1
|
Ding Y, Xie D, Xu C, Hu W, Kong B, Jia S, Cao L. Fisetin disrupts mitochondrial homeostasis via superoxide dismutase 2 acetylation in pancreatic adenocarcinoma. Phytother Res 2024; 38:4628-4649. [PMID: 39091056 DOI: 10.1002/ptr.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/06/2024] [Accepted: 02/11/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses. Further validation includes the assessment of mitochondria-derived reactive oxygen species (mtROS), mitochondrial membrane potential, as well as ATP generation. Molecular docking, immunoprecipitation, and proximity ligation assay were used to detect the interactions among fiseitn, superoxide dismutase 2 (SOD2), and sirtuin 2 (SIRT2). We showed that fisetin disrupted mitochondrial homeostasis and induced SOD2 acetylation in PDAC. Further, we produced site mutants to determine that fisetin-induced mtROS were dependent on SOD2 acetylation. Fisetin inhibited SIRT2 expression, thus blocking SOD2 deacetylation. SIRT2 overexpression could impede fisetin-induced SOD2 acetylation. Additionally, untargeted metabolomic analysis revealed an acceleration of folate metabolism with fisetin. Collectively, our findings suggest that fisetin disrupts mitochondrial homeostasis, eliciting an important cancer-suppressive role; thus, fisetin may serve as a promising therapeutic for PDAC.
Collapse
Affiliation(s)
- Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binyue Kong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Abukwaik R, Vera-Siguenza E, Tennant D, Spill F. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect. Bull Math Biol 2024; 86:124. [PMID: 39207627 PMCID: PMC11362376 DOI: 10.1007/s11538-024-01346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| |
Collapse
|
3
|
Srisawat K, Stead CA, Hesketh K, Pogson M, Strauss JA, Cocks M, Siekmann I, Phillips SM, Lisboa PJ, Shepherd S, Burniston JG. People with obesity exhibit losses in muscle proteostasis that are partly improved by exercise training. Proteomics 2024; 24:e2300395. [PMID: 37963832 DOI: 10.1002/pmic.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
This pilot experiment examines if a loss in muscle proteostasis occurs in people with obesity and whether endurance exercise positively influences either the abundance profile or turnover rate of proteins in this population. Men with (n = 3) or without (n = 4) obesity were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (D2O) consumption and serial biopsies of vastus lateralis muscle. Men with obesity then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100% maximum aerobic power interspersed by 1 min recovery periods. The number of intervals per session progressed from 4 to 8, and during weeks 8-10 the 14-d measurement protocol was repeated. Proteomic analysis detected 352 differences (p < 0.05, false discovery rate < 5%) in protein abundance and 19 (p < 0.05) differences in protein turnover, including components of the ubiquitin-proteasome system. HIIT altered the abundance of 53 proteins and increased the turnover rate of 22 proteins (p < 0.05) and tended to benefit proteostasis by increasing muscle protein turnover rates. Obesity and insulin resistance are associated with compromised muscle proteostasis, which may be partially restored by endurance exercise.
Collapse
Affiliation(s)
| | - Connor A Stead
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Katie Hesketh
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Mark Pogson
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | | | - Matt Cocks
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Ivo Siekmann
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Paulo J Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Sam Shepherd
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | | |
Collapse
|
4
|
Romero-Carramiñana I, Dominguez-Zorita S, Esparza-Moltó PB, Cuezva JM. Ablation of Atp5if1 impairs metabolic reprogramming and proliferation of T lymphocytes and compromises mouse survival. iScience 2024; 27:109863. [PMID: 38799559 PMCID: PMC11126974 DOI: 10.1016/j.isci.2024.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
T cells experience metabolic reprogramming to an enhanced glycolysis upon activation. Herein, we have investigated whether ATPase Inhibitory Factor 1 (IF1), the physiological inhibitor of mitochondrial ATP synthase, participates in rewiring T cells to a particular metabolic phenotype. We show that the activation of naive CD4+ T lymphocytes both in vitro and in vivo is accompanied by a sharp upregulation of IF1, which is expressed only in Th1 effector cells. T lymphocytes of conditional CD4+-IF1-knockout mice display impaired glucose uptake and flux through glycolysis, reducing the biogenesis of mitochondria and cellular proliferation after activation. Consequently, mice devoid of IF1 in T lymphocytes cannot mount an effective Th1 response against bacterial infection compromising their survival. Overall, we show that the inhibition of a fraction of ATP synthase by IF1 regulates metabolic reprogramming and functionality of T cells, highlighting the essential role of IF1 in adaptive immune responses.
