1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024:1-32. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Zadina JE, Szabo LZ, Al-Obeidi F, Zhang X, Ferreira Nakatani L, Ogbu C, Heien ML, Falk T, Bartlett MJ, Polt R. Cyclic Glycopeptide Analogs of Endomorphin-1 Provide Highly Effective Antinociception in Male and Female Mice. ACS Med Chem Lett 2024; 15:1731-1740. [PMID: 39411536 PMCID: PMC11472388 DOI: 10.1021/acsmedchemlett.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Opioids acting at the mu opioid receptor (MOR) remain the most effective treatment for moderate to severe pain, but their use is limited by serious side effects. We have shown that a cyclized analog of endomorphin-1 provided pain relief comparable to that of morphine with reduction or absence of several side effects, including abuse liability. Glycosylation can promote penetration of cellular barriers. Here we developed cyclic glycopeptide endomorphin (glycoEM) analogs as drug candidates for potent and long-lasting analgesia. The analogs were assessed in receptor binding and functional assays and for blood-brain barrier penetration by microdialysis and MS. Two of the analogs showed MOR selectivity and more potent and longer lasting antinociception than morphine in male and female mice. Comparable antinociception occurred at A2 doses 5-fold lower (20-fold on a molar basis) than morphine doses. The results support further study of the glycoEMs for clinical application.
Collapse
Affiliation(s)
- James E. Zadina
- Department of Medicine and Pharmacology and Brain Institute, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- SE
Louisiana Veterans Health Care System, New Orleans, Louisiana 70119, United States
| | - Lajos Z. Szabo
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Fahad Al-Obeidi
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Xing Zhang
- Department of Medicine and Pharmacology and Brain Institute, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- SE
Louisiana Veterans Health Care System, New Orleans, Louisiana 70119, United States
| | - Leticia Ferreira Nakatani
- Department of Medicine and Pharmacology and Brain Institute, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- SE
Louisiana Veterans Health Care System, New Orleans, Louisiana 70119, United States
| | - Chidiebere Ogbu
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - M. Leandro Heien
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Torsten Falk
- Department
of Neurology, The University of Arizona, Tucson, Arizona 85724, United States
| | - Mitchell J. Bartlett
- Departments
of Surgery and Neurosurgery, The University
of Arizona, Tucson, Arizona 85724, United States
| | - Robin Polt
- Department
of Chemistry & Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Sajid MS, Ding Y, Varghese RS, Kroemer A, Ressom HW. Unveiling Endogenous Serum Peptides as Potential Biomarkers for Hepatocellular Carcinoma in Patients with Liver Cirrhosis. J Proteome Res 2024; 23:3974-3983. [PMID: 39177206 PMCID: PMC11385380 DOI: 10.1021/acs.jproteome.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, mainly associated with liver cirrhosis. Current diagnostic methods for HCC have limited sensitivity and specificity, highlighting the need for improved early detection and intervention. In this study, we used a comprehensive approach involving endogenous peptidome along with bioinformatics analysis to identify and evaluate potential biomarkers for HCC. Serum samples from 40 subjects, comprising 20 HCC cases and 20 patients with liver cirrhosis (CIRR), were analyzed. Among 2568 endogenous peptides, 67 showed significant differential expression between the HCC vs CIRR. Further analysis revealed three endogenous peptides (VMHEALHNHYTQKSLSLSPG, NRFTQKSLSLSPG, and SARQSTLDKEL) that showed far better performance compared to AFP in terms of area under the receiver operating characteristic curve (AUC), showcasing their potential as biomarkers for HCC. Additionally, endogenous peptide IAVEWESNGQPENNYKT that belongs to the precursor protein Immunoglobulin heavy constant gamma 4 was detected in 100% of the HCC group and completely absent in the CIRR group, suggesting a promising diagnostic biomarker. Gene ontology and pathway analysis revealed the potential involvement of these dysregulated peptides in HCC. These findings provide valuable insights into the molecular basis of HCC and may contribute to the development of improved diagnostic methods and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Yuansong Ding
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Rency S Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Habtom W Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
