1
|
Wu Y, Zhao M, Gong N, Zhang F, Chen W, Liu Y. Immunometabolomics provides a new perspective for studying systemic lupus erythematosus. Int Immunopharmacol 2023; 118:109946. [PMID: 36931174 DOI: 10.1016/j.intimp.2023.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by clinical heterogeneity, unpredictable progression, and flare ups. Due to the heterogeneous nature of lupus, it has been challenging to identify sensitive and specific biomarkers for its diagnosis and monitoring. Despite the fact that the mechanism of SLE remains unknown, impressive progress has been made over the last decade towards understanding how different immune cells contribute to its pathogenesis. Research suggests that cellular metabolic programs could affect the immune response by regulating the activation, proliferation, and differentiation of innate and adaptive immune cells. Many studies have shown that the dysregulation of the immune system is associated with changes to metabolite profiles. The study of metabolite profiling may provide a means for mechanism exploration and novel biomarker discovery for disease diagnostic, classification, and monitoring. Here we review the latest advancements in understanding the role of immunometabolism in SLE, as well as the systemic metabolite profiling of this disease along with possible clinical application.
Collapse
Affiliation(s)
- Yuxian Wu
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Mengpei Zhao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Na Gong
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Yaoyang Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Harder JW, Ma J, Alard P, Sokoloski KJ, Mathiowitz E, Furtado S, Egilmez NK, Kosiewicz MM. Male microbiota-associated metabolite restores macrophage efferocytosis in female lupus-prone mice via activation of PPARγ/LXR signaling pathways. J Leukoc Biol 2023; 113:41-57. [PMID: 36822162 DOI: 10.1093/jleuko/qiac002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Systemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus. Transcriptomic analysis of female and male splenocytes showed genes that promote phagocytosis were upregulated in BWF1 male mice. Because patients with systemic lupus erythematosus exhibit defects in macrophage-mediated phagocytosis of apoptotic cells (efferocytosis), we compared splenic macrophage efferocytosis in vitro between female and male BWF1 mice. Macrophage efferocytosis was deficient in female compared to male BWF1 mice but could be restored by feeding male microbiota. Further transcriptomic analysis of the genes upregulated in male BWF1 mice revealed enrichment of genes stimulated by PPARγ and LXR signaling. Our previous fecal metabolomics analyses identified metabolites in male BWF1 mice that can activate PPARγ and LXR signaling and identified one in particular, phytanic acid, that is a very potent agonist. We show here that treatment of female BWF1 splenic macrophages with phytanic acid restores efferocytic activity via activation of the PPARγ and LXR signaling pathways. Furthermore, we found phytanic acid may restore female BWF1 macrophage efferocytosis through upregulation of the proefferocytic gene CD36. Taken together, our data indicate that metabolites produced by BWF1 male microbiota can enhance macrophage efferocytosis and, through this mechanism, could potentially influence lupus progression.
Collapse
Affiliation(s)
- James W Harder
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Edith Mathiowitz
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Stacia Furtado
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Foster SW, Parker D, Kurre S, Boughton J, Stoll DR, Grinias JP. A review of two-dimensional liquid chromatography approaches using parallel column arrays in the second dimension. Anal Chim Acta 2022; 1228:340300. [DOI: 10.1016/j.aca.2022.340300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
4
|
Ito K, Miyamoto H, Matsuura M, Ishii C, Tsuboi A, Tsuji N, Nakaguma T, Nakanishi Y, Kato T, Suda W, Honda F, Ito T, Moriya S, Shima H, Michibata R, Yamada R, Takahashi Y, Koga H, Kodama H, Watanabe Y, Kikuchi J, Ohno H. Noninvasive fecal metabolic profiling for the evaluation of characteristics of thermostable lactic acid bacteria, Weizmannia coagulans SANK70258, for broiler chickens. J Biosci Bioeng 2022; 134:105-115. [PMID: 35718655 DOI: 10.1016/j.jbiosc.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022]
Abstract
Weizmannia coagulans SANK70258 is a spore-forming thermostable lactic acid bacterium and an effective probiotic for the growth of livestock animals, but its growth-promoting mechanism remains unclear. Here, the composition of fecal metabolites in broilers continuously administered with W. coagulans SANK70258 was assessed under a regular program with antibiotics, which was transiently given for 6 days after birth. Oral administration of W. coagulans to broiler chicks tended to increase the average daily gain of body weights thereafter. The composition of fecal metabolites in the early chick stage (Day 10 after birth) was dramatically altered by the continuous exposure. The levels of short-chain fatty acids (SCFAs) propionate and butyrate markedly increased, while those of acetate, one of the SCFAs, and lactate were reduced. Simultaneously, arabitol, fructose, mannitol, and erythritol, which are carbohydrates as substrates for gut microbes to produce SCFAs, also increased along with altered correlation. Correlation network analyses classified the modularity clusters (|r| > 0.7) among carbohydrates, SCFAs, lactate, amino acids, and the other metabolites under the two conditions. The characteristic diversities by the exposure were visualized beyond the perspective associated with differences in metabolite concentrations. Further, enrichment pathway analyses showed that metabolic composition related to biosynthesis and/or metabolism for SCFAs, amino acids, and energy were activated. Thus, these observations suggest that W. coagulans SANK70258 dramatically modulates the gut metabolism of the broiler chicks, and the metabolomics profiles during the early chick stages may be associated with growth promotion.
