-Kuang Lai
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115201, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 106216, Taiwan
| | - Chi-Kung Ni
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Molecular
Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Benesova I, Nenutil R, Urminsky A, Lattova E, Uhrik L, Grell P, Kokas FZ, Halamkova J, Zdrahal Z, Vojtesek B, Novotny MV, Hernychova L. N-glycan profiling of tissue samples to aid breast cancer subtyping. Sci Rep 2024; 14:320. [PMID: 38172220 PMCID: PMC10764792 DOI: 10.1038/s41598-023-51021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease. Its intrinsic subtype classification for diagnosis and choice of therapy traditionally relies on the presence of characteristic receptors. Unfortunately, this classification is often not sufficient for precise prediction of disease prognosis and treatment efficacy. The N-glycan profiles of 145 tumors and 10 healthy breast tissues were determined using Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry. The tumor samples were classified into Mucinous, Lobular, No-Special-Type, Human Epidermal Growth Factor 2 + , and Triple-Negative Breast Cancer subtypes. Statistical analysis was conducted using the reproducibility-optimized test statistic software package in R, and the Wilcoxon rank sum test with continuity correction. In total, 92 N-glycans were detected and quantified, with 59 consistently observed in over half of the samples. Significant variations in N-glycan signals were found among subtypes. Mucinous tumor samples exhibited the most distinct changes, with 28 significantly altered N-glycan signals. Increased levels of tri- and tetra-antennary N-glycans were notably present in this subtype. Triple-Negative Breast Cancer showed more N-glycans with additional mannose units, a factor associated with cancer progression. Individual N-glycans differentiated Human Epidermal Growth Factor 2 + , No-Special-Type, and Lobular cancers, whereas lower fucosylation and branching levels were found in N-glycans significantly increased in Luminal subtypes (Lobular and No-Special-Type tumors). Clinically normal breast tissues featured a higher abundance of signals corresponding to N-glycans with bisecting moiety. This research confirms that histologically distinct breast cancer subtypes have a quantitatively unique set of N-glycans linked to clinical parameters like tumor size, proliferative rate, lymphovascular invasion, and metastases to lymph nodes. The presented results provide novel information that N-glycan profiling could accurately classify human breast cancer samples, offer stratification of patients, and ongoing disease monitoring.
Collapse
Affiliation(s)
- Iva Benesova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Rudolf Nenutil
- Department of Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Erika Lattova
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Zavadil Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Zbynek Zdrahal
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Milos V Novotny
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
6
|
Sun Y, Isaji T, Oyama Y, Xu X, Liu J, Hanamatsu H, Yokota I, Miura N, Furukawa JI, Fukuda T, Gu J. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299:105051. [PMID: 37451482 PMCID: PMC10406863 DOI: 10.1016/j.jbc.2023.105051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ikuko Yokota
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
7
|
Hall MK, Shajahan A, Burch AP, Hatchett CJ, Azadi P, Schwalbe RA. Limited N-Glycan Processing Impacts Chaperone Expression Patterns, Cell Growth and Cell Invasiveness in Neuroblastoma. BIOLOGY 2023; 12:293. [PMID: 36829569 PMCID: PMC9953357 DOI: 10.3390/biology12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Enhanced N-glycan branching is associated with cancer, but recent investigations supported the involvement of less processed N-glycans. Herein, we investigated how changes in N-glycosylation influence cellular properties in neuroblastoma (NB) using rat N-glycan mutant cell lines, NB_1(-Mgat1), NB_1(-Mgat2) and NB_1(-Mgat3), as well as the parental cell line NB_1. The two earlier mutant cells have compromised N-acetylglucosaminyltransferase-I (GnT-I) and GnT-II activities. Lectin blotting showed that NB_1(-Mgat3) cells had decreased activity of GnT-III compared to NB_1. ESI-MS profiles identified N-glycan structures in NB cells, supporting genetic edits. NB_1(-Mgat1) had the most oligomannose N-glycans and the greatest cell invasiveness, while NB_1(-Mgat2) had the fewest and least cell invasiveness. The proliferation rate of NB_1 was slightly slower than NB_1(-Mgat3), but faster than NB_1(-Mgat1) and NB_1(-Mgat2). Faster proliferation rates were due to the faster progression of those cells through the G1 phase of the cell cycle. Further higher levels of oligomannose with 6-9 Man residues indicated faster proliferating cells. Human NB cells with higher oligomannose N-glycans were more invasive and had slower proliferation rates. Both rat and human NB cells revealed modified levels of ER chaperones. Thus, our results support a role of oligomannose N-glycans in NB progression; furthermore, perturbations in the N-glycosylation pathway can impact chaperone systems.
