1
|
André R, Pacheco R, Santos HM, Serralheiro ML. Exploring the Hypocholesterolemic Potential of a Fucus vesiculosus Extract: Omic Insights into Molecular Mechanisms at the Intestinal Level. Mar Drugs 2024; 22:187. [PMID: 38667804 PMCID: PMC11050770 DOI: 10.3390/md22040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this extract on intestinal cells' metabolites and proteins was analysed to gain a deeper understanding of its mode of action on lipids' metabolism, particularly concerning the absorption and transport of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract, and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis showed statistically significant differences in glutathione content of cells exposed to the extract compared to control cells, along with an increased expression of fatty acid amides in exposed cells. A proteomic analysis showed an increased expression in cells exposed to the extract compared to control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into the molecular mechanism of the extract's compounds on intestinal cells.
Collapse
Affiliation(s)
- Rebeca André
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Pacheco
- Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hugo M. Santos
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Maria Luísa Serralheiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C8 bldg, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Carvalho LB, Teigas-Campos PAD, Jorge S, Protti M, Mercolini L, Dhir R, Wiśniewski JR, Lodeiro C, Santos HM, Capelo JL. Normalization methods in mass spectrometry-based analytical proteomics: A case study based on renal cell carcinoma datasets. Talanta 2024; 266:124953. [PMID: 37490822 DOI: 10.1016/j.talanta.2023.124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Normalization is a crucial step in proteomics data analysis as it enables data adjustment and enhances comparability between datasets by minimizing multiple sources of variability, such as sampling, sample handling, storage, treatment, and mass spectrometry measurements. In this study, we investigated different normalization methods, including Z-score normalization, median divide normalization, and quantile normalization, to evaluate their performance using a case study based on renal cell carcinoma datasets. Our results demonstrate that when comparing datasets by pairs, both the Z-score and quantile normalization methods consistently provide better results in terms of the number of proteins identified and quantified as well as in identifying statistically significant up or down-regulated proteins. However, when three or more datasets are compared at the same time the differences are found to be negligible.
Collapse
Affiliation(s)
- Luis B Carvalho
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Pedro A D Teigas-Campos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal.
| |
Collapse
|
4
|
Carvalho LB, Jorge S, López-Fernández H, Lodeiro C, Dhir R, Campos Pinheiro L, Medeiros M, Santos HM, Capelo JL. Proteomic analysis of chromophobe renal cell carcinoma and benign renal oncocytoma biopsies reveals shared metabolic dysregulation. Clin Proteomics 2023; 20:54. [PMID: 38017382 PMCID: PMC10683195 DOI: 10.1186/s12014-023-09443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND This study investigates the proteomic landscapes of chromophobe renal cell carcinoma (chRCC) and renal oncocytomas (RO), two subtypes of renal cell carcinoma that together account for approximately 10% of all renal tumors. Despite their histological similarities and shared origins, chRCC is a malignant tumor necessitating aggressive intervention, while RO, a benign growth, is often subject to overtreatment due to difficulties in accurate differentiation. METHODS We conducted a label-free quantitative proteomic analysis on solid biopsies of chRCC (n = 5), RO (n = 5), and normal adjacent tissue (NAT, n = 5). The quantitative analysis was carried out by comparing protein abundances between tumor and NAT specimens. Our analysis identified a total of 1610 proteins across all samples, with 1379 (85.7%) of these proteins quantified in at least seven out of ten LC‒MS/MS runs for one renal tissue type (chRCC, RO, or NAT). RESULTS Our findings revealed significant similarities in the dysregulation of key metabolic pathways, including carbohydrate, lipid, and amino acid metabolism, in both chRCC and RO. Compared to NAT, both chRCC and RO showed a marked downregulation in gluconeogenesis proteins, but a significant upregulation of proteins integral to the citrate cycle. Interestingly, we observed a distinct divergence in the oxidative phosphorylation pathway, with RO showing a significant increase in the number and degree of alterations in proteins, surpassing that observed in chRCC. CONCLUSIONS This study underscores the value of integrating high-resolution mass spectrometry protein quantification to effectively characterize and differentiate the proteomic landscapes of solid tumor biopsies diagnosed as chRCC and RO. The insights gained from this research offer valuable information for enhancing our understanding of these conditions and may aid in the development of improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Luis B Carvalho
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Departamental Building, FCT-NOVA, Caparica Campus, 2829-516, Caparica, Portugal
| | - Susana Jorge
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Departamental Building, FCT-NOVA, Caparica Campus, 2829-516, Caparica, Portugal
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004, Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213, Vigo, Spain
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Departamental Building, FCT-NOVA, Caparica Campus, 2829-516, Caparica, Portugal
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Luis Campos Pinheiro
- Urology Department, Central Lisbon Hospital Center, Lisbon, Portugal
- NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Mariana Medeiros
- Urology Department, Central Lisbon Hospital Center, Lisbon, Portugal
- NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Hugo M Santos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Departamental Building, FCT-NOVA, Caparica Campus, 2829-516, Caparica, Portugal
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - José L Capelo
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- PROTEOMASS Scientific Society, Departamental Building, FCT-NOVA, Caparica Campus, 2829-516, Caparica, Portugal.