Collapse
Affiliation(s)
- Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonia Dominguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau B. Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Siegl A, Afjehi-Sadat L, Wienkoop S. Systemic long-distance sulfur transport and its role in symbiotic root nodule protein turnover. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154260. [PMID: 38701679 DOI: 10.1016/j.jplph.2024.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.
Collapse
Affiliation(s)
- Alina Siegl
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Ross AB, Gorhe D, Kim JK, Hodapp S, DeVine L, Chan KM, Chio IIC, Jovanovic M, Ayres Pereira M. Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO. CELL REPORTS METHODS 2024; 4:100760. [PMID: 38677284 PMCID: PMC11133751 DOI: 10.1016/j.crmeth.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.
Collapse
Affiliation(s)
- Alison B Ross
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Lela DeVine
- Department of Biology, Barnard College, New York, NY 10027, USA; Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina M Chan
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
| | - Marina Ayres Pereira
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Cuezva JM, Domínguez-Zorita S. The ATPase Inhibitory Factor 1 (IF1) Contributes to the Warburg Effect and Is Regulated by Its Phosphorylation in S39 by a Protein Kinase A-like Activity. Cancers (Basel) 2024; 16:1014. [PMID: 38473373 DOI: 10.3390/cancers16051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The relevant role played by the ATPase Inhibitory Factor 1 (IF1) as a physiological in vivo inhibitor of mitochondrial ATP synthase in cancer and non-cancer cells, and in the mitochondria of different mouse tissues, as assessed in different genetic loss- and gain-of-function models of IF1 has been extensively documented. In this review we summarize our findings and those of others that favor the implication of IF1 in metabolic reprogramming to an enhanced glycolytic phenotype, which is mediated by its binding and inhibition of the ATP synthase. Moreover, we emphasize that IF1 is phosphorylated in vivo in its S39 by the c-AMP-dependent PKA activity of mitochondria to render an inactive inhibitor that is unable to interact with the enzyme, thus triggering the activation of ATP synthase. Overall, we discuss and challenge the results that argue against the role of IF1 as in vivo inhibitor of mitochondrial ATP synthase and stress that IF1 cannot be regarded solely as a pro-oncogenic protein because in some prevalent carcinomas, it prevents metastatic disease.
Collapse
Affiliation(s)
- José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
8
|
Romero-Carramiñana I, Esparza-Moltó PB, Domínguez-Zorita S, Nuevo-Tapioles C, Cuezva JM. IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential. Commun Biol 2023; 6:836. [PMID: 37573449 PMCID: PMC10423274 DOI: 10.1038/s42003-023-05214-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The coexistence of two pools of ATP synthase in mitochondria has been largely neglected despite in vitro indications for the existence of reversible active/inactive state transitions in the F1-domain of the enzyme. Herein, using cells and mitochondria from mouse tissues, we demonstrate the existence in vivo of two pools of ATP synthase: one active, the other IF1-bound inactive. IF1 is required for oligomerization and inactivation of ATP synthase and for proper cristae formation. Immunoelectron microscopy shows the co-distribution of IF1 and ATP synthase, placing the inactive "sluggish" ATP synthase preferentially at cristae tips. The intramitochondrial distribution of IF1 correlates with cristae microdomains of high membrane potential, partially explaining its heterogeneous distribution. These findings support that IF1 is the in vivo regulator of the active/inactive state transitions of the ATP synthase and suggest that local regulation of IF1-ATP synthase interactions is essential to activate the sluggish ATP synthase.