Collapse
Affiliation(s)
- M. Kristen Hall
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Adam P. Burch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Cody J. Hatchett
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| |
Collapse
|
8
|
Li J, Li X, Guan F. What are the diagnostic capabilities of glycans for breast cancer? Expert Rev Mol Diagn 2023; 23:1-7. [PMID: 36705933 DOI: 10.1080/14737159.2023.2173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiang Li
- Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Glycosylation Alterations in Cancer Cells, Prognostic Value of Glycan Biomarkers and Their Potential as Novel Therapeutic Targets in Breast Cancer. Biomedicines 2022; 10:biomedicines10123265. [PMID: 36552021 PMCID: PMC9775348 DOI: 10.3390/biomedicines10123265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Although we are lately witnessing major improvements in breast cancer treatment and patient outcomes, there is still a significant proportion of patients not receiving efficient therapy. More precisely, patients with triple-negative breast cancer or any type of metastatic disease. Currently available prognostic and therapeutic biomarkers are not always applicable and oftentimes lack precision. The science of glycans is a relatively new scientific approach to better characterize malignant transformation and tumor progression. In this review, we summarize the most important information about glycosylation characteristics in breast cancer cells and how different glycoproteins and enzymes involved in glycosylation could serve as more precise biomarkers, as well as new therapeutic targets.
Collapse
|
10
|
Groth T, Diehl AD, Gunawan R, Neelamegham S. GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology. Bioinformatics 2022; 38:5413-5420. [PMID: 36282863 PMCID: PMC9750110 DOI: 10.1093/bioinformatics/btac704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION The 'glycoEnzymes' include a set of proteins having related enzymatic, metabolic, transport, structural and cofactor functions. Currently, there is no established ontology to describe glycoEnzyme properties and to relate them to glycan biosynthesis pathways. RESULTS We present GlycoEnzOnto, an ontology describing 403 human glycoEnzymes curated along 139 glycosylation pathways, 134 molecular functions and 22 cellular compartments. The pathways described regulate nucleotide-sugar metabolism, glycosyl-substrate/donor transport, glycan biosynthesis and degradation. The role of each enzyme in the glycosylation initiation, elongation/branching and capping/termination phases is described. IUPAC linear strings present systematic human/machine-readable descriptions of individual reaction steps and enable automated knowledge-based curation of biochemical networks. All GlycoEnzOnto knowledge is integrated with the Gene Ontology biological processes. GlycoEnzOnto enables improved transcript overrepresentation analyses and glycosylation pathway identification compared to other available schema, e.g. KEGG and Reactome. Overall, GlycoEnzOnto represents a holistic glycoinformatics resource for systems-level analyses. AVAILABILITY AND IMPLEMENTATION https://github.com/neel-lab/GlycoEnzOnto. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Theodore Groth
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Alexander D Diehl
- Department of Biomedical Informatics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
11
|
Yang H, Tian Z. Sialic acid linkage-specific quantitative N-glycoproteomics using selective alkylamidation and multiplex TMT-labeling. Anal Chim Acta 2022; 1230:340391. [DOI: 10.1016/j.aca.2022.340391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
|
12