| |
Collapse
|
5
|
André R, Pacheco R, Alves AC, Santos HM, Bourbon M, Serralheiro ML. The Hypocholesterolemic Potential of the Edible Algae Fucus vesiculosus: Proteomic and Quantitative PCR Analysis. Foods 2023; 12:2758. [PMID: 37509850 PMCID: PMC10379601 DOI: 10.3390/foods12142758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A brown seaweed consumed worldwide, Fucus vesiculosus, has been used to prevent atherosclerosis and hypercholesterolemia, among other uses. However, the mechanisms of action that lead to these effects are not yet fully understood. This work aims to study the in vitro effect of an aqueous extract of F. vesiculosus, previously characterized as rich in phlorotannins and peptides, on the expression of different proteins involved in the synthesis and transport of cholesterol. A proteomic analysis, Western blot, and qRT-PCR analysis were performed to identify protein changes in HepG2 cells exposed to 0.25 mg/mL of the F. vesiculosus extract for 24 h. The proteomic results demonstrated that, in liver cells, the extract decreases the expression of four proteins involved in the cholesterol biosynthesis process (CYP51A1, DHCR24, HMGCS1 and HSD17B7). Additionally, a 12.76% and 18.40% decrease in the expression of two important transporters proteins of cholesterol, NPC1L1 and ABCG5, respectively, was also observed, as well as a 30% decrease in NPC1L1 mRNA levels in the cells exposed to the extract compared to control cells. Our study reveals some of the mechanisms underlying the actions of bioactive compounds from F. vesiculosus that may explain its previously reported hypocholesterolemic effect, future prospecting its use as a functional food.
Collapse
Affiliation(s)
- Rebeca André
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rita Pacheco
- Department of Chemical Engineering, ISEL-Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Catarina Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Hugo M Santos
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, Rúa dos Inventores, 2825-182 Caparica, Portugal
| | - Mafalda Bourbon
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Maria Luísa Serralheiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C8 Bldg, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Jorge S, Capelo JL, LaFramboise W, Satturwar S, Korentzelos D, Bastacky S, Quiroga-Garza G, Dhir R, Wiśniewski JR, Lodeiro C, Santos HM. Absolute quantitative proteomics using the total protein approach to identify novel clinical immunohistochemical markers in renal neoplasms. BMC Med 2021; 19:196. [PMID: 34482820 PMCID: PMC8420025 DOI: 10.1186/s12916-021-02071-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal neoplasms encompass a variety of malignant and benign tumors, including many with shared characteristics. The diagnosis of these renal neoplasms remains challenging with currently available tools. In this work, we demonstrate the total protein approach (TPA) based on high-resolution mass spectrometry (MS) as a tool to improve the accuracy of renal neoplasm diagnosis. METHODS Frozen tissue biopsies of human renal tissues [clear cell renal cell carcinoma (n = 7), papillary renal cell carcinoma (n = 5), chromophobe renal cell carcinoma (n = 5), and renal oncocytoma (n = 5)] were collected for proteome analysis. Normal adjacent renal tissue (NAT, n = 5) was used as a control. Proteins were extracted and digested using trypsin, and the digested proteomes were analyzed by label-free high-resolution MS (nanoLC-ESI-HR-MS/MS). Quantitative analysis was performed by comparison between protein abundances of tumors and NAT specimens, and the label-free and standard-free TPA was used to obtain absolute protein concentrations. RESULTS A total of 205 differentially expressed proteins with the potential to distinguish the renal neoplasms were found. Of these proteins, a TPA-based panel of 24, including known and new biomarkers, was selected as the best candidates to differentiate the neoplasms. As proof of concept, the diagnostic potential of PLIN2, TUBB3, LAMP1, and HK1 was validated using semi-quantitative immunohistochemistry with a total of 128 samples assessed on tissue micro-arrays. CONCLUSIONS We demonstrate the utility of combining high-resolution MS and the TPA as potential new diagnostic tool in the pathology of renal neoplasms. A similar TPA approach may be implemented in any cancer study with solid biopsies.