Collapse
Affiliation(s)
- Kayo Ito
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.
| | - Makiko Matsuura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan
| | - Chitose Ishii
- Sermas Co., Ltd., Chiba 263-8522, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Arisa Tsuboi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Teruno Nakaguma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan
| | - Yumiko Nakanishi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tamotsu Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Fuyuko Honda
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Toshiyuki Ito
- Keiyo Gas Energy Solution Co. Ltd., Ichikawa, Chiba 272-0015, Japan
| | - Shigeharu Moriya
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Shima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Ryouichi Yamada
- Mitsubishi Chemical Corp., Marunouchi, Tokyo 100-8251, Japan
| | | | - Hirohisa Koga
- Mitsubishi Chemical Corp., Marunouchi, Tokyo 100-8251, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Chiba 263-8522, Japan
| | - Yuko Watanabe
- Mitsubishi Chemical Corp., Marunouchi, Tokyo 100-8251, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
5
|
Shen C, Xue X, Zhang X, Wu L, Duan X, Su C. Dexamethasone reduces autoantibody levels in MRL/lpr mice by inhibiting Tfh cell responses. J Cell Mol Med 2021; 25:8329-8337. [PMID: 34318604 PMCID: PMC8419171 DOI: 10.1111/jcmm.16785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that dexamethasone (Dex) reduces the levels of anti‐nuclear (ANA) and anti‐dsDNA antibodies in MRL/lpr mice (a mouse model of SLE). However, the effect of Dex on T follicular helper (Tfh) cells is less documented. Here, using the MRL/lpr mouse model, we investigated the influence of Dex on Tfh cells and potential underlying mechanisms. The data showed that the proportion of Tfh cells, identified as CD4+CXCR5+ICOS+, CD4+CXCR5+PD‐1+ or CD4+BCL‐6+ cells, markedly decreased after treatment with the Dex, in both Balb/c mice and MRL/lpr mice. Dex significantly inhibited IL‐21 expression at both the mRNA and the protein levels. Dex also significantly reduced the proportion of germinal centre B cells and decreased serum IgG, IgG2a/b and IgA levels. Moreover, a positive correlation between the proportion of Tfh cells (CD4+CXCR5+ICOS+, CD4+CXCR5+PD‐1+ or CD4+BCL‐6+) and autoantibodies was observed. Dex significantly increased the Prdm1 and Stat5b mRNA expression and decreased the Bcl‐6 and c‐Maf mRNA expression of CD4+T cells. In brief, Dex inhibited the Tfh development, which relies on many other transcription factors in addition to Bcl‐6. Our data indicate that Dex can be used as a Tfh cell inhibitor in SLE.