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Chiu KY, Wang Q, Gunawardena HP, Held M, Faik A, Chen H. Desalting Paper Spay Mass Spectrometry (DPS-MS) for Rapid Detection of Glycans and Glycoconjugates. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116688. [PMID: 35386843 PMCID: PMC8981528 DOI: 10.1016/j.ijms.2021.116688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of glycans and glycoconjugates has gained increasing attention in biological fields. Traditional mass spectrometry (MS)-based methods for glycoconjugate analysis are challenged with poor intensity when dealing with complex biological samples. We developed a desalting paper spray mass spectrometry (DPS-MS) strategy to overcome the issue of signal suppression of carbohydrates in salted buffer. Glycans and glycoconjugates (i.e., glycopeptides, nucleotide sugars, etc.) in non-volatile buffer (e.g., Tris buffer) can be loaded on the paper substrate from which buffers can be removed by washing with ACN/H2O (90/10 v/v) solution. Glycans or glycoconjugates can then be eluted and spray ionized by adding ACN/H2O/formic acid (FA) (10/90/1 v/v/v) solvent and applying a high voltage (HV) to the paper substrate. This work also showed that DPS-MS is applicable for direct detection of intact glycopeptides and nucleotide sugars as well as determination of glycosylation profiling of antibody, such as NIST monoclonal antibody IgG (NISTmAb). NISTmAb was deglycosylated with PNGase F to release N-linked oligosaccharides. Twenty-six N-linked oligosaccharides were detected by DPS-MS within a 5-minute timeframe without the need for further enrichment or derivatization. This work demonstrates that DPS-MS allows fast and sensitive detection of glycans/oligosaccharides and glycosylated species in complex matrices and has great potential in bioanalysis.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA, 19477
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
| | - Ahmed Faik
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio USA, 45701
- Department of Environmental and Plant Biology, Ohio University, Athens Ohio, USA, 45701
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA, 07102
| |
Collapse
|
14
|
Chatterjee S, Ugonotti J, Lee LY, Everest-Dass A, Kawahara R, Thaysen-Andersen M. Trends in oligomannosylation and α1,2-mannosidase expression in human cancers. Oncotarget 2021; 12:2188-2205. [PMID: 34676051 PMCID: PMC8522845 DOI: 10.18632/oncotarget.28064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrant protein glycosylation is a prominent cancer feature. While many tumour-associated glycoepitopes have been reported, advances in glycoanalytics continue to uncover new associations between glycosylation and cancer. Guided by a comprehensive literature survey suggesting that oligomannosylation (Man5–9 GlcNAc2) is a widespread and often regulated glycosignature in human cancers, we here revisit a valuable compilation of nearly 500 porous graphitized carbon LC-MS/MS N-glycomics datasets acquired across 11 human cancer types to systematically test for oligomannose-cancer associations. Firstly, the quantitative glycomics data obtained across 34 cancerous cell lines demonstrated that oligomannosylation is a pan-cancer feature spanning in a wide abundance range. In keeping with literature, our quantitative glycomics data of tumour and matching control tissues and new MALDI-MS imaging data of tissue microarrays showed a strong cancer-associated elevation of oligomannosylation in both basal cell (p = 1.78 × 10–12) and squamous cell (p = 1.23 × 10–11) skin cancer and colorectal cancer (p = 8.0 × 10–4). The glycomics data also indicated that some cancer types including gastric and liver cancer exhibit unchanged or reduced oligomannose levels, observations also supported by literature and MALDI-MS imaging data. Finally, expression data from public cancer repositories indicated that several α1,2-mannosidases are regulated in tumour tissues suggesting that these glycan-processing enzymes may contribute to the cancer-associated modulation of oligomannosylation. This omics-centric study has compiled robust glycomics and enzyme expression data revealing interesting molecular trends that open avenues to better understand the role of oligomannosylation in human cancers.