Collapse
Affiliation(s)
- Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - William LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Swati Satturwar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dimitrios Korentzelos
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal.
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids. Anal Bioanal Chem 2021; 413:2695-2708. [PMID: 33564925 DOI: 10.1007/s00216-020-03128-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a common molecular imaging modality used to characterise the abundance and spatial distribution of lipids in situ. There are several technical challenges predominantly involving sample pre-treatment and preparation which have complicated the analysis of clinical tissues by MALDI-MSI. Firstly, the common embedding of samples in optimal cutting temperature (O.C.T.), which contains high concentrations of polyethylene glycol (PEG) polymers, causes analyte signal suppression during mass spectrometry (MS) by competing for available ions during ionisation. This suppressive effect has constrained the application of MALDI-MSI for the molecular mapping of clinical tissues. Secondly, the complexity of the mass spectra is obtained by the formation of multiple adduct ions. The process of analyte ion formation during MALDI can generate multiple m/z peaks from a single lipid species due to the presence of alkali salts in tissues, resulting in the suppression of protonated adduct formation and the generation of multiple near isobaric ions which produce overlapping spatial distributions. Presented is a method to simultaneously remove O.C.T. and endogenous salts. This approach was applied to lipid imaging in order to prevent analyte suppression, simplify data interpretation, and improve sensitivity by promoting lipid protonation and reducing the formation of alkali adducts.
Collapse
|
8
|
Tasca AL, Clematis D, Panizza M, Vitolo S, Puccini M. Chlorpyrifos removal: Nb/boron-doped diamond anode coupled with solid polymer electrolyte and ultrasound irradiation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1391-1399. [PMID: 33312650 PMCID: PMC7721771 DOI: 10.1007/s40201-020-00555-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/29/2020] [Indexed: 05/09/2023]
Abstract
Chlorpyrifos is an organophosphorus insecticide, acaricide and miticide used worldwide for the control of soil-borne insect pests. It must be considered as a substance of growing concern, given its use, toxicity, environmental occurrence, and potential for regional to long-range atmospheric transport. Considering the incomplete removal attained by conventional water treatment processes, we investigated the efficiency of electrolytic radicals production and sonoelectrolysis on the degradation of the pesticide. The treatment has been conducted in a novel electrochemical reactor, equipped with a boron-doped diamond anode and a solid polymer electrolyte (SPE). Different current intensity and times have been tested and coupled with sonication at 40 kHz. Up to 69% of chlorpyrifos was completely removed in 10 min by electrolysis operated at 0.1 mA, while 12.5% and 5.4% was converted into the treatment intermediates 3,5,6-trichloro-2-pyridinol (TCP) and diethyl (3,5,6-trichloropyridin-2-yl) phosphate, respectively. Ultrasound irradiation did not enhance the removal efficiency, likely due to mass transport limitations, while the energy consumption increased from 8.68∙10- 6 to 9.34∙10- 4 kWh µg- 1 removed. Further research is encouraged, given the promising processing by the SPE technology of low conductivity solutions, as pharmaceuticals streams, as well as the potential for water and in-situ groundwater remediation from different emerging pollutants as phytosanitary and personal care products.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122 Italy
| | - Davide Clematis
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, Genoa, 16145 Italy
| | - Marco Panizza
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, Genoa, 16145 Italy
| | - Sandra Vitolo
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122 Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122 Italy