Collapse
Affiliation(s)
- Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
10
|
Domínguez-Zorita S, Romero-Carramiñana I, Cuezva JM, Esparza-Moltó PB. The ATPase Inhibitory Factor 1 is a Tissue-Specific Physiological Regulator of the Structure and Function of Mitochondrial ATP Synthase: A Closer Look Into Neuronal Function. Front Physiol 2022; 13:868820. [PMID: 35620611 PMCID: PMC9128019 DOI: 10.3389/fphys.2022.868820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
The ATP synthase is an essential multifunctional enzyme complex of mitochondria that produces most of cellular ATP, shapes the structure of the inner membrane into cristae and regulates the signals that control cell fate or demise. The ATPase Inhibitory Factor 1 (IF1) functions in vivo as a physiological regulator of the ATP synthase and thereby controls mitochondrial structure and function, and the retrograde signaling pathways that reprogram nuclear gene expression. However, IF1 is not ubiquitously expressed in mammals, showing tissue-restricted expression in humans and mice and large expression differences between the two species in some tissues. Herein, we summarized key regulatory functions of IF1 for tissue homeostasis, with special emphasis on the deleterious effects that its genetic ablation in neurons has in learning. The development and characterization of tissue-specific mouse models with regulated expression of IF1 will be crucial to disentangle the contribution of the ATP synthase/IF1 axis in pathophysiology.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain.,Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
11
|
Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022; 11:24. [PMID: 35534478 PMCID: PMC9085865 DOI: 10.1038/s41389-022-00400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractLung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.
Collapse
|
12
|
Tang X, Jiang H, Lin P, Zhang Z, Chen M, Zhang Y, Mo J, Zhu Y, Liu N, Chen X. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov 2021; 7:242. [PMID: 34531382 PMCID: PMC8445926 DOI: 10.1038/s41420-021-00629-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is important in ischemic heart disease. Excessive Insulin-like growth factor binding protein-1 (IGFBP-1) amounts are considered to harm cardiomyocytes in acute myocardial infarction. However, the mechanisms by which IGFBP-1 affects cardiomyocytes remain undefined. The present study demonstrated that hypoxia up-regulates IGFBP-1 and HIF-1α protein expression in cardiomyocytes. Subsequent assays showed that IGFBP-1 suppression decreased HIF-1α expression and inhibited hypoxia-induced apoptosis in cardiomyocytes, which was reversed by HIF-1α overexpression, indicating that HIF-1α is essential to IGFBP-1 function in cellular apoptosis. In addition, we showed that IGFBP-1 regulated HIF-1α stabilization through interacting with VHL. The present findings suggest that IGFBP-1–HIF-1α could be targeted for treating ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Huilin Jiang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Peiyi Lin
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Zhenhui Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Meiting Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Junrong Mo
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yongcheng Zhu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Ningning Liu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China. .,Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| | - Xiaohui Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, Sun C, Zhang H. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021; 12:215. [PMID: 33637686 PMCID: PMC7910460 DOI: 10.1038/s41419-021-03505-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Junfang Yan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Caipeng Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| |
Collapse
|
14
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
15
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
17
|
González-Llorente L, Santacatterina F, García-Aguilar A, Nuevo-Tapioles C, González-García S, Tirpakova Z, Toribio ML, Cuezva JM. Overexpression of Mitochondrial IF1 Prevents Metastatic Disease of Colorectal Cancer by Enhancing Anoikis and Tumor Infiltration of NK Cells. Cancers (Basel) 2019; 12:cancers12010022. [PMID: 31861681 PMCID: PMC7017164 DOI: 10.3390/cancers12010022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidences show that the ATPase Inhibitory Factor 1 (IF1), the physiological inhibitor of the ATP synthase, is overexpressed in a large number of carcinomas contributing to metabolic reprogramming and cancer progression. Herein, we show that in contrast to the findings in other carcinomas, the overexpression of IF1 in a cohort of colorectal carcinomas (CRC) predicts less chances of disease recurrence, IF1 being an independent predictor of survival. Bioinformatic and gene expression analyses of the transcriptome of colon cancer cells with differential expression of IF1 indicate that cells overexpressing IF1 display a less aggressive behavior than IF1 silenced (shIF1) cells. Proteomic and functional in vitro migration and invasion assays confirmed the higher tumorigenic potential of shIF1 cells. Moreover, shIF1 cells have increased in vivo metastatic potential. The higher metastatic potential of shIF1 cells relies on increased cFLIP-mediated resistance to undergo anoikis after cell detachment. Furthermore, tumor spheroids of shIF1 cells have an increased ability to escape from immune surveillance by NK cells. Altogether, the results reveal that the overexpression of IF1 acts as a tumor suppressor in CRC with an important anti-metastatic role, thus supporting IF1 as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Lucía González-Llorente
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana García-Aguilar
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sara González-García
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
| | - Zuzana Tirpakova
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
| | - María Luisa Toribio
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (L.G.-L.); (F.S.); (A.G.-A.); (C.N.-T.); (S.G.-G.); (Z.T.); (M.L.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28049 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-196-4618; Fax: +34-91-196-4420
| |
Collapse
|