Collapse
Affiliation(s)
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ling Y Lee
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Joint senior authors
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre (BDRC), Macquarie University, Sydney, Australia.,Joint senior authors
| |
Collapse
|
15
|
Gao N, Wang Q, Tang J, Yao S, Li H, Yue X, Fu J, Zhong F, Wang T, Wang J. Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer. Anal Bioanal Chem 2021; 413:4775-4784. [PMID: 34128082 DOI: 10.1007/s00216-021-03431-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid, reliable and non-destructive spectral detection technology, has made a series of breakthrough achievements in screening and pre-diagnosis of various cancerous tumors. In this paper, high-performance gold nanoparticles/785 porous silicon photonic crystals (Au NPs/785 PSi PhCs) active SERS substrates were specially designed for serum testing, and realized highly sensitive detection of serum from healthy people, patients with cervical cancer and breast cancer. Based on the SERS spectra of the three groups of serum, the significant differences between the healthy group and cancer group at 1030 cm-1 and 1051 cm-1 were analyzed, and the similar but different serum SERS spectra of cervical cancer and breast cancer patients were compared. In addition, the spectral difference detected by SERS technology combined with a multivariate statistical algorithm was used to distinguish three kinds of serum. The serum SERS spectral sensitive bands were extracted by recursive weighted partial least squares (rPLS), and the three classification diagnosis models were established by combining orthogonal partial least squares discriminant analysis (OPLS-DA), linear discriminant analysis (LDA) and principal component analysis support vector machine (PCA-SVM) for synchronous classification and discrimination of the three groups of serum. The diagnostic results showed that the overall screening accuracy of three models were 93.28%, 97.77% and 94.78%, respectively. These above results confirmed that the Au NPs/785 PSi PhCs can realize super-sensitive detection of serum, and the established diagnostic model has great potential for pre-diagnosis and simultaneous screening of cervical cancer and breast cancer.
Collapse
Affiliation(s)
- Ningning Gao
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Qing Wang
- College of Physics and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jun Tang
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China.
| | - Shengyuan Yao
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Hongmei Li
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Xiaxia Yue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jihong Fu
- College of chemical engineering, Xinjiang University, Xinjiang, 830046, Urumqi, China
| | - Furu Zhong
- School of physics and electronic science, Zunyi Normal College, Zunyi, 563006, Guizhou, China
| | - Tao Wang
- Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Xinjiang, 830046, Urumqi, China.
| | - Jing Wang
- First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830046, Urumqi, China
| |
Collapse
|
16
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
17
|
Fogarty CA, Fadda E. Oligomannose N-Glycans 3D Architecture and Its Response to the FcγRIIIa Structural Landscape. J Phys Chem B 2021; 125:2607-2616. [PMID: 33661628 PMCID: PMC8279474 DOI: 10.1021/acs.jpcb.1c00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oligomannoses are evolutionarily the oldest class of N-glycans, where the arms of the common pentasaccharide unit, i.e., Manα(1-6)-[Manα(1-3)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ1-Asn, are functionalized exclusively with branched arrangements of mannose (Man) monosaccharide units. In mammalian species oligomannose N-glycans can have up to 9 Man; meanwhile structures can grow to over 200 units in yeast mannan. The highly dynamic nature, branching complexity, and 3D structure of oligomannoses have been recently highlighted for their roles in immune escape and infectivity of enveloped viruses, such as HIV-1 and SARS-CoV2. The architectural features that allow these N-glycans to perform their functions are yet unclear, due to their intrinsically disordered nature that hinders their structural characterization. In this work we will discuss the results of over 54 μs of cumulative sampling by molecular dynamics (MD) simulations of differently processed, free (not protein-linked) oligomannose N-glycans common in vertebrates. We then discuss the effects of a protein surface on their structural equilibria based on over 4 μs cumulative MD sampling of the fully glycosylated CD16a Fc γ receptor (FcγRIIIa), where the type of glycosylation is known to modulate its binding affinity for IgG1s, regulating the antibody-dependent cellular cytotoxicity (ADCC). Our results show that the protein's structural constraints shift the oligomannoses conformational ensemble to promote conformers that satisfy the steric requirements and hydrogen bonding networks demanded by the protein's surface landscape. More importantly, we find that the protein does not actively distort the N-glycans into structures not populated in the unlinked forms in solution. Ultimately, the highly populated conformations of the Man5 linked glycans support experimental evidence of high levels of hybrid complex forms at N45 and show a specific presentation of the arms at N162, which may be involved in mediating binding affinity to the IgG1 Fc.