4
|
Wessels HJCT, Kulkarni P, van Dael M, Suppers A, Willems E, Zijlstra F, Kragt E, Gloerich J, Schmit PO, Pengelley S, Marx K, van Gool AJ, Lefeber DJ. Plasma glycoproteomics delivers high-specificity disease biomarkers by detecting site-specific glycosylation abnormalities. J Adv Res 2024; 61:179-192. [PMID: 37683725 PMCID: PMC11258658 DOI: 10.1016/j.jare.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION The human plasma glycoproteome holds enormous potential to identify personalized biomarkers for diagnostics. Glycoproteomics has matured into a technology for plasma N-glycoproteome analysis but further evolution towards clinical applications depends on the clinical validity and understanding of protein- and site-specific glycosylation changes in disease. OBJECTIVES Here, we exploited the uniqueness of a patient cohort of genetic defects in well-defined glycosylation pathways to assess the clinical applicability of plasma N-glycoproteomics. METHODS Comparative glycoproteomics was performed of blood plasma from 40 controls and 74 patients with 13 different genetic diseases that impact the protein N-glycosylation pathway. Baseline glycosylation in healthy individuals was compared to reference glycome and intact transferrin protein mass spectrometry data. Use of glycoproteomics data for biomarker discovery and sample stratification was evaluated by multivariate chemometrics and supervised machine learning. Clinical relevance of site-specific glycosylation changes were evaluated in the context of genetic defects that lead to distinct accumulation or loss of specific glycans. Integrated analysis of site-specific glycoproteome changes in disease was performed using chord diagrams and correlated with intact transferrin protein mass spectrometry data. RESULTS Glycoproteomics identified 191 unique glycoforms from 58 unique peptide sequences of 34 plasma glycoproteins that span over 3 magnitudes of abundance in plasma. Chemometrics identified high-specificity biomarker signatures for each of the individual genetic defects with better stratification performance than the current diagnostic standard method. Bioinformatic analyses revealed site-specific glycosylation differences that could be explained by underlying glycobiology and protein-intrinsic factors. CONCLUSION Our work illustrates the strong potential of plasma glycoproteomics to significantly increase specificity of glycoprotein biomarkers with direct insights in site-specific glycosylation changes to better understand the glycobiological mechanisms underlying human disease.
Collapse
Affiliation(s)
- Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Purva Kulkarni
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maurice van Dael
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anouk Suppers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther Willems
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fokje Zijlstra
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Pap A, Kiraly IE, Medzihradszky KF, Darula Z. Multiple Layers of Complexity in O-Glycosylation Illustrated With the Urinary Glycoproteome. Mol Cell Proteomics 2022; 21:100439. [PMID: 36334872 PMCID: PMC9758497 DOI: 10.1016/j.mcpro.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
While N-glycopeptides are relatively easy to characterize, O-glycosylation analysis is more complex. In this article, we illustrate the multiple layers of O-glycopeptide characterization that make this task so challenging. We believe our carefully curated dataset represents perhaps the largest intact human glycopeptide mixture derived from individuals, not from cell lines. The samples were collected from healthy individuals, patients with superficial or advanced bladder cancer (three of each group), and a single bladder inflammation patient. The data were scrutinized manually and interpreted using three different search engines: Byonic, Protein Prospector, and O-Pair, and the tool MS-Filter. Despite all the recent advances, reliable automatic O-glycopeptide assignment has not been solved yet. Our data reveal such diversity of site-specific O-glycosylation that has not been presented before. In addition to the potential biological implications, this dataset should be a valuable resource for software developers in the same way as some of our previously released data has been used in the development of O-Pair and O-Glycoproteome Analyzer. Based on the manual evaluation of the performance of the existing tools with our data, we lined up a series of recommendations that if implemented could significantly improve the reliability of glycopeptide assignments.