| |
Collapse
|
9
|
Ultrasonic-Based Filter Aided Sample Preparation as the General Method to Sample Preparation in Proteomics. Anal Chem 2020; 92:9164-9171. [PMID: 32484334 DOI: 10.1021/acs.analchem.0c01470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We propose a new high-throughput ultrafast method for large-scale proteomics approaches by speeding up the classic filter aided sample preparation protocol, FASP, from overnight to 2.5 h. Thirty-six samples can be treated in 2.5 h, and the method is scalable to 96-well plate-based pipelines. After a modification of the FASP-tube, the steps of protein reduction, protein alkylation, and protein digestion of complex proteomes are done in just 5.25 min, each one under the effects of an ultrasonic field (7 cycles: 30 s on and 15 s off). The new method was compared to the standard overnight digestion FASP protocol, and no statistical differences were found for more than 92.4%, 92%, and 93.3% of the proteins identified by studying the proteome of E. coli, mouse brain, and mouse liver tissue samples, respectively. Furthermore, the successful relative label-free quantification of four spiked proteins in E. coli samples, BSA, β-lactoglobulin, α-casein, and α-lactalbumin, was achieved, using either the ultrasonic-based FASP protocol or the classic overnight one. The new US-FASP method matches the analytical minimalism rules as time, cost, sample requirement, reagent consumption, energy requirements, and production of waste products are reduced to a minimum while maintaining high sample throughput in a robust manner as all of the advantages of the filter aided sample preparation protocol are maintained.
Collapse
|
10
|
Jorge S, Pereira K, López-Fernández H, LaFramboise W, Dhir R, Fernández-Lodeiro J, Lodeiro C, Santos HM, Capelo-Martínez JL. Ultrasonic-assisted extraction and digestion of proteins from solid biopsies followed by peptide sequential extraction hyphenated to MALDI-based profiling holds the promise of distinguishing renal oncocytoma from chromophobe renal cell carcinoma. Talanta 2019; 206:120180. [PMID: 31514886 DOI: 10.1016/j.talanta.2019.120180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
A novel analytical approach is proposed to discriminate between solid biopsies of chromophobe renal cell carcinoma (chRCC) and renal oncocytoma (RO). The method comprises the following steps: (i) ultrasonic extraction of proteins from solid biopsies, (ii) protein depletion with acetonitrile, (iii) ultrasonic assisted in-solution digestion using magnetic nanoparticle with immobilized trypsin, (iv) C18 tip-based preconcentration of peptides, (v) sequential extraction of the peptides with ACN, (vi) MALDI-snapshot of the extracts and (vii) investigation of the extract containing the most discriminating features using high resolution mass spectrometry. With this approach we have been able to differentially cluster renal oncocytoma and chromophobe renal cell carcinoma and identified 18 proteins specific to chromophobe and seven unique to renal oncocytoma. Chromophobes express proteins associated with ATP function (ATP5I & 5E; VATE1 & G2; ADT2), glycolysis (PGK1) and neuromedin whilst oncocytomas express ATP5H, ATPA, DEPD7 and TRIPB thyroid receptor interacting protein.
Collapse
Affiliation(s)
- Susana Jorge
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Kevin Pereira
- PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Hugo López-Fernández
- ESEI -Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain; CINBIO -Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain; SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, 36312, Vigo, Spain; Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Rúa Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - William LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Javier Fernández-Lodeiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Carlos Lodeiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Hugo M Santos
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - Jose L Capelo-Martínez
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal.
| |
Collapse
|