Collapse
Affiliation(s)
- Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland
| |
Collapse
|
18
|
Yaman ME, Kayili HM, Albayrak M, Kadioglu Y, Salih B. Differential N-glycosylation profiling of formalin-fixed paraffin-embedded (FFPE) invasive ductal carcinoma tissues using MALDI-TOF-MS. Mol Omics 2021; 17:394-404. [PMID: 33735360 DOI: 10.1039/d0mo00150c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Invasive ductal carcinoma (IDC) is the most common type of breast cancer. As dynamic changes of the glycome are closely associated with complex diseases, they have become a focal point of cancer research involving predictive and prognostic markers. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are representative of the tumor environment and are thus utilized in studies on cancer related research and biomarker discovery. Further studies on differential N-glycosylation profiling of IDC cancer tissues are necessary in order to understand the biological role of glycans in cancer and to evaluate their predictive ability. In this study, matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS)-based analyses were conducted for determining differential N-glycosylation patterns of IDC. Two different derivatization methods, namely, 2-aminobenzoic acid (2-AA) labeling and linkage-specific sialic acid esterification, were used for the analysis of N-glycans. Forty-seven 2-AA labeled and fifty ethyl esterified N-glycans were identified by MALDI-MS. In statistical analyses conducted for 2-AA-labeled N-glycans, the relative amounts of 32 N-glycans and prevalence of 15 N-glycan traits showed significant (p < 0.05) differences between cancer and normal tissues; and in such analyses for the ethyl-esterified N-glycans, the relative amounts of 27 N-glycans and prevalence of 17 N-glycan traits showed significant (p < 0.05) differences between them. It was found that mainly high mannose N-glycans, including H5N2, H6N2, and H7N2, and two fucosylated compositions (H3N3F1 and H5N5F1) showed strong discrimination between IDC and controls. In addition, compared with the controls, high mannose N-glycans were observed to be up-regulated in IDC whereas bisecting N-glycans were down-regulated.
Collapse
Affiliation(s)
- Mehmet Emrah Yaman
- Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, 25240, Turkey
| | | | | | | | | |
Collapse
|
19
|
Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and Sensitive Detection of Oligosaccharides Using Desalting Paper Spray Mass Spectrometry (DPS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2226-2235. [PMID: 32910855 PMCID: PMC8189650 DOI: 10.1021/jasms.0c00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Pengyi Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Tariq Alnsour
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Ahmed Faik
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| |
Collapse
|
20
|
Gajdosova V, Lorencova L, Kasak P, Tkac J. Electrochemical Nanobiosensors for Detection of Breast Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4022. [PMID: 32698389 PMCID: PMC7412172 DOI: 10.3390/s20144022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
This comprehensive review paper describes recent advances made in the field of electrochemical nanobiosensors for the detection of breast cancer (BC) biomarkers such as specific genes, microRNA, proteins, circulating tumor cells, BC cell lines, and exosomes or exosome-derived biomarkers. Besides the description of key functional characteristics of electrochemical nanobiosensors, the reader can find basic statistic information about BC incidence and mortality, breast pathology, and current clinically used BC biomarkers. The final part of the review is focused on challenges that need to be addressed in order to apply electrochemical nanobiosensors in a clinical practice.
Collapse
Affiliation(s)
- Veronika Gajdosova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (V.G.); (L.L.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (V.G.); (L.L.)
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (V.G.); (L.L.)