Collapse
Affiliation(s)
- Adam Pap
- Laboratory of Proteomics Research, Biological Research Centre, Eotvos Lorand Research Network (ELKH) Szeged, Hungary
| | | | - Katalin F. Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Eotvos Lorand Research Network (ELKH) Szeged, Hungary,For correspondence: Zsuzsanna Darula; Katalin F. Medzihradszky
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Eotvos Lorand Research Network (ELKH) Szeged, Hungary,Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine Szeged, Hungary,For correspondence: Zsuzsanna Darula; Katalin F. Medzihradszky
| |
Collapse
|
7
|
Zhang Y, Xu B. Involvement of testicular N-glycoproteome heterogeneity in seasonal spermatogenesis of the American mink (Neovison vison). Front Vet Sci 2022; 9:1001431. [PMID: 36406079 PMCID: PMC9672844 DOI: 10.3389/fvets.2022.1001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis in the American mink is characterized by an annual cycle of transition involving completely inactive and fully activated stages. N-glycosylation of proteins has emerged as an important regulator as it affects protein folding, secretion, degradation, and activity. However, the function of protein N-glycosylation in seasonal spermatogenesis of the American mink remains unclear. In the present study, we established a proteome-wide stoichiometry of N-glycosylation in mink testes at various phases of spermatogenesis using N-linked glycosylated-peptide enrichment in combination with liquid chromatography-tandem mass spectrometry analysis. A total of 532 N-glycosylated sites matching the canonical Asn-X-Ser/Thr motif were identified in 357 testicular proteins. Both the number of glycoproteins and the sites of N-glycosylated proteins in mink testes were highly dynamic at different stages. Functional analyses showed that testicular proteins with different N-glycosylation might play a vital role in spermatogenesis by affecting their folding, distribution, stability, and activity. Overall, our data suggest that the dynamics of N-glycosylation of testicular proteins are involved in seasonal spermatogenesis in the American mink.
Collapse
|
8
|
Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol Cell Proteomics 2022; 21:100214. [PMID: 35183770 PMCID: PMC8958358 DOI: 10.1016/j.mcpro.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022] Open
Abstract
Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm–egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility. A precision site-specific glycoproteome is documented in human spermatozoa. Distinctive glycoproteins and heavy fucosylation are detected in spermatozoa. Sialylation and Lewis epitopes are related to immune response of spermatozoa. Bisected core structures and LacdiNAc are enriched on acrosome of spermatozoa.
Collapse
|
9
|
Gao Z, Tang R, Ma S, Jia S, Zhang S, Gong B, Ou J. Design and construction of a hydrophilic coating on macroporous adsorbent resins for enrichment of glycopeptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4515-4527. [PMID: 34515267 DOI: 10.1039/d1ay01276b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although macroporous adsorbent resins (MARs) have been commercialized and widely applied in industrial and life fields, it is still of necessity to develop simple approaches to functionalize MARs. One of the most widely used methods to realize excellent fouling resistance performance is surface modification of hydrophilic polymers on substrates to fabricate an anti-biofouling coating. Herein, three kinds of hydrophilic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) MAR were designed and facilely prepared by coating a layer of porous organic polymers (POPs) via either an epoxy-amine ring-opening polymerization or amine-aldehyde condensation reaction using isophthalaldehyde (IPA), 1,4,7,10-tetraazacyclododecane (cyclen), melamine and 1,3,5-triglycidyl isocyanurate (TGIC) as precursors. By taking advantage of their merits, such as large surface area, excellent hydrophilicity and unbiased affinity toward all types of glycopeptide, three functionalized hydrophilic MARs were successfully applied to capture glycopeptides from complex samples as hydrophilic interaction liquid chromatography (HILIC) sorbents. A total of 694 N-glycopeptides and 372 N-glycosylation sites were identified from 2 μL of human serum digest with poly(TC)@MAR, which were not only more than those of poly(MT)@MAR (286 N-glycosylation sites and 547 N-glycopeptides) and poly(IM)@MAR (669 N-glycopeptides and 355 N-glycosylation sites), but also more than those of other reported HILIC materials. This work provided a new and simple way to synthesize enrichment materials for liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis of glycoproteomes.