Collapse
Affiliation(s)
- Chunxiu Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaonan Xue
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lihua Wu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.,College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Chunxia Su
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Mojsak P, Rey-Stolle F, Parfieniuk E, Kretowski A, Ciborowski M. The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites' derivatization step. J Pharm Biomed Anal 2020; 191:113617. [PMID: 32971497 DOI: 10.1016/j.jpba.2020.113617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Disruption of gut microbiota (GM) composition is increasingly related to the pathogenesis of various metabolic diseases. Additionally, GM is responsible for the production and transformation of metabolites involved in the development of metabolic disorders, such as obesity and type 2 diabetes mellitus (T2DM). The current state of knowledge regarding the composition of GM and GM-related metabolites in relation to the progress and development of obesity and T2DM is presented in this review. To understand the relationships between GM-related metabolites and the development of metabolic disorders, their accurate qualitative and quantitative measurement in biological samples is needed. Feces represent a valuable biological matrix which composition may reflect the health status of the lower gastrointestinal tract and the whole organism. Mass spectrometry (MS), mainly in combination with gas chromatography (GC) or liquid chromatography (LC), is commonly used to measure fecal metabolites. However, profiling metabolites in such a complex matrix as feces is challenging from both analytical chemistry and biochemistry standpoints. Chemical derivatization is one of the most effective methods used to overcome these problems. In this review, we provide a comprehensive summary of the derivatization methods of GM-related metabolites prior to GC-MS or LC-MS analysis, which have been published in the last five years (2015-2020). Additionally, analytical methods used for the analysis of GM-related metabolites without the derivatization step are also presented.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ewa Parfieniuk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
7
|
Yuan F, Kim S, Yin X, Zhang X, Kato I. Integrating Two-Dimensional Gas and Liquid Chromatography-Mass Spectrometry for Untargeted Colorectal Cancer Metabolomics: A Proof-of-Principle Study. Metabolites 2020; 10:E343. [PMID: 32854360 PMCID: PMC7569982 DOI: 10.3390/metabo10090343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Untargeted metabolomics is expected to lead to a better mechanistic understanding of diseases and thus applications of precision medicine and personalized intervention. To further increase metabolite coverage and achieve high accuracy of metabolite quantification, the present proof-of-principle study was to explore the applicability of integration of two-dimensional gas and liquid chromatography-mass spectrometry (GC × GC-MS and 2DLC-MS) platforms to characterizing circulating polar metabolome extracted from plasma collected from 29 individuals with colorectal cancer in comparison with 29 who remained cancer-free. After adjustment of multiple comparisons, 20 metabolites were found to be up-regulated and 8 metabolites were found to be down-regulated, which pointed to the dysregulation in energy metabolism and protein synthesis. While integrating the GC × GC-MS and 2DLC-MS data can dramatically increase the metabolite coverage, this study had a limitation in analyzing the non-polar metabolites. Given the small sample size, these results need to be validated with a larger sample size and with samples collected prior to diagnostic and treatment. Nevertheless, this proof-of-principle study demonstrates the potential applicability of integration of these advanced analytical platforms to improve discrimination between colorectal cancer cases and controls based on metabolite profiles in future studies.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (F.Y.); (X.Y.); (X.Z.)
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (F.Y.); (X.Y.); (X.Z.)
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (F.Y.); (X.Y.); (X.Z.)
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Manirarora JN, Kosiewicz MM, Alard P. Feeding lactobacilli impacts lupus progression in (NZBxNZW)F1 lupus-prone mice by enhancing immunoregulation. Autoimmunity 2020; 53:323-332. [PMID: 32552071 DOI: 10.1080/08916934.2020.1777282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the relationship between autoimmunity and microorganisms is complex, there is evidence that microorganisms can prevent the development of various autoimmune diseases. Lactobacilli are beneficial gut bacteria that play an important role in immune system development. The goals of this study were to assess the ability of three different strains of lactobacilli (L. casei B255, L. reuteri DSM 17509 and L. plantarum LP299v) to control lupus development/progression in (NZBxNZW)F1 (BWF1) lupus-prone mice before and after disease onset, and identify the mechanisms mediating protection. BWF1 mice fed with individual L. casei or L. reuteri before disease onset exhibited delayed lupus onset and increased survival, while feeding L. plantarum had little impact. In vitro treatment of BWF1 dendritic cells with individual lactobacilli strains upregulated IL-10 production to various extents, with L. casei being the most effective. The protection mediated by L. casei was associated with upregulation of B7-1 and B7-2 by antigen presenting cells, two costimulatory molecules important for regulatory T cell (Treg) induction. Moreover, feeding L. casei lead to increased percentages of CD4+Foxp3+ Tregs and IL10-producing T cells in the lymphoid organs of treated mice. More importantly, mice fed L. casei after disease onset remained stable for several months, i.e. exhibited delayed anti-nucleic acid production and kidney disease progression, and increased survival. Therefore, feeding lactobacilli appears to delay lupus progression possibly via mechanisms involving Treg induction and IL-10 production. Altogether, these data support the notion that ingestion of lactobacilli, with immunoregulatory properties, may be a viable strategy for controlling disease development and progression in patients with lupus, i.e. extending remission length and reducing flare frequency.
Collapse
Affiliation(s)
- Jean N Manirarora
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| |
Collapse
|