| |
Collapse
|
21
|
Lee SB, Bose S, Ahn SH, Son BH, Ko BS, Kim HJ, Chung IY, Kim J, Lee W, Ko MS, Lee K, Chang S, Park HS, Lee JW, Kim DC. Breast cancer diagnosis by analysis of serum N-glycans using MALDI-TOF mass spectroscopy. PLoS One 2020; 15:e0231004. [PMID: 32271809 PMCID: PMC7144955 DOI: 10.1371/journal.pone.0231004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and serum N-glycans can be used as markers for cancer diagnosis, as alterations in protein glycosylation are associated with cancer pathogenesis and progression. We aimed to develop a platform for breast cancer (BrC) diagnosis based on serum N-glycan profiles using MALDI-TOF mass spectroscopy. Serum N-glycans from BrC patients and healthy volunteers were evaluated using NosQuest’s software “NosIDsys.” BrC-associated “NosID” N-glycan biomarkers were selected based on abundance and NosIDsys analysis, and their diagnostic potential was determined using NosIDsys and receiver operating characteristic curves. Results showed an efficient pattern recognition of invasive ductal carcinoma patients, with very high diagnostic performance [area under the curve (AUC): 0.93 and 95% confidence interval (CI): 0.917–0.947]. We achieved effective stage-specific differentiation of BrC patients from healthy controls with 82.3% specificity, 84.1% sensitivity, and 82.8% accuracy for stage 1 BrC and recognized hormone receptor-2 and lymph node invasion subtypes based on N-glycan profiles. Our novel technique supplements conventional diagnostic strategies for BrC detection and can be developed as an independent platform for BrC screening.
Collapse
Affiliation(s)
- Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shambhunath Bose
- R&D Center, NOSQUEST Inc., Seongnam, Gyeonggi, Republic of Korea
| | - Sei Hyun Ahn
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Ho Son
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Ko
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il Yong Chung
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woochang Lee
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myung-Su Ko
- Health Screening and Promotion Center, Asan Medical Center, Seoul, Republic of Korea
| | - Kyungsoo Lee
- R&D Center, NOSQUEST Inc., Seongnam, Gyeonggi, Republic of Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- * E-mail: (JWL); (DCK)
| | - Dong-Chan Kim
- R&D Center, NOSQUEST Inc., Seongnam, Gyeonggi, Republic of Korea
- * E-mail: (JWL); (DCK)
| |
Collapse
|
22
|
Jia N, Byrd-Leotis L, Matsumoto Y, Gao C, Wein AN, Lobby JL, Kohlmeier JE, Steinhauer DA, Cummings RD. The Human Lung Glycome Reveals Novel Glycan Ligands for Influenza A Virus. Sci Rep 2020; 10:5320. [PMID: 32210305 PMCID: PMC7093477 DOI: 10.1038/s41598-020-62074-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Glycans within human lungs are recognized by many pathogens such as influenza A virus (IAV), yet little is known about their structures. Here we present the first analysis of the N- and O- and glycosphingolipid-glycans from total human lungs, along with histological analyses of IAV binding. The N-glycome of human lung contains extremely large complex-type N-glycans with linear poly-N-acetyllactosamine (PL) [-3Galβ1-4GlcNAcβ1-]n extensions, which are predominantly terminated in α2,3-linked sialic acid. By contrast, smaller N-glycans lack PL and are enriched in α2,6-linked sialic acids. In addition, we observed large glycosphingolipid (GSL)-glycans, which also consists of linear PL, terminating in mainly α2,3-linked sialic acid. Histological staining revealed that IAV binds to sialylated and non-sialylated glycans and binding is not concordant with respect to binding by sialic acid-specific lectins. These results extend our understanding of the types of glycans that may serve as binding sites for human lung pathogens.
Collapse
Affiliation(s)
- Nan Jia
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Lauren Byrd-Leotis
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA
| | - Yasuyuki Matsumoto
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Chao Gao
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA.
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA.
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA.
| |
Collapse
|
23
|
Lv J, Wang Z, Li F, Zhang Y, Lu H. Reverse capture for selectively and sensitively revealing the N-glycome of serum exosomes. Chem Commun (Camb) 2020; 55:14339-14342. [PMID: 31720594 DOI: 10.1039/c9cc06742f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exosomes are emerging as a promising source of disease biomarkers. However, glycans from exosomes have been less studied. Here, for the first time, the N-glycome of human serum exosomes is reported and the potential of N-glycans from exosomes as a source for biomarker discovery is revealed.
Collapse
Affiliation(s)
- Jing Lv
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, P. R. China.
| | | | | | | | | |
Collapse
|