Collapse
Affiliation(s)
- Zheng Gao
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shicong Jia
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
[Effect of sample preparation on analysis of human milk endogenous peptides using liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:463-471. [PMID: 34227330 PMCID: PMC9403996 DOI: 10.3724/sp.j.1123.2020.08019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
人乳内源肽是乳蛋白在乳腺中被降解形成的具有生理功能的肽,是人乳的重要组成部分,研究人乳内源肽对于婴儿健康具有重要的意义。高效液相色谱-串联质谱(LC-MS/MS)联用技术的应用,促使人乳内源肽的研究取得了突破性的进展。人乳中内源肽含量低、干扰组分多,样品制备方法是影响分析结果的关键步骤。为了研究样品制备方法对分析结果的影响,分别采用不变性超滤法(UF 1)、热变性超滤法(UF 2)、化学变性超滤法(UF 3)、三氯乙酸沉淀法(PCPN 1)、乙醇沉淀法(PCPN 2)、强疏水性碳介孔材料(highly ordered mesoporous carbon, OMC)富集法等6种方法从人乳中提取内源肽,利用LC-MS/MS研究样品制备方法对人乳内源肽分析结果的影响。结果表明,UF 1和UF 2法制备的样品中可鉴定到的肽段数目分别为1161±8条和1017±91条,两种方法制备的样品中肽序列的重合率大于70%, UF 1在所有方法中鉴定到的肽的数目最多。UF 3法制备的样品所能鉴定到的肽段数目最少,仅为366±18条。PCPN 1和PCPN 2两种沉淀法制备样品中的内源肽分别为779±69和876±55条,但内源肽差异较大,仅有约50%肽段序列重合。OMC法制备样品中肽的数目为549±151条,与其他方法相比,虽然鉴定的肽数量上没有优势,但该方法制备的样品中肽在等电点(pI)和亲水性平均系数(GRAVY)等性质上没有偏倚,说明该法可用于制备特定人乳内源肽。6种方法制备的样品中鉴定到来源于β-酪蛋白、免疫球蛋白受体、骨桥蛋白、αS1-酪蛋白、κ-酪蛋白和胆盐激活脂肪酶的肽,并且源于以上蛋白质的肽段总数在该样品中均超过88%,说明6种方法制备的样品都可以满足鉴定一般人乳内源肽的需求。UF 2、UF 3和OMC法制备的样品中鉴定到源于乳铁蛋白的内源肽的数目分别为21、38和19条,内源肽在乳铁蛋白上的覆盖率分别为14%、16%和19%,而文献常用的PCPN 1法制备的样品则会丢失此类内源肽。综上,UF 2法制备的样品不仅肽段数量多、母体蛋白质种类丰富,还可鉴定到源于乳铁蛋白的肽,可作为人乳内源肽组学研究中的首选方法。
Collapse
|
11
|
Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2021; 11:573928. [PMID: 33552045 PMCID: PMC7862545 DOI: 10.3389/fimmu.2020.573928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
It is largely unknown how post-translational protein modifications, including glycosylation, impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data in the literature indicate that O- and N-linked glycosylation can survive epitope processing and influence antigen presentation and T cell recognition. In this perspective, we hypothesize that glycosylation of viral proteins and processed epitopes contribute to the T cell response to HIV. Although there is some evidence for T cell responses to glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell responses in HIV infection we conducted in silico and ex vivo immune studies in individuals with chronic HIV infection. We found that in silico viral protein segments with potentially glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added glycosylation moieties generally masked T cell recognition of HIV derived peptides. Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss the potential importance of these observations and compare limitations of the employed technology with new methodologies that may have the potential to provide a more accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is aimed to support future research on T cells recognizing glycosylated epitopes in order to expand our understanding on how glycosylation of viral proteins could alter host T cell immunity against viral infections.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Anuska Llano
- IrsiCaixa